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Abstract: Remotely sensed images degraded by additive white Gaussian noise (AWGN) have low-
level vision, resulting in a poor analysis of their contents. To reduce AWGN, two types of denoising
strategies, sparse-coding-model-based and deep-neural-network-based (DNN), are commonly uti-
lized, which have their respective merits and drawbacks. For example, the former pursue enjoyable
performance with a high computational burden, while the latter have powerful capacity in complet-
ing a specified task efficiently, but this limits their application range. To combine their merits for
improving performance efficiently, this paper proposes a model-driven deep denoising (MD3) scheme.
To solve the MD3 model, we first decomposed it into several subproblems by the alternating direction
method of multipliers (ADMM). Then, the denoising subproblems are replaced by different learnable
denoisers, which are plugged into the unfolded MD3 model to efficiently produce a stable solution.
Both quantitative and qualitative results validate that the proposed MD3 approach is effective and
efficient, while it has a more powerful ability in generating enjoyable denoising performance and
preserving rich textures than other advanced methods.

Keywords: remotely sensed images; additive white Gaussian noise (AWGN); model-driven deep
denoising (MD3); deep neural network (DNN); alternating direction method of multipliers (ADMM)

1. Introduction

Remote sensing imaging technology, based on the theory of electromagnetic waves, is
an approach to produce imagery for the visualization of electromagnetic wave information
radiated and reflected by long-distance targets [1,2]. Remotely sensed images (RSIs) truly
and objectively show the current situation of the distribution of ground objects, the rela-
tionship between ground objects or phenomena, and the mutual influences and changes
between ground objects [3,4]. Their wide applications, such as real-time monitoring of
crop growth, fire detection, geological exploration, dynamic hydrological conditions, and
environmental monitoring, have attracted increasing attention. However, they may be
degraded by additive white Gaussian noise (AWGN) produced by photo or electronic ef-
fects, causing them to have low-level vision, which will cause intelligent systems difficulty
in interpreting and analyzing their contents. Assuming an observed RSI f corrupted by
AWGN g [5], its degradation process can be easily formulated as [6]

f = x + g, (1)

where x is a latent clean RSI to be estimated.
To restore the high-level clean RSI x while preserving rich structures from the de-

graded RSI f for favorably visualizing and understanding its contents, many noise removal
methods have been proposed in recent decades and have made considerable progress. One
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type of traditional denoising method directly uses the spatial statistical information of
adjacent pixels to produce approximation results [7]. These approaches are straightforward
and easily implemented, but they may generate results with staircase artifacts. To improve
the performance and obtain an enjoyable result, Dabov et al. [8] transferred statistical
knowledge from adjacent pixels to neighboring patches and proposed a block matching
and 3D collaborative filtering (BM3D) scheme. It can efficiently produce a competitive de-
noising performance, but may over-smooth the fine irregular structures when an image has
insignificant self-similarity properties. The other commonly considered denoising strategy
is to construct convex optimization mathematical models (COMMs) with the employment
of different priors. Such a COMM can be uniformly formulated as

min
x

1
2
‖ f − x‖2

2 + υΨ(x), (2)

where the first term ‖·‖2
2 is a data fidelity term to guarantee its solution in the degradation

process, the second term Ψ(·) is a regularization prior formed by the properties of the latent
image x to ensure its optimal approximation solution, and υ is a weighting parameter to
balance the two terms. The most commonly used model is designated as total variation
(TV), first proposed by Rudin et al. [9], which penalizes the `1-norm on the global gradient
as a constraint. Then, some other TV-based strategies [10–16] were proposed to improve
the denoising performance with different handcrafted priors to deal with different inverse
problems. However, these TV-based methods have some problems: First, their results are
sensitive to the selection of a set of parameters and may produce “staircase” results. Second,
they may smooth preferable structures due to the piecewise constant assumption. More
importantly, these TV-based methods have a heavy computational burden. Figure 1 shows
a visual comparison between a model-based scheme and the proposed MD3 approach,
from which we can observe that the denoising performance of the model-based approach is
still to be improved and many rich structures in its result are over-smoothed. Unfortunately,
it requires more than 780 s of computational time, which is undesirable for its extensive
applications.

(a) (b) (c) (d)

Figure 1. An example of a visual comparison between the model-based method (WSSR) (PSNR|SSIM:
27.2 dB|0.7155) and the proposed MD3 approach (PSNR|SSIM: 27.63 dB|0.7352) on the MODIS-A1 image
with size 512× 512 and noise level σ = 25. (a) Ground-truth. (b) Noised. (c) WSSR [6]. (d) Proposed.

To improve the efficiency, as well as to have a competitive denoising performance, we
further studied the sparse coding model and found that its two subproblems decomposed
by the alternating direction method of multipliers (ADMM) [17] are pure AWGN removal
problems. As mentioned in [18–21], such pure AWGN removal problems can be replaced
by deep denoisers due to their high flexibility, high efficiency, and powerful modeling
capacity. As such, two deep denoiser priors, acting as two independent modulars, are
proposed to be plugged into the iterative optimization process of the unfolding sparse
COMM to speed up its convergence to a promising approximation solution. The flowchart
of the proposed framework is shown in Figure 2.
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Figure 2. The flowchart of the proposed model-driven deep remotely sensed image denoising.

Our main contributions are summarized as follows:

• We propose a novel sparse coding denoising strategy, namely model-driven deep
denoising (MD3), for the pursuit of pleasing denoising performance efficiently.

• A learnable iterative soft thresholding algorithm (LISTA) is proposed for pursing the
solution of sparse coding coefficient, while a lightweight residual network for learning
a dictionary.

• The quantitative and qualitative results of experiments on both synthetic and real-life
remote sensing images validate that the proposed MD3 approach is effective and even
outperforms the state-of-the-art methods.

The remaining parts of our work are organized as follows. Section 2 briefly reviews
the previous related work. Section 3 reports the proposed model-driven deep denoising
(MD3) strategy and its optimization. Section 4 provides the quantitative and qualitative
experimental results. We summarize our work in Section 5.

2. Related Works

In this section, three categories of the previous methods, including sparse-model-based
handle-crafted image priors, discriminative learning strategies, and model-guided deep
convolutional neural networks (deep unfolding), are briefly introduced.

2.1. Sparse-Model-Based Handle-Crafted Image Priors

Inspired by the performance of BM3D, researchers further studied the neighboring
stacked patches having a non-local self-similar (NSS) property that can be further trans-
formed into various forms for model construction. One is low-rank regularization, such
as Dong et al. [22], who proposed nonlocal low-rank regularization for compressive sens-
ing. Yang et al. [23] presented a field of expert-regularized nonlocal low-rank matrix
approximation (RFoE) denoising models. To make the rank estimation more accurate and
obtain a preferable solution, Xue et al. [24] explored two intrinsic priors, including the
global correlation across spectrum (GCS) and nonlocal self-similarity (NSS) over space,
to avoid tensor rank estimation bias for denoising performance. Liu et al. [25] developed
a multigraph-based low-rank tensor approximation for hyperspectral image restoration.
Similar to TV problems, the above low-rank matrix factorization (LRMF) problems are
also nonconvex optimization problems. There is another direction of research for low-rank
matrix approximation: nuclear norm minimization (NNM) [26]. Compared to non-convex
LRMF problems, it is the tightest convex relaxation with a certain data fidelity term, so it
has attracted great attention and has been extended to many approaches, such as weighted
NNM (WNNM) [27], weighted Schatten p-norm minimization (WSNM) [28], and the itera-
tive weighted nuclear norm (IWNN) [29]. These methods assign higher weights to larger
singular values, which are flexible for coping with different rank components and generate
better approximation solutions than the LRMF problems [30]. Additionally, some meth-
ods [31–35] have combined nonlocal low-rank tensor decomposition and total variation
regularization for the pursuit of high hyperspectral image denoising performance.

There is also another strategy to represent the non-similar stacked patch, which can
be approximated by sparse coding coefficients with a redundant dictionary [36–38]. As
traditional dictionaries are manually designed and are not flexible in representing the
complex image structures, they are commonly learned directly from image data to develop
dictionary learning (DL) methods. In sparse DL methods, k-singular-value decomposi-
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tion (K-SVD) is a well-known approach to alternatively update the sparse coding and
dictionary [39]. However, it lacks a shift-invariance property. To cope with this issue,
convolutional dictionary learning (CDL) [40,41] replaced matrix multiplication with the
convolution operation in signal representation. Inspired by CDL, many CDL-based meth-
ods have been proposed and have achieved considerable progress in improving denoising
performance [42–50]. For instance, convolutional sparse coding (CSC) [42] is proposed to
solve the sparse coding problem. Dong et al. [43] proposed a nonlocally centralized sparse
representation (NCSR) with the usage of nonlocal self-similar patches for image restoration.
Xu et al. [47] developed a trilateral weighted sparse coding (TWSC) strategy by introducing
three weight terms into the sparse coding framework. From a multi-scale perspective,
an image is separated into high- and low-frequency components, and then, the sparse
representation is reconstructed using patch-based structure similarity and singular-value
decomposition (SVD) [49]. Ou et al. [50] used multi-scale NSS priors to construct patch
groups and proposed a multi-scale weighted group sparse coding model (MS-WGSC) for
image denoising with ringing artifact removal while preserving rich details. These methods
employ the advantages of the high-order dependency of sparse coefficients for pleasing
denoising performance. However, they have their own drawbacks: the weak model repre-
sentation flexibility of the universal dictionary, several regularization parameters that are
required to be manually set, and even a heavy computational time burden.

2.2. Deep Neural Network

In recent years, deep neural network (DNN) approaches have been popularly devel-
oped to directly learn a nonlinear mapping function from the space of noisy images to
that of clean images [51]. With the employment of its strong learning capacity on large
training samples, many DNN-based denoising methods have been proposed [18–21,52–63].
For example, Chen et al. [52] used a loss-based scheme to learn filters from training data
and formed a trainable nonlinear reaction diffusion (TNRD) model. Zhang et al. [18] pro-
posed a classical deep image denoising strategy, which is named the deep convolutional
neural network (DnCNN), and then proposed a fast and flexible solution for CNN-based
image denoising (FFDNet) [21]. Guo et al. [53] presented a convolutional blind denoising
network (CBDNet) by incorporating the network architecture, noise modeling, and asym-
metric learning to improve the robustness and practicability of deep denoising models.
Jia et al. [54] developed a fractional optimal control network (FOCNet) for image denoising.
Tian et al. [55] integrated batch renormalization into a deep CNN (DCNN) to obtain good
results. Zhang et al. [56] used a memory-efficient hierarchical neural architecture to search
for pleasing solutions. COLA-Net [57] and SQAD [58] introduced an attention mechanism
into the DNN for denoising performance improvement. The residual network was further
extended by Zhang et al. [59] to a residual dense network. Non-local self-similarity [60] and
the low rank [25] of stacked patches are both plugged into a convolutional neural network
for noise removal. Jia et al. [61], Dong et al. [62], and Xu et al. [63] reduced noise using deep
learning technologies from a multi-scale perspective.

The above methods successfully and efficiently achieved leading denoising perfor-
mance due to their powerful learning capabilities and surpassed the traditional image
denoising methods by learning the image denoisers from the training data. However, these
DNN-based methods lack good interpretability because they directly map low-quality
images to latent noise-free results with a black-box nature, and their application range is
greatly limited because they are usually applied to a specialized task.

2.3. Deep Unfolding

To address the above issues of DNN-based methods, deep learning technologies are
usually exploited to complete specialized tasks (e.g., denoisers) in the optimization pro-
cess of sparsity-based models, which can be decoupled by certain algorithms (such as
the alternating direction method of multipliers (ADMM) [17] and half-quadratic splitting
(HQS) [64]). For instance, Meinhardt et al. [65] replaced the proximal operator of regu-



Remote Sens. 2023, 15, 445 5 of 20

larization with a denoising neural network. The methods in [66–68] unfolded the CSC
process and integrated DNN into the CSC problem for an efficient solution. Simon et al. [69]
further improved it by using strided convolution. Dong et al. [70] unfolded the iterative
process into a feed-forward neural network. Fu et al. [71] proposed a multi-scale feature
extraction module for reducing JPEG artifacts. Bertocchi et al. [72] provided a neural
network architecture by unfolding a proximal interior point algorithm. Zheng et al. [73]
proposed a deep convolutional dictionary learning (DCDicL) framework to learn the priors
for both representation coefficients and dictionaries. Sun et al. [74] used low-rank rep-
resentation and a CNN denoiser (LRR-CNN) to form a hyperspectral image denoising
model. Huang et al. [75] proposed a nonlocal self-similar (NSS) block-based deep image
denoising scheme, designated the deep low-rank prior (DLRP), to achieve efficient perfor-
mance. Xu et al. [76] developed an end-to-end deep architecture to follow the process of
sparse-representation-based image restoration.

These unfolding iterative denoising strategies successfully improved their interpretabil-
ity when compared to DNN-based methods. However, the existing deep unfolding methods
also have drawbacks as follows: (1) the learning capacity of DNNs is wasted with the usage of
fixed priors (without learning the priors from data). (2) The dictionary is universally learned
and is not adaptive, resulting in their performance being even lower than that of DNN-based
approaches.

3. Model-Driven Deep Denoising

3.1. MD3 Model Generation

For an exemplar patch of size
√

n×
√

n at position i denoted by xi, its similar neigh-
borhood patches are ordered lexicographically to construct a data matrix:

Xi = Rix =
[
xi1 , xi2 , · · · , xim

]
, Xi ∈ Ω n×m, (3)

where xij (j ∈ [1, m]) is a column vector similar to xi and m is the total number of similar
patches that are selected by the following criteria:

Zi =
{

ij|ρij > η
}

, (4)

where Zi is the position set of similar patches and η is a judgment parameter (which is
empirically set as 0.4 in the following experiments), and ρij, the correlation coefficient
between the i-th patch and the j-th patch, is computed by

ρij =
cov(xi, xj)

σxi σxj

=
E(xixj)− E(xi)E(xj)√

E(x2
i )− E2(xi)

√
E(x2

j )− E2(xj)
, (5)

where E(·) is a function to compute the mean value of a matrix. Generally, this constructed
data matrix Xi is sparse and can be characterized by a coding coefficient vector αi with a
given or learned dictionary D [75]. That is, Xi = Rix = Dαi. Compared to the usage of
a given dictionary, a learned dictionary is more flexible to be able to adaptively interpret
complex structures. By considering the above constraints and the priors on the unknown
variables, we can construct a global objective model as follows:

min
x,D,αi

1
2
‖ f − x‖2

2 + ∑
i

Γ(x, D, αi), (6)

where Γ(x, D, αi) =
λ
2 ‖Rix− Dαi‖2

2 + βΦ(D) + γΨ(αi), λ is a penalty parameter (which
has a direct relationship with the noise level σ), while β and γ are regularization parameters
to guarantee that the model has an optimized solution.
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3.2. MD3 Model Optimization

The objective function (6) can be decomposed into the following two subproblems
and be solved by alternately minimizing them for the latent clean image x, the sparse
representation matrix αi, and dictionary D while keeping the other variables fixed:

min
x

1
2
‖ f − x‖2

2 + ∑
i

λ

2
‖Rix− Dαi‖2

2, (7a)

min
D,αi

λ

2
‖Rix− Dαi‖2

2 + βΦ(D) + γΨ(αi). (7b)

3.2.1. Solving x

In the (k + 1)-th iteration, Sub-problem (7a) for x is a quadratic optimization problem
and has a fast closed-form solution:

x =

(
I + λ ∑

i
RT

i Ri

)−1(
f + λ ∑

i
RT

i Dkαk
i

)
, (8)

where I is a unit matrix and RT
i is the transpose matrix of Ri.

3.2.2. Solving αi and D

By the usage of the alternating direction method of multipliers (ADMM), Sub-problem (7b)
can be further separated into two independent subproblems as follows:

min
αi

λ

2
‖Rix− Dαi‖2

2 + γΨ(αi), (9a)

min
D

λ

2
‖Rix− Dαi‖2

2 + βΦ(D). (9b)

where the sparse coding αi is estimated by Equation (9a) from Xi = Rix with a fixed
dictionary D. Alternately, dictionary D is computed by Equation (9b) from Xi = Rix with a
known sparse coding αi:

• For sparse coding αi: Equation (9a) is a restoration task for αi from Xi = Rix, which
can be rewritten as

min
αi

1
2
‖Xi − Dαi‖2

2 +
γ

λ
Ψ(αi). (10)

The traditional strategies to construct the sparse coding model usually plug the handle-
crafted priors into Problem (10). Specifically, Ψ(αi) = ‖αi‖0 is an `0-norm, which is
an original sparse approximation problem to count the number of non-zero elements
in αi. Unfortunately, the `0-norm is an N-P problem that is difficult to solve. An `1-
norm (Ψ(αi) = ‖αi‖1) is usually employed to replace the `0-norm to form a convex and
continuous problem, with which Problem (10) is equivalently written as

min
αi

1
2
‖Xi − Dαi‖2

2 +
γ

λ
‖αi‖1, (11)

which can be effectively solved by a popularly representative approach, the iterative soft
thresholding algorithm (ISTA) [77], to guarantee its convergence. The solution of the iterative
process at the k-th iteration using the ISTA is{

α0
i = 0

αk+1
i = Sθ

(
αk

i +
1
τ DT

(
Xi − Dαk

i

)) (12)
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where θ = γ/λτ and τ is a parameter that should meet the following criterion: τ > υmax,
where υmax is the largest eigenvalue of DT D. Sθ is an elementwise soft-thresholding
shrinkage function, which is defined as

Sθ(κ) = sign(κ)max(|κ| − θ, 0) (13)

to search for the global minimum of the sparse representation model (10). However, this
global minimum solution is dependent on the selection of parameters γ and λ. Moreover,
the obtained solution of the `1-norm is theoretically approximated to the desired solution of
the `0-norm, but it is not an exact solution and depends on its sparsity and the properties of
dictionary D. Actually, the iterative process in Equation (11) can be equivalently written as

αk+1
i = Sθ

((
I − 1

τ
DT D

)
αk

i +
1
τ

DTXi

)
(14)

Let P = I − 1
τ DT D and M = 1

τ DT , then Equation (14) can be simplified as

αk+1
i = Sθ

(
Pkαk

i + MkXk+1
i

)
(15)

which can be implemented by a learnable ISTA (LISTA) encoder network to obtain a fast
sparse coding approximation solution of Equation (10). The LISTA encoder network is
viewed as a modular part to be plugged into the denoising model, where the thresholding
parameter θ is learned for the pursuit of the sparse coding αi, which is then fixed for solving
other variables. The framework of the LISTA encoder for Problem (15) is shown in Figure 3.

Figure 3. Framework of LISTA encoder for updating sparse coding αi.

• For dictionary D: with the aid of the half-quadratic splitting (HQS) algorithm due to
its simplicity and fast convergence in many applications. Equation (9b) can be solved
by inducing an auxiliary variable ΘD to convert the constrained problem (9b) into an
unconstrained one:

min
D,ΘD

λ

2
‖Rix− Dαi‖2

2 + βΦ(ΘD) +
µ

2
‖ΘD − D‖2

2. (16)

By employing ADMM, Equation (16) is decomposed into the following two indepen-
dent problems: 

D̂ = arg min
D

λ

2
‖Rix− Dαi‖2

2 +
µ

2
‖ΘD − D‖2

2 (17a)

Θ̂D = arg min
ΘD

βΦ(ΘD) +
µ

2
‖ΘD − D‖2

2 (17b)

Similar to solving x in Equation (7a), Equation (17a) also has a closed-form solution:

Dk+1 =

(
µΘk

D + λXk+1
i

(
αk+1

i

)T
)(

µI + λαk+1
i

(
αk+1

i

)T
)−1

(18)
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The subproblem (17b) can be further modified as

Θ̂D = arg min
ΘD

Φ(ΘD) +
1

2
(√

β
/

µ
)2 ‖ΘD − D‖2

2, (19)

which is a common Gaussian noise removal issue on ΘD with a noise level
√

β
/

µ. For
simplicity, it is replaced by a learned deep Gaussian denoiser (DGD) as follows:

Θk+1
D = DGD

(
Dk+1,

√
β
/

µ

)
. (20)

Compared to the traditional approaches with handle-crafted priors Φ(·), the DGD has
several advantages. First, the unknown image prior Φ(·) can be implicitly replaced by any
Gaussian denoiser. Second, the learned DGD can be jointly utilized as a modular part to
efficiently solve many inverse problems due to its high flexibility and powerful modeling
capacity.

Figure 4 shows the architecture of the deep dictionary network (DDNet) Φ(·). As D
has a lighter structure derived from a deep residual network [78], we designed a simple
network whose receptive field and learning capability are sufficient to generate a pleasing
result. As shown in Figure 4, DDNet has six layers, including five “DConv + PReLU” layers
and one “DConv” layer. DConv preserves the merits of 3× 3 while enlarging the receptive
field [79]. PReLU is a parameterized nonlinearity function to generate a high-quality
estimation with few filters [80]. The number of channels in each layer is 16.

Figure 4. The flowchart of the deep dictionary network Φ(·). “DConv” denotes dilated convolution,
while “PReLU” represents the parametric rectified linear unit. “ +©” is a pixelwise operator used to
add feature maps.

4. Experimental Results and Analysis
4.1. Experimental Preparation

In this section, we present the experiments conducted on both synthetic and real-life
RSIs by state-of-the-art methods to obtain quantitative and qualitative results, which were
employed to validate the effectiveness of the proposed MD3. All comparable approaches
were tested on a PC with an Intel Core i7-5960X CPU 3.0 GHz 16.0 GB memory and a
GeForce RTX 2080Ti GPU, and the MATLAB 2014b software was used for the model-based
methods, while the TensorFlow software package was exploited for the deep learning
methods. All training and testing images were downloaded from [81,82], which were
randomly cropped into 735,602 patches of size 128× 128 with a ratio of 7:3. Note that
hyperspectral images were treated as common RSI images in a band-by-band manner to be
proceeded. The Adam optimizer [83,84] was used to minimize the L1 loss function, which
was adopted to generate the optimization network parameters shared in each stage. The
block size was 8× 8, while the dictionary size was 256× 256. The learning rate started
from 1e-4, decayed by half every 1e5 iterations, and finally, ended after 100 epochs. The
noise level ranged from 1 to 50 with a step size of 1, which is enough for training a set
of deep denoisers. The iterative optimization process is finished when the following

criterion is satisfied: ‖xk+1−xk‖2
2

‖xk‖2
2

< 10−3. Eight selected test images (as shown in Figure 5)

from different datasets were experimented on and presented in this section to verify the
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effectiveness of the proposed MD3 strategy. For similarity, the eight test images were named
MODIS-A1, MODIS-A2, MODIS-A3, MODIS-T1, MODIS-T2, MODIS-T3, Hyper-WDCM,
and Multi-WDC.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5. Test images. Images in (a–h) are from the Aqua MODIS dataset, Terra MODIS dataset,
hyperspectral dataset, and multispectral dataset, respectively.

Parameters setting: The unknown parameters referred to in Section 3 include four
regularization factors {λ, µ, γ, β} and the iteration number K. In order to make the proposed
MD3 method image adaptive, a HyperNet module, taking noise level σ as the inputs, was
exploited to learn the four hyper-parameters {λk, µk, γk, βk} for each stage. There are two
Conv layers with kernel size 1 and a SoftPlus layer to allow regularization parameters to
be positive in the HyperNet module. For noise level σ, the initial value was known in the
testing experiments, but it was unknown at other stages and in the experiments on real-life
RSIs. To address this issue, we estimated it at each stage by the method presented in [85] to
ensure the alternating iterations adaptively converged to a fixed point. The initial D was
the DCT dictionary and α0 = D−1

0 Rx0.
Quantitative index selection: Except for subjective evaluation, we, in the simulated ex-

periments, employed the peak-signal-to-noise ratio (PSNR) and structural similarity index
measure (SSIM) to objectively assess the capacity of the state-of-the-art in AWGN removal
and structural preservation, respectively [73]. In real-world experiments, two reference-free
metrics, the Q-metric (QM) [4] and natural image quality evaluator (NIQE) [86], were used
to evaluate their ability to preserve fine structures and improve estimated image quality,
respectively. The higher the PSNR is, the better the AWGN noise suppression. The larger
the SSIM and the QM are, the richer the structures. The smaller the NIQE is, the better the
denoised image quality.

Comparison approaches’ selection: To check the effectiveness of the proposed MD3

scheme and its advantages, three types of methods described in Section 2, model-based
(NCSR [43] and WSSR [6]), DNN-based ([18]), and deep-unfolding-based (DKSVD [68],
DCDicL [73], LRR-CNN [74], and DLRP [75]), were selected to be utilized, and their results
were compared regarding quantization and qualification.

4.2. Analysis of Convergence and Intermediate Results

Figure 6 presents the intermediate results generated by the proposed MD3 method
and its convergence on the Hyper-WDCM image with Noise Level 20. With the aid of two
learned strategies (including the LISTA encoder and DDNet), the noise in the estimated
image (as shown in Figure 6b–d) was more effectively suppressed with the increment of the
iterations, while the atoms in the adaptive estimated dictionary (as shown in Figure 6f–h)
were much closer to the units of the ground-truth image. The convergence result in Figure 6e
shows that the MD3 method quickly converged to a fixed point with only five iterations,
indicating that the two powerful learning modules explored in the optimization process of
our method can effectively help it speed up to an enjoyable solution.
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Figure 6. The convergence curve and intermediate results generated by the proposed MD3 method.
(a) Noised (σ = 20). (b) x1, PSNR: 26.21 dB. (c) x3, PSNR: 28.43 dB. (d) x5, PSNR: 28.44 dB. (e) Con-
vergence. (f) D1. (g) D3. (h) D5.

4.3. Experiments on the Synthetic RSI Images

The eight synthetic RSI images shown in Figure 5 were simulated and tested to examine
the effectiveness of the MD3 method. Three respective visual comparisons with different
noise levels are presented in Figures 7–9. By observing these results, we found that NCSR
produced the worst maps with distorted structures. WSSR pursues better results with
richer textures than the NCSR’s images at the cost of a z huge time burden. DnCNN directly
removes noise with the usage of a learned black-block mapping function and produces
enjoyable results; however, its interpretability is ambiguous. The deep unfolding methods
(DKSVD, DCDicL, LRR-CNN, and DLRP) enhance the interpretability of the DNN and
assign its specialized task, but their results are over-smoothed, which are even worse than
those produced by DnCNN. The reason may be that there are too many regularization
parameters that are not adaptive. In contrast, the details generated by the proposed MD3

method are better highlighted and are closer to those of the ground-truth images.
The objective values of PSNR and SSIM are shown in Tables 1 and 2, respectively, from

which some observations can be made. First, MD3 obtains an enjoyable PSNR and SSIM
on all RSI images at each noise level, indicating that MD3 can yield competitive denoising
performance and preferable results with plentiful structures. Second, MD3 generates the
best average PSNR, which outperforms the second-best method (deep unfolding DLRP)
from 0.18 dB to 0.39 dB, verifying that MD3 is effective at noise removal. Such conclusions
are consistent with the visual comparisons.
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Table 1. PSNR (dB) comparisons of the state-of-the-art. For each image at each level, the best result is marked with bold font.

Noise Level σ = 15 Noise Level σ = 20

MODIS- Hyper- Multi- MODIS- Hyper- Multi-Methods

A1 A2 A3 T1 T2 T3 WDCM WDC
Ave.

A1 A2 A3 T1 T2 T3 WDCM WDC
Ave.

NCSR 28.9 28.81 29.69 30.37 35.83 34.67 28.53 31.03 30.98 27.5 27.53 28.07 29 34.61 33.41 27.15 30.34 29.7
WSSR 29.58 29.32 30.47 31.21 36.48 35.32 29.62 32.63 31.85 28.22 28.2 28.94 29.64 35.27 34 27.83 31.4 30.44

DnCNN 29.39 29.24 30.37 31.02 36.32 35.19 29.5 32.61 31.71 28.06 28.06 28.67 29.44 35.04 33.9 27.59 31.1 30.23
DKSVD 29.36 29.17 30.22 30.77 36.21 35.17 29.49 32.43 31.6 27.96 27.94 28.66 29.41 35.03 33.85 27.51 31.04 30.18
DCDicL 29.45 29.34 30.33 30.82 36.41 35.25 29.52 32.51 31.7 28.07 28.06 28.79 29.55 35.19 33.97 27.7 31.19 30.32

LRR-CNN 29.42 29.38 30.54 30.89 36.48 35.27 29.37 32.57 31.74 28.11 28.11 28.87 29.57 35.24 33.99 27.75 31.33 30.37
DLRP 29.58 29.5 30.56 31.09 36.61 35.38 29.65 32.65 31.88 28.3 28.25 29 29.69 35.29 34.15 28.17 31.44 30.54

Proposed 29.76 29.72 30.79 31.25 36.78 35.63 29.79 32.87 32.06 28.54 28.61 29.37 29.9 35.66 34.54 28.44 31.73 30.85

Noise level σ = 25 Noise level σ = 30

NCSR 26.87 26.95 27.08 28.18 33.86 32.7 25.99 29.55 28.9 26.03 26.23 26.08 27.55 33.25 31.88 24.8 28.53 28.04
WSSR 27.2 27.28 27.68 28.69 34.41 33.07 26.77 30.33 29.43 26.44 26.66 26.82 28.07 33.75 32.35 25.65 29.48 28.65

DnCNN 27.12 27.2 27.56 28.51 34.23 33.02 26.6 30.06 29.29 26.14 26.51 26.57 27.96 33.45 32.22 25.53 29.16 28.44
DKSVD 26.95 27.04 27.52 28.47 34.21 33.01 26.72 29.92 29.32 26.15 26.4 26.57 27.78 33.42 32.2 25.36 29.06 28.37
DCDicL 27.14 27.24 27.61 28.64 34.38 33.04 26.77 30.09 29.36 26.2 26.63 26.65 28.1 33.6 32.29 25.55 29.25 28.66

LRR-CNN 27.11 27.25 27.67 28.67 34.39 33.07 26.74 30.11 29.38 26.35 26.65 26.82 28.03 33.74 32.3 25.64 29.39 28.62
DLRP 27.31 27.32 27.75 28.81 34.47 33.16 26.81 30.32 29.49 26.47 26.69 26.83 28.36 33.79 32.36 25.7 29.52 28.72

Proposed 27.63 27.69 28.17 29.14 35.01 33.69 27.03 30.68 29.88 26.75 26.95 27.11 28.37 34 32.86 26 29.7 28.97

Noise level σ = 35 Noise level σ = 40

NCSR 25.36 25.48 25.32 27.06 32.36 31.37 24.23 28.05 27.4 24.95 25.07 25.04 26.53 32.02 30.67 23.62 27.54 26.93
WSSR 25.85 26.14 26.11 27.46 33.06 31.65 25.08 28.76 28.01 25.41 25.6 25.5 27 32.46 31.13 24.26 28.18 27.44

DnCNN 25.82 25.89 25.89 27.25 32.9 31.5 24.92 28.45 27.83 25.13 25.38 25.26 26.81 32.17 31.13 24.02 27.95 27.23
DKSVD 25.65 25.77 25.86 27.24 32.69 31.48 24.94 28.39 27.75 25.08 25.29 25.18 26.72 32.11 30.88 23.89 27.71 27.11
DCDicL 25.81 25.98 25.89 27.43 32.99 31.51 25.01 28.51 27.89 25.34 25.47 25.31 26.87 32.34 31.05 24.11 28.03 27.32

LRR-CNN 25.83 26.01 26.08 27.44 32.99 31.57 25.04 28.65 27.95 25.37 25.41 25.49 26.93 32.36 31.11 24.21 28.07 27.37
DLRP 25.95 26.19 26.15 27.5 33.16 31.66 25.12 28.87 28.08 25.41 25.72 25.54 27.05 32.68 31.16 24.27 28.12 27.49

Proposed 26.11 26.4 26.32 27.76 33.34 32.02 25.21 29.01 28.27 25.62 25.97 25.58 27.22 32.86 31.29 24.65 28.55 27.72



Remote Sens. 2023, 15, 445 12 of 20

Table 2. SSIM comparisons of the state-of-the-art. For each image at each level, the best result is marked with bold font.

Noise Level σ = 15 Noise Level σ = 20

MODIS- Hyper- Multi- MODIS- Hyper- Multi-Methods

A1 A2 A3 T1 T2 T3 WDCM WDC
Ave.

A1 A2 A3 T1 T2 T3 WDCM WDC
Ave.

NCSR 0.805 0.768 0.9108 0.8401 0.8853 0.8801 0.8912 0.861 0.8552 0.7549 0.6973 0.8851 0.7692 0.8788 0.869 0.8341 0.8287 0.8146
WSSR 0.8272 0.7983 0.9176 0.8482 0.908 0.8998 0.9014 0.8647 0.8708 0.7755 0.7192 0.8844 0.7931 0.8892 0.8751 0.8493 0.8385 0.828

DnCNN 0.8127 0.7763 0.9157 0.832 0.9084 0.8989 0.8937 0.8619 0.8625 0.7648 0.7178 0.8795 0.7805 0.8893 0.874 0.8474 0.8339 0.8234
DKSVD 0.8225 0.7778 0.9184 0.8428 0.9078 0.8966 0.9003 0.8694 0.8616 0.7508 0.6929 0.8864 0.7791 0.89 0.8735 0.8453 0.8234 0.8177
DCDicL 0.8156 0.7812 0.9153 0.8372 0.9077 0.8998 0.8578 0.8666 0.8655 0.7581 0.7099 0.8831 0.7887 0.8884 0.8755 0.8535 0.8322 0.8237

LRR-CNN 0.8206 0.7866 0.9144 0.8414 0.9094 0.8971 0.8934 0.8696 0.8666 0.7585 0.7122 0.8827 0.7875 0.8914 0.8743 0.8449 0.8361 0.8235
DLRP 0.8267 0.7971 0.9163 0.8475 0.9126 0.9016 0.9067 0.8716 0.8725 0.7717 0.7271 0.887 0.7981 0.8919 0.8804 0.8518 0.8381 0.8308

Proposed 0.8386 0.7992 0.9211 0.8517 0.9148 0.9069 0.9093 0.8743 0.8767 0.7952 0.7488 0.9008 0.8172 0.9025 0.8938 0.8723 0.8537 0.848

Noise level σ = 25 Noise level σ = 30

NCSR 0.6482 0.6381 0.8381 0.7268 0.8695 0.8473 0.7952 0.7858 0.7686 0.6286 0.5862 0.8285 0.6825 0.8521 0.8241 0.7484 0.7497 0.7175
WSSR 0.7155 0.6691 0.8535 0.7472 0.8747 0.8578 0.8104 0.8065 0.7918 0.6637 0.6242 0.8248 0.7227 0.8672 0.842 0.7698 0.7791 0.7617

DnCNN 0.6995 0.6515 0.8481 0.7321 0.8744 0.8566 0.8085 0.8025 0.7842 0.6314 0.5962 0.8173 0.6958 0.8623 0.8395 0.769 0.7653 0.7471
DKSVD 0.6837 0.642 0.8453 0.7323 0.8732 0.8529 0.8023 0.7895 0.7777 0.6297 0.597 0.8155 0.6911 0.8606 0.8383 0.758 0.7579 0.7435
DCDicL 0.6569 0.6636 0.8563 0.7491 0.8755 0.854 0.8117 0.8002 0.7834 0.6571 0.6185 0.824 0.7161 0.8614 0.8374 0.7658 0.7739 0.7568

LRR-CNN 0.7036 0.6658 0.8563 0.7454 0.8768 0.8573 0.8094 0.8063 0.7901 0.6619 0.621 0.8237 0.7171 0.8644 0.8407 0.7692 0.7791 0.7596
DLRP 0.7297 0.6686 0.8533 0.759 0.8801 0.8602 0.8113 0.8076 0.7962 0.6645 0.626 0.8299 0.7165 0.8627 0.8392 0.7731 0.7803 0.7615

Proposed 0.7352 0.6884 0.8667 0.7708 0.8875 0.8709 0.8178 0.8103 0.806 0.6742 0.6319 0.8328 0.7375 0.8698 0.8531 0.79 0.7875 0.7721

Noise level σ = 35 Noise level σ = 40

NCSR 0.5679 0.5436 0.7778 0.658 0.8392 0.8181 0.7115 0.7257 0.7052 0.5234 0.5137 0.7474 0.6333 0.832 0.7978 0.6597 0.6972 0.6756
WSSR 0.617 0.5903 0.8027 0.6945 0.8555 0.8218 0.7316 0.7536 0.7334 0.5764 0.5563 0.7715 0.664 0.8432 0.8132 0.6978 0.732 0.7068

DnCNN 0.5842 0.5656 0.79 0.6622 0.8483 0.8194 0.7193 0.7405 0.7162 0.5454 0.5249 0.7595 0.642 0.8373 0.8055 0.6757 0.712 0.6878
DKSVD 0.5799 0.5483 0.7834 0.662 0.8465 0.8222 0.7133 0.7351 0.7113 0.5333 0.5162 0.7593 0.6332 0.8344 0.8056 0.6765 0.7032 0.6827
DCDicL 0.6203 0.5886 0.7885 0.6888 0.8555 0.8268 0.7335 0.7493 0.7314 0.5847 0.5452 0.766 0.661 0.8362 0.8078 0.6961 0.7275 0.7031

LRR-CNN 0.6173 0.5899 0.7941 0.6801 0.8498 0.8242 0.7345 0.7535 0.7304 0.5818 0.5601 0.771 0.6554 0.8333 0.8057 0.6998 0.7284 0.7044
DLRP 0.6214 0.5896 0.7996 0.6862 0.8556 0.8255 0.7292 0.759 0.7333 0.585 0.5598 0.7788 0.6663 0.8463 0.8107 0.7022 0.7306 0.71

Proposed 0.641 0.6064 0.8055 0.703 0.8568 0.8345 0.7403 0.7667 0.7443 0.6036 0.5836 0.7832 0.6854 0.8511 0.816 0.726 0.7471 0.7245
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. Visual comparison of experiments on the MODIS-T2 image. (a) Ground-truth. (b) Noised
(σ = 25). (c) NCSR [43]. (d) WSSR [6]. (e) DnCNN [18]. (f) DKSVD [68]. (g) DCDicL [73]. (h) LRR-
CNN [74]. (i) DLRP [75]. (j) Proposed.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8. Visual comparison of experiments on the MODIS-A3 image. (a) Ground-truth. (b) Noised
(σ = 30). (c) NCSR [43]. (d) WSSR [6]. (e) DnCNN [18]. (f) DKSVD [68]. (g) DCDicL [73]. (h) LRR-
CNN [74]. (i) DLRP [75]. (j) Proposed.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9. Visual comparison of experiments on the Multi-WDC image. (a) Ground-truth. (b) Noised
(σ = 40). (c) NCSR [43]. (d) WSSR [6]. (e) DnCNN [18]. (f) DKSVD [68]. (g) DCDicL [73]. (h) LRR-
CNN [74]. (i) DLRP [75]. (j) Proposed.

4.4. Experiments on Real-World RSI Images

To further examine its advantages, we also applied the state-of-the-art to real-world
RSI images (as shown in Figure 10), which are also related in [6]. Their denoised results
are compared in Figures 11 and 12, in which we can observe that the details in the results
produced by MD3 are much richer than those generated by the competing methods (the
readers can visualize the enlarged parts in these figures by themselves). Meanwhile, the
quantitative comparisons are presented in Table 3. For each real-life RSI image, MD3

achieves the highest QM value, further demonstrating that MD3 performs extraordinarily
well on preferable detail preservation. This is because MD3 perceives the global information
from the input images with an adaptive learning dictionary, making it image-adaptive.
More importantly, each result denoised by MD3 has the smallest NIQE value, validating
that its quality is the most comfortable for human visualization.

Table 3. Quantitative comparisons of the QM and NIQE values produced by the state-of-the-art. For
each image, the best result is marked with bold font.

Mountain City-Wall Factory
Methods

QM NIQE QM NIQE QM NIQE

NCSR 18.65 4.63 16.56 7.08 33.23 5.13
WSSR 22.72 3.61 21.05 3.57 39.35 4.09

DnCNN 21.62 3.93 20.05 5.43 37.76 4.61
DKSVD 20.75 4.43 19.32 5.07 36.53 4.64
DCDicL 23.5 3.77 21.48 3.61 40.36 4.31

LRR-CNN 22.07 3.56 19.78 3.69 38.12 4.14
DLRP 22.33 3.71 19.7 4.06 38.99 3.99

Proposed 25.34 3.5 24.46 3.42 44.19 3.83
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(a) (b) (c)

Figure 10. Three real-life noisy RSI images used for further testing. (a) Mountain. (b) City-wall.
(c) Factory.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. Visual comparison of experiments on the real-life Factory image. (a) NCSR [43].
(b) WSSR [6]. (c) DnCNN [18]. (d) DKSVD [68]. (e) DCDicL [73]. (f) LRR-CNN [74]. (g) DLRP [75].
(h) Proposed.

4.5. Computational Complexity

Efficiency is also an important index to evaluate the possibility for extensive appli-
cations. As model-based methods have a high time burden (CPU time), which may be
100-times more than those produced by deep-learning-based approaches, they were not
selected for efficiency assessment. Figure 13 shows a testing example on the MODIS-A1 im-
age with size 512× 512, from which we can see that MD3 is slower than DnCNN, DKSVD,
LRR-CNN, and DLRP, but is faster than DCDicL with a complex solution process. However,
their denoising performance lags behind that of MD3.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Visual comparison of experiments on the real-life Mountain image. (a) NCSR [43].
(b) WSSR [6]. (c) DnCNN [18]. (d) DKSVD [68]. (e) DCDicL [73]. (f) LRR-CNN [74]. (g) DLRP [75].
(h) Proposed.

3.5 4 4.5 5 5.5 6 6.5 7
26.8

27

27.2

27.4

27.6

27.8

CPU:3.84, GPU: 0.0058

CPU:4.07, GPU: 0.15

CPU:6.58, GPU: 1.56
CPU:4.75, GPU: 0.68

CPU:3.93, GPU: 0.067

CPU:5.13, GPU: 1.04

Time Cost

P
S

N
R

 

 

DnCNN

DKSVD

DCDicL

LRR−CNN

DLRP

Proposed

Figure 13. Computational time vs. PSNR for different approaches on the MODIS-A1 image with size
512× 512; the noise level is 25.

In sum, taking all comparisons into account, MD3 with two deep learning modulars is
image-adaptive, can effectively and efficiently obtain a stable solution, and is suitable for
extensive applications.

5. Conclusions

In the RSI image denoising task, there are three well-known key points, denoising per-
formance, structure preservation, and efficiency, that should all be considered in designing
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a good interpretability strategy. To address these issues, this paper reported a deep unfold-
ing scheme, namely model-driven deep denoising (MD3), including the following: (1) The
MD3 model was constructed with the rearranged self-similar data matrix, having sparse
coding and a learned dictionary. (2) The MD3 model was separated into two independent
subproblems, including the data fidelity term (which has a closed-form solution) for the
latent clean image and the regularization term for the sparse coding and dictionary, by
using the alternating direction method of multipliers (ADMM). (3) With further separation
of the regularization term, the regularization problem was decomposed into two independent
subproblems, respectively, for the sparse coding and dictionary. The sparse coding problem
was solved by the proposed learnable ISTA (LISTA) encoder network, while the dictionary was
learned by a lightweight residual network (namely the deep dictionary network (DDNet)) for
adaptive images. (4) The two deep neural networks, acting as two modulars, were plugged
into the iterative procedure to speed up the optimization process for a fixed solution. Finally,
the proposed MD3, as well as the state-of-the-art were evaluated on both synthetic and real-life
RSI images, for which the comparison results for the quantitation and qualification validated
that it is effective at improving the denoising performance and preserving rich structures. Its
satisfactory computation time is beneficial for its extensive application.
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