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Abstract: Population distribution data with high spatiotemporal resolution are of significant value
and fundamental to many application areas, such as public health, urban planning, environmental
change, and disaster management. However, such data are still not widely available due to the
limited knowledge of complex human activity patterns. The emergence of location-based service
big data provides additional opportunities to solve this problem. In this study, we integrated
ambient population data, nighttime light data, and building volume data; innovatively proposed
a spatial downscaling framework for Baidu heat map data during work time and sleep time; and
mapped the population distribution with high spatiotemporal resolution (i.e., hourly, 100 m) in
Beijing. Finally, we validated the generated population distribution maps with high spatiotemporal
resolution using the highest-quality validation data (i.e., mobile signaling data). The relevant results
indicate that our proposed spatial downscaling framework for both work time and sleep time has high
accuracy, that the distribution of the population in Beijing on a regular weekday shows “centripetal
centralization at daytime, centrifugal dispersion at night” spatiotemporal variation characteristics,
that the interaction between the purpose of residents’ activities and the spatial functional differences
leads to the spatiotemporal evolution of the population distribution, and that China’s “surgical
control and dynamic zero COVID-19” epidemic policy was strongly implemented. In addition, our
proposed spatial downscaling framework can be transferred to other regions, which is of value for
governmental emergency measures and for studies about human risks to environmental issues.

Keywords: dynamic population distribution; high spatiotemporal resolution; spatial downscaling;
human activity patterns; Baidu heat map data; Beijing

1. Introduction

Rapid urbanization worldwide has not only led to an increase in impervious surfaces
but also has been accompanied by an influx of people into cities seeking more employ-
ment opportunities and better living benefits [1–3]. Therefore, the influx of population
poses new challenges for urban planning and environmental issues such as unbalanced
regional growth, hazard responses, water resource shortages, severe traffic congestion, and
carbon-induced air pollution, particularly in internationally linked metropolises such as
Beijing [4,5]. Meanwhile, since the outbreak of COVID-19 in late 2019, recurrent outbreaks
have occurred due to high population densities and frequent population movements in
metropolitan areas [6–8]. Therefore, understanding highly accurate population distribution
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information with high spatiotemporal resolution is of great significance for environmental
change, urban development planning, disaster assessment management, and epidemic
prevention and control [9–14].

Over the past few decades, a number of approaches, such as simple spatial interpola-
tion, dasymetric-based linear statistical models and machine learning models, have been
developed to downscale census data to grid cells from global to local scales by using multi-
source ancillary data [15–24]. Dasymetric mapping has proven to be an effective spatial
downscaling method and is widely used to generate gridded population density maps. Its
core idea is to generate weight layers based on ancillary data and use the weight layers to
disaggregate coarse resolution variables (e.g., population) to a finer resolution [10,25,26].
Widely used ancillary data are satellite-based remote sensing products [27], such as night-
time light (NTL) images [28–30] and land use/land cover (LULC) [31–33]. In recent years,
emerging geospatial big data, such as point of interest (POI) data and building volume data,
have also been used as ancillary data to disaggregate census data, which provides new
opportunities for generating more accurate gridded population density maps [34–38]. In
addition, there are many high-quality and freely available global gridded population den-
sity maps, such as the LandScan global population database (1 km) [39,40] and WorldPop
global population product (100 m) [41], which are also produced by dasymetric mapping
in combination with multi-source ancillary data. However, population is a temporally
dynamic variable, with major shifts in its distribution occurring in daily cycles, resulting
in rapidly changing densities [42]. Therefore, these products are limited in terms of their
temporal resolution and cannot accurately represent the dynamic distribution of the popu-
lation. In addition, although commonly used ancillary data can successfully allocate census
data into space, the static nature of the input dataset obscures the specific time at which the
population distribution refers [43,44]. Therefore, more dynamic data sources are needed to
reflect the short-term and time-specific spatial redistribution of the population caused by
human mobility.

Recently, the rapid development of mobile devices and the enrichment of location-
based service (LBS) big data have enabled researchers to analyze human mobility patterns
and map population spatial distributions at a finer temporal resolution [45–47]. Currently,
Baidu heat map data and mobile signaling data are the most popular among dynamic
LBS data and possess precise spatiotemporal information, which can be used to study
the dynamic distribution of populations and improve the temporal resolution of gridded
population density maps [48–50]. For both types of data, mobile signaling data is the most
promising data source for spatiotemporal populations because it has an extremely high
penetration rate across the globe [42,45]. According to statistics, in developed countries,
the number of mobile phone subscribers has surpassed the total population, with a pen-
etration rate now reaching 121%, whereas in developing countries, it is as high as 90%
and continuing to rise [51]. However, with the current legal frameworks, operators are
reluctant to release their data because of privacy issues and a lack of business models [42].
Therefore, the acquisition of such a dataset is still limited in geographic coverage, so it is
still difficult to map short-term populations in large areas. Baidu heat map data are widely
used in population mobility pattern research because they are publicly available and also
have a high penetration rate, which gives the possibility of mapping dynamic population
distributions on a large regional scale [52]. However, the highest spatial resolution of the
Baidu heat map data currently available is 500 m at the urban scale, which is insufficient to
capture subtle population density changes within a city. Therefore, it is crucial to develop a
spatial downscaling method for Baidu heat map data to map the population distribution
with high spatiotemporal resolution.

POI is a typical kind of geospatial big data. Apart from exact location information,
each single POI contains a short textual description to define the category to which the POI
belongs. Different categories of POI (e.g., office, school, and factory) represent different
human activities within and surrounding them and subsequently have different levels
of correlation with population density [24]. In addition, POI has been utilized to define
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urban functional districts and land use types [34,35]. Therefore, population products
produced using POI and other ancillary data, such as LandScan and WorldPop, are defined
as the ambient population (i.e., each pixel value represents the relative magnitude of the
probability of population presence during work time) [40–42]. Nighttime light data have
been proven to have a strong correlation with the spatial distribution of populations [53,54].
Currently, Luojia 1-01 NTL data is the highest spatial resolution (130 m) NTL data, and
according to related research, NTL combined with building volume data can accurately
represent the population distribution of sleep time in large areas [1,55,56]. Therefore, these
data provide the opportunity to spatially downscale the Baidu heat map data during
work time and sleep time, enabling the mapping of population distributions with high
spatiotemporal resolution over large regions.

It is important to develop a rigorously validated and efficient spatial downscaling
method for Baidu heat map data for mapping population distribution with high spa-
tiotemporal resolution to improve the understanding of the spatiotemporal distribution
characteristics and mechanism of the urban population. We thus innovatively proposed
a spatial downscaling framework by integrating multi-source datasets and mapped the
gridded population density with high spatiotemporal resolution (i.e., hourly, 100 m) in
Beijing. This study’s specific objectives are to (1) integrate ambient population data, night-
time light data, and building volume data to spatially downscale the Baidu heat map data
for work time and sleep time; (2) validate the population distribution maps with high
spatiotemporal resolution using mobile signaling data; (3) explore the temporal evolution
and spatial distribution characteristics of the population in Beijing on weekdays; (4) analyze
the relationship between population density distribution and land use types at different
time periods; and (5) discuss the impact of epidemic prevention and control policy on
population mobility during COVID-19.

2. Materials
2.1. Study Area

Beijing (39◦26′N–41◦03′N, 115◦25′E–117◦30′E) is the capital of China; it is a world-
famous ancient capital and a modern international metropolis (see Figure 1). Beijing
is located in the northern part of the North China Plain, and its terrain is high in the
northwest and low in the southeast. It is surrounded by mountains in the west, north,
and northeast, and the southeast part is a plain. As of 2022, the city has 16 districts with
a total area of 16,410 square kilometers, and its population density ranks 13th among all
cities in China. In addition, Beijing is divided into multiple zones by ring roads (beltways).
According to statistics, 74.6% of the population dwells within the area within the Sixth
Ring Road, which accounts for only 13.8% of the area. Beijing is the political, cultural,
and commercial center of the country and therefore attracts a large permanent resident
population with complex compositions and structures. Because of urban planning, Beijing
has functional divisions, and obvious population mobility can be seen during commuting
time. Therefore, taking Beijing as the study area can not only illustrate our proposed
spatial downscaling framework well but also analyze the spatiotemporal distribution
characteristics of population density in metropolitan areas.

2.2. Data and Preprocessing

The main categories of data used are geospatial big data, remote sensing data, popula-
tion data, validation data, and basic geographic data. Table 1 lists the 10 types of data used
in this study. The retrieval and preprocessing of these datasets in this study are described
below. To ensure consistency of spatial location, all data in this paper were reprojected to
the WGS-1984-UTM-Zone-50N coordinate system.
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Table 1. List of datasets and sources used in the study.

Category Datasets Format Time Sources

Geospatial big data

Baidu heat map Vector (Point) 17 August 2022 Baidu Map Services, China

Point of interest Vector (Point) 2020 AMap Services, China

Building volume Vector (Polygon) 2020 Baidu Map Services, China

Remote sensing data

Luojia 1-01
nighttime light image Raster (130 m) 6 September 2018 Hubei Data and

Application Center, China

NPP-VIIRS
nighttime light image Raster (500 m) September 2018 Earth Observation Group, USA

Population data
Census data Table 2020 Beijing Government, China

Ambient population Raster (100 m) 2020 Bao et al. [24]

Validation data Mobile signaling Vector (Point) 17 August 2022
China Mobile Operator
China Unicom Operator
China Telecom Operator

Basic geographic data
Ring roads Vector (Polyline) 2020 Map World, China

Boundary maps Vector (Polygon) 2020 Map World, China

1 

 

 

 

  Figure 1. Geographical location and overall situation of Beijing.

2.2.1. Baidu Heat Map Data

Baidu is a leading artificial intelligence (AI) company with a strong internet foundation.
Baidu personal computer (PC) terminals and mobile terminals account for 94.72% of the
search engine market share, covering 1 billion Chinese users, and the daily response reaches
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1300 billion times. In 2011, Baidu Inc. launched a big data visualization product (i.e., Baidu
heat map). As a big data application with hundreds of millions of users, the Baidu heat
map is based on the location information from users when they access Baidu products
(e.g., Baidu Maps, Baidu Search, Baidu Music, Baidu Translate, etc.), which calculates the
calorific value of human flow at different times and in different areas and is visualized on
Baidu Maps after density analysis processing [48,57]. Therefore, the Baidu heat map can
greatly reflect the heat of the crowd in the exact area and is widely used in the study of
population dynamic distribution [58].

The Baidu heat map data were derived from Baidu Maps (http://map.baidu.com
(accessed on 17 August 2022)). We used Baidu’s application programming interface to
obtain Baidu heat map data for a total of 24 time periods (0:00–1:00, etc.) in Beijing on 17
August 2022 (Wednesday), with a spatial resolution of 500 m (see Figure 2a). The heat
value of each vector point represents the total number of Baidu signal responses for the
time period to which it belongs and the spatial range to which it belongs. First, a fishnet
with empty attributes at the 500 m × 500 m cell size covering all of Beijing was created in
ArcGIS 10.6. Then, we assigned the heat value of each vector point to the corresponding
fishnet. Finally, we generated 24 raster layers with a spatial resolution of 500 m using the
fishnet with heat value information, corresponding to the 24 time periods. It should be
noted that the data we obtained have no personal privacy issues.

Figure 2. Vector point display of Baidu heat map data (a) and mobile signaling data (b).

2.2.2. Mobile Signaling Data

According to the public data of China’s three major operators, China has a total of
1.619 billion mobile phone users. As of 2022, China has a total of 1.4 billion people, with an
average of 1.16 mobile phones per person; thus, the penetration rate of mobile phones in
China is extremely high. Mobile signaling data are based on the interaction between mobile
phone users and base stations to determine the spatial location of users at different times
and will always generate mobile signaling data as long as the phone is on [45]. Therefore,
mobile signaling data are the most ideal data source to study population mobility patterns.
However, the difficulty of obtaining mobile signaling data makes it difficult to use it to map
dynamic population distributions over large areas.

Fortunately, we obtained mobile signaling data from the operators China Mobile,
China Unicom, and China Telecom for four time periods (i.e., 0:00–1:00, 9:00–10:00, 15:00–
16:00, and 21:00–22:00) in Beijing on 17 August 2022, with a spatial resolution of 200 m and
without personal privacy issues (see Figure 2b). However, since the operators provided
data for only 5172 geographical points, we used only these data to validate our spatial
downscaling framework. The signaling value of each vector point represents the total
number of mobile signaling responses for the time period and the spatial range to which

http://map.baidu.com
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it belongs. First, a fishnet with empty attributes at the 200 m × 200 m cell size covering
all of Beijing was created in ArcGIS 10.6. Then, we assigned the signaling value of each
vector point to the corresponding fishnet. Finally, we generated 4 raster layers with a
spatial resolution of 200 m using the fishnet with mobile signaling value information,
corresponding to the four time periods.

2.2.3. Remote Sensing Data

The version 1 product of National Polar-orbiting Partnership’s Visible Infrared Imag-
ing Radiometer Suite (NPP-VIIRS) NTL monthly composite data of September 2018 was
derived from the Earth Observation Group (https://eogdata.mines.edu/products/vnl/
(accessed on 3 July 2022)), with a spatial resolution of 500 m. Luojia 1-01 is a new gener-
ation of NTL remote sensing satellite launched on 2 June 2018. It is a sun-synchronous
satellite with a capacity of covering the Earth within 15 days. Luojia 1-01 is equipped with a
more sensitive complementary metal oxide semiconductor sensor with 14-bit quantization,
making it superior to NPP-VIIRS [55]. In this study, Luojia 1-01 NTL data from 6 September
2018 were derived from the High-Resolution Earth Observation System of Hubei Data and
Application Center (http://59.175.109.173:8888/ (accessed on 17 June 2022)) with a spatial
resolution of 130 m and covering the entire city of Beijing.

The positioning accuracy of the Luojia 1-01 NTL data we obtained is lower than its
spatial resolution, with image offsets reaching 1611 m at some locations, which negatively
affects fine-scale population mapping. Therefore, geometric correction was applied to the
Luojia 1-01 NTL data using Google Maps through 12 pairs of geometric control points
selected from the NTL data and Google Maps. After geometric correction, another 12 pairs
of points were randomly chosen from the corrected NTL data and Google Maps for accuracy
assessment. Through the assessment, the average positioning error was found to be 16.3 m,
which is less than the spatial resolution of the Luojia 1-01 NTL data. The digital number
(DN) in the original NTL data cannot effectively describe the brightness degree of lights;
thus, radiation calibration was performed using Equation (1). Since Luojia 1-01 NTL data
have considerable background noise, this can be misleading. The NPP-VIIRS NTL data
were generated by eliminating pixels contaminated by cloud cover, lunar illumination, and
other factors; thus, we used the area with a DN value of 0 in the NPP-VIIRS NTL data to
mask Luojia 1-01 NTL data to remove the relevant noise [56,59]. Finally, the Luojia 1-01
NTL data were resampled to a 100 m spatial resolution using the nearest neighbor approach
to avoid changing any pixel values during the resampling process.

L = DN
3
2 ·10−10 (1)

where L is the radiance of a pixel in the Luojia 1-01 image (W·m−2·s−1·µm−1) and DN is
the gray value of a pixel in the Luojia 1-01 image.

2.2.4. Point of Interest Data

The point of interest (POI) data were derived from the AMap (http://ditu.amap.com/
(accessed on 18 January 2022)). We obtained 1,349,421 POI records for Beijing in 2020
using AMap’s application programming interface. AMap classified these POI data into
23 big categories (e.g., enterprises, medical service, daily life service, commercial house,
accommodation service, etc.) and further 267 mid categories on the basis of their Chinese
semantic phrase. Based on the classification system from Chinese land use classification
criteria (GB/T21010-2007) and our knowledge about distinct human activity patterns,
we merged and reclassified these categories into seven functions (i.e., office, education,
recreation, residential, open space, commercial, and transportation) [1]. The reclassified
POI functional categories are shown in Table 2.

https://eogdata.mines.edu/products/vnl/
http://59.175.109.173:8888/
http://ditu.amap.com/
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Table 2. The list of reclassified functional categories of POI.

Functional Category Big Category Mid Category

Office

Enterprises All
Medical Service All

Daily Life Service All
Commercial House Industrial Park and Building

Finance and Insurance Service All except ATM
Science/Culture and Education Service All except school
Governmental Organization and Social

Group All

Education Science/Culture and Education Service School

Recreation
Tourist Attraction All

Sports and Recreation All

Residential Commercial House Residential Area

Open Space Place Name and Address Natural Place Name

Commercial

Shopping All
Auto Repair All
Auto Service All
Auto Dealers All

Motorcycle Service All
Food and Beverages All

Accommodation Service All

Transportation
Road Furniture All

Transportation Service All except parking lot
Place Name and Address Transportation Place Name

Unclassified

Pass Facilities All
Public Facility All

Indoor facilities All
Commercial House Commercial House Related

Incidents and Events All
Transportation Service Parking Lot

Place Name and Address All except natural place name
and transportation place name

Finance and Insurance Service ATM

2.2.5. Building Volume Data

The building outline data were derived from Baidu Maps (http://map.baidu.com
(accessed on 6 February 2022)). First, a fishnet with empty attributes at the 100 m × 100 m
cell size covering all of Beijing was created in ArcGIS 10.6. Then, an intersection operation
was performed between the fishnet and the building outline data. Since the building outline
data have area and height information, the building volume of each cell can be calculated.
Finally, we used the fishnet with building volume information to generate a raster layer
with a 100 m spatial resolution.

2.2.6. Ambient Population Data

Each pixel value in ambient population data represents the relative magnitude of the
probability of population presence during work time [39,40,42]. The ambient population
were derived from Bao et al. [24], which is a previous research result of our group. In this
study [24], we integrate gradient boosting decision tree (GBDT), extreme gradient boosting
(XGBoost), light gradient boosting machine (LightGBM), and support vector regression
(SVR) through ensemble learning algorithm stacking to construct a novel population
spatialization model named GXLS-Stacking. Then, we integrate socioeconomic data that
enhance the characterization of the population’s spatial distribution (e.g., point of interest
data, building volume data, and artificial impervious surface data, etc.) and natural

http://map.baidu.com
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environmental data with a combination of census data to train the model to generate a
high-precision gridded population density map with a 100 m spatial resolution for Beijing
in 2020. The results show that the accuracy of our ambient population data far exceeds that
of the WorldPop population dataset.

2.2.7. Basic Geographic and Census Data

Beijing’s administrative boundary map and ring road map were derived from Map
World (https://www.tianditu.gov.cn/ (accessed on 6 August 2022)). The census data were
derived from the Beijing government, and the total resident population of Beijing in 2020
was 21,893,095. The census data were used to correct Baidu heat map data and mobile
signaling data to make them consistent with the total population of Beijing.

3. Methodology

We proposed a spatial downscaling framework for Baidu heat map data to map the
dynamic population distribution (see Figure 3). This spatial downscaling framework is
divided into three parts: first, we preprocessed the relevant dataset; second, we generated
the weight layers during work time and sleep time; and finally, we validated the results. In
addition, we performed kernel density estimation on the reclassified POI data to reflect
different land use types and used the random forest model to analyze the relationship
between population density distribution and land use types in different time periods. The
details are described in the following sections.
 

3 

 

  Figure 3. A spatial downscaling framework for Baidu heat map during work time and sleep time.

https://www.tianditu.gov.cn/
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3.1. Spatial Downscaling Framework for Work Time

Since the sleep time and work time of different occupations are inconsistent, according
to our understanding and references [1,48], we set the sleep time and work time of a regular
weekday to 0:00–7:00 and 7:00–24:00, respectively. We employed an efficient dasymetric
method to spatially downscale Baidu heat map data (500 m) to 100 m spatial resolution.
Dasymetric mapping is an ancillary-driven method and has been widely used in spatial
downscaling [25]. The dasymetric method introduces the density information from ancillary
variables to redistribute the standardized data into a finer scale distribution. The critical
step is the definition of weight layers, which is usually determined by the existing or
assumed relationship between the standardized data and ancillary variables [60]. Each
pixel value in ambient population data represents the relative magnitude of the probability
of population presence during work time. Therefore, we used the ambient population
data as a spatial downscaling weight layer for work time and assumed that the spatial
distribution of Baidu heat map data (500 m) at finer scales (100 m) is the same as that of the
ambient population data (100 m).

In this paper, we first created a fishnet with empty attributes at the 500 m × 500 m cell
size covering all of Beijing in ArcGIS 10.6. Then, we used Equation (2) to count the sum of
the 25 ambient population pixel values corresponding to each cell in the fishnet and used
Equation (3) to count the weight of each pixel of ambient population data. Then, we used
Equation (4) to spatially downscale each pixel of the Baidu heat map data. Since the Baidu
heat map data are sampling data, the extracted heat values are not the actual population
numbers but only the relative magnitude of population density [61]. We assumed that the
total population of Beijing is constant during a day, and the daily inflow and outflow of the
population are balanced. Therefore, we used the census data to correct the Baidu heat map
data after spatial downscaling so that each pixel value represented the true population (see
Equation (5) for the specific calculation process).

Si =
25

∑
j=1

Pj (2)

Wj =
Pj

Si
(3)

Hij = Hi ×Wj (4)

H′ij = Hij ×
C
S

(5)

where Pj is the pixel value of ambient population data, Si is the sum of the 25 ambient
population pixel values corresponding to the i-th cell in the fishnet, Wj is the weight value,
Hi is the i-th pixel value of Baidu heat map data, Hij is the pixel value of Baidu heat map
data after spatial downscaling, S is the sum of all pixel values of Baidu heat map data after
spatial downscaling, C is the total population of Beijing in 2020 (i.e., 21,893,095), and H′ij is
the true population value.

3.2. Spatial Downscaling Framework for Sleep Time

Our spatial downscaling framework during sleep time is almost the same as that
during work time—the only difference is the definition of weight layer. We assumed that
(1) the larger building volume can accommodate more people during sleep time and (2) in
areas with missing building volume data, NTL intensity reflected the residence distribution
across settlements (i.e., the brighter the NTL was, the larger the population would be during
sleep time). Therefore, we integrated building volume and NTL as the weight layer of the
spatial downscaling framework during sleep time.

Since building volume data are missing to varying degrees in urban and rural areas
and NTL data can well reflect the population distribution of sleep time [28,35], we used
NTL data to compensate for these missing data. However, the blooming effect is inherent
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to NTL and indicates that the NTL within a small land area inside a city can brighten
surrounding areas [54]. Therefore, we chose to normalize the NTL data, kept the relative
sizes between pixel values constant, and assigned their values to the corresponding pixels in
the building volume data, which complemented the missing building volume information
and did not affect the original building volume information by oversizing the pixel values.
In this paper, we first normalized the Luojia 1-01 NTL data using Equation (6). Then, we
used Equation (7) to add the corresponding pixel values from the building volume data
and Luojia 1-01 NTL data to obtain a new raster layer. Finally, we used the new raster layer
as the weight layer and followed the spatial downscaling process of work time to spatially
downscale the Baidu heat map data during sleep time.

RLi
′ =

RLi − RLmin
RLmax − RLmin

(6)

Ni =

{
BVi + NTLi, BVi = 0

BVi, BVi > 0
(7)

where RLi
′ is the normalized value of the i-th pixel of the raster layer, RLi denotes the

original value of the i-th pixel of the raster layer, RLmax represents the maximum value of
the raster layer, RLmin is the minimum value of the raster layer, BVi is the i-th pixel value
of building volume data, NTLi is the i-th pixel value of Luojia 1-01 NTL data, and Ni is the
i-th pixel value of the new raster layer.

3.3. Kernel Density Estimation and Random Forest

POI refers to all geographic entities that can be abstracted as points containing precise
spatial information. POI categories are similar to land use categories, and the preferences
and social functions of people can be well represented with POI; thus, all types of POI
density can directly or indirectly reflect land use types and functional zoning [62]. Therefore,
we used kernel density estimation (KDE) to calculate the density of POI for each functional
type on a 100 m grid to reflect the percentage of different land use types. KDE is a
method of reconstructing the probability of the spatial distribution of points and lines in
accordance with the current locations of parts of points and lines [63]. In consideration
of the spatial proximity of geographic units, KDE is often used to deal with datasets
with spatial uncertainty and has been proven effective in yielding spatially smooth and
near-reality results. The KDE method can be described as follows:

f (x, y) =
n

∑
i=1

k
d2

[(
1− (x− xi)

2 + (y− yi)
2

d2

)]2

(8)

where f (x) denotes the point density of the grid in location (x, y), n denotes the number
of observations, i denotes each observation, d denotes the bandwidth to define the size of
smoothing, and k denotes a bivariate probability density function called the core. After the
kernel function has been defined, the sliding window method was used to determine the
point density of each grid [56].

Random forest (RF) is a tree-based machine learning model. It randomly extracts m
sub-samples and k sub-features from the original dataset, forming multiple sets of sub-data
for training multiple regression trees. Then, it applies the averaging method to combine
the regression results of each regression tree and generate the final regression results. The
random forest model introduces a random attribute selection process while training, which
makes the diversity of the base regression trees come not only from the sample disturbance
but also from the attribute disturbance. Therefore, the generalization performance of
random forest can be further improved by increasing the difference degree between the
base regression trees [64]. Due to the satisfactory performance of the random forest model,
we used it to fit the complex nonlinear relationship between population distribution and
land use type at different time periods.
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3.4. Statistical Analysis and Accuracy Assessment

The statistical analysis metric used in this paper is the coefficient of variation (CV),
which is a standardized measure of dispersion of a probability distribution or frequency
distribution and is often used to compare the dispersion of datasets of different magni-
tudes [65]. Accuracy assessment is an important step to verify the accuracy of our spatial
downscaling framework and the fitting precision of the random forest model, and it is
the evaluation criterion for judging the results. Three widely used accuracy assessment
metrics [24], namely the determination coefficient (R2), mean absolute error (MAE), and
root mean square error (RMSE), were adopted in this study. The equations used to calculate
the above four metrics are as follows:

CV =
σ

µ
× 100% (9)

R2 =
∑n

i=1(ŷi − y)2

∑n
i=1(yi − y)2 (10)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (11)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (12)

where σ is the standard deviation of the dataset, µ is the average of the dataset, yi denotes
the true value, ŷi denotes the predicted value, y denotes the average of true values, and n
denotes the total number of samples.

4. Results
4.1. Mapping Dynamic Population Distribution

Based on the preprocessed correlation dataset and our proposed spatial downscaling
framework during work time and sleep time, we spatially downscaled the Baidu heat
map data for a total of 24 time periods in Beijing on 17 August 2022, and mapped the
population density distribution with high spatiotemporal resolution (i.e., hourly, 100 m).
The spatiotemporal patterns of the population show significant fluctuations between sleep
time and work time, as shown in Figures 4 and 5. During sleep time (i.e., 0:00–7:00), the
population exhibits a high concentration, resulting in many areas with high population
density and weak changes in the spatial distribution of population density during this
period, which indicates a low intensity of population mobility. During work time (i.e.,
7:00–24:00), it can be seen that the population is relatively dispersed, with a significant
decrease in the number of areas with high population density, and the spatial distribution of
population density changes significantly over time (e.g., significant changes in traffic flow),
which indicates strong population mobility during this period. Overall, the high spatial
and temporal resolution population distribution maps generated based on our proposed
spatial downscaling framework can adequately capture the spatial heterogeneity of the
population and the difference between sleep time and work time.
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Figure 4. Estimated dynamic population distribution in Beijing on 17 August 2022.
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Figure 5. Estimated dynamic population distribution within the Sixth Ring Road in Beijing.
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4.2. Evaluation of Spatial Downscaling Framework

A rigorous accuracy evaluation process on the generated population distribution maps
with high spatiotemporal resolution can illustrate the reliability of our proposed spatial
downscaling framework. First, a fishnet with empty attributes at the 200 m × 200 m cell
size covering all of Beijing was created in ArcGIS 10.6. Then, we used a 200 m fishnet to
perform regional summation statistics on the population distribution maps for four time
periods (i.e., 0:00–1:00, 9:00–10:00, 15:00–16:00, and 21:00–22:00), compared them with the
5172 mobile signaling data corrected by census data, and finally obtained the accuracy
verification result (see Figure 3).

Figure 6 shows the accuracy evaluation results of the Baidu heat map population den-
sity for the four time periods, corresponding to one population distribution map generated
by the spatial downscaling framework of sleep time and three population distribution
maps generated by the spatial downscaling framework of work time. From the results, it
should be noted that the precision (R2 = 0.7063, MAE = 117.46 persons/4 ha, RMSE = 147.46
persons/4 ha) of the population distribution map for the 0:00–1:00 time period is relatively
lower than that of the other three time periods. We believe this phenomenon occurs because
during sleep time, the frequency of different people using Baidu products decreases to
different degrees, expanding the sampling bias of the data and leading to a change in
the relative magnitude of the Baidu heat value [58,61], while the sampling bias of mobile
signaling data as the true value fluctuates very little over time [45,50,66], thus making the
accuracy assessment results for the 0:00–1:00 time period relatively lower. Overall, the
scatters in all four time periods are distributed around the 1:1 line, which indicates that
our population distribution maps in all four time periods have high accuracy and reflects
the fact that our proposed spatial downscaling framework for the Baidu heat map during
sleep time and work time can adequately characterize the accurate spatial changes in the
population over time at finer scales.
 

6 

 

  Figure 6. Scatterplots of the Baidu heat map population density and the mobile signaling population
density (total of 5172 pixels). A ln-ln transformation was conducted for the population density. The
black dashed line indicates the 1:1 line. pp4 h: persons per 4 hectares.
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5. Discussion
5.1. Spatiotemporal Distribution Characteristics of Population

Since most people in Beijing live within the Sixth Ring Road, we used the generated
dynamic population distribution maps to explore the evolution of the population spatial
distribution within the Sixth Ring Road in Beijing over time on a regular weekday. Figure 7
illustrates the trend of the population between each ring road in Beijing over time. The
population of different ring roads has a significant difference with time. From the perspec-
tive of the coefficient of variation, the population within the Second Ring Road has the
most drastic change, and the population between the Third and Fourth Ring Roads has
the flattest change. From the process of change, the populations within the Second Ring
Road, between the Second and Third Ring Roads, and between the Third and Fourth Ring
Roads present the trend of “stability–growth–decrease”, and the populations between the
Fourth and Fifth Ring Roads and between the Fifth and Sixth Ring Roads present the trend
of “stability–decrease–growth”.
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  Figure 7. Spatiotemporal variation in population between ring roads in Beijing during a regular
weekday. The numbers in the horizontal coordinates represent each of the 24 time periods of the day
(i.e., 0:00–1:00, 1:00–2:00, 2:00–3:00, 3:00–4:00, etc.).
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Specifically, in each ring road, the population fluctuates smoothly during sleep time
(i.e., 0:00–7:00) and dramatically during work time (i.e., 7:00–24:00), which is consistent
with our understanding of the human activity patterns during sleep time and work time.
In addition, a large number of the population changes were observed simultaneously
among the five ring roads during the commuting time periods, 7:00–9:00 and 17:00–19:00.
In China, with the establishment of the system of paid use of state-owned land, service
spaces of commerce, finance, and business offices with strong ability to compete for rent are
“embedded” in the core of cities, while industrial parks and residential areas with single
functions are formed in the periphery, resulting in the separation of residential, working,
and leisure spaces [48]. For Beijing, a large number of companies and firms are located
within the Fourth Ring Road, and the high housing prices within the Fourth Ring Road
lead to a large number of working people renting and buying houses between the Fourth
and Sixth Ring Roads; thus, a substantial change in population numbers can be seen in
these two commuting time periods [1,67]. Overall, the distribution of the population in
Beijing on a regular weekday showed a “daytime centripetal, nocturnal centrifugation”
difference in characteristics of time and space.

5.2. Relationship between Population and Land Use Type over Time

We used the KDE method to calculate the density of POI for seven functional types
on a 100 m grid to reflect the percentage of different land use types. For convenience
of processing, the population density distribution maps from 0:00 to 24:00 were divided
into four time periods, i.e., 0:00–7:00 (before dawn), 7:00–13:00 (morning), 13:00–18:00
(afternoon), and 18:00–24:00 (evening), and we averaged the population density distribution
maps for the four time periods. Then, we input the POI density of the seven functional types
as the independent variable and the average population density as the dependent variable
into the random forest model for fitting. After developing the RF model, each predictor
variable had an output value (i.e., feature importance), indicating the contribution of the
predictor variable to the target variable [34,64]. Finally, we used the feature importance
to analyze the relationship between population density distribution and land use types
at different time periods of a regular weekday. Figure 8 shows the results of the fitting
accuracy and feature importance assessment.

The results of random forest regression show that all four time periods have high
fitting accuracy, which indicates that the feature importance assessment has very high
confidence [23]. From the perspective of the influencing factors and intensity, during the
0:00–7:00 time period, the population density distribution is mainly influenced by resi-
dential land use. During the 7:00–13:00 and 13:00–18:00 time periods, office land use and
commercial land use dominate the population density distribution. During the 18:00–24:00
time period, residential land use, recreational land use, and commercial land use mainly
affect the population density distribution. This indicates that residents′ activities on the
regular weekday mainly consist of rest, work and recreational activities, which generally
undergo the process of “rest activities–employment activities–leisure activities–rest activi-
ties”, which also is consistent with our expectations. On the other hand, the variation in the
influencing factors and intensity reflects not only the daily activity patterns of residents but
also the heterogeneity of urban functional zoning [48,49]. The spatiotemporal distribution
of the population is actually a process in which residents choose the activity space in order
to meet their own needs. Therefore, the interaction between the purpose of residents’
activities and the spatial functional differences leads to the spatiotemporal evolution of the
population distribution.
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  Figure 8. Results of random forest model fitting accuracy and feature importance assessment.

5.3. Impact of Policy on Population Mobility during the COVID-19 Pandemic

Since the outbreak of COVID-19, China has made remarkable achievements in the
fight against the epidemic. China has always adhered to the “surgical control and dynamic
zero COVID-19” epidemic prevention and control policy, so it has maintained low infection
and death rates [6,68]. Surgical control refers to the lockdown of only small-scale areas
where there is a risk of outbreaks, and dynamic zero COVID-19 means finding an epidemic,
eliminating the epidemic, and quickly cutting off the chain of transmission. The purpose of
the policy is to keep people’s activities unrestricted and maintain people’s normal life to the
greatest extent possible under the premise of ensuring people’s health. China’s policy for
people in high-risk areas is not to leave their homes, those in medium-risk areas are not to
leave their residential compounds, and those in low-risk areas are free to move around. On
17 August 2022, three cases of COVID-19 were reported in Beijing, and the government took
control measures as quickly as possible, in which three high-risk buildings were delineated,
and the remaining buildings in their corresponding residential compounds were classified
as medium risk. We selected these three high-risk buildings, as well as three low-risk build-
ings in the residential compounds closest to the respective residential compounds of the
three high-risk buildings for comparison. Table 3 shows the detailed information of these
residential compounds and buildings. Finally, we used population distribution maps with
high spatiotemporal resolution generated by our proposed spatial downscaling framework
to analyze the execution of China’s COVID-19 epidemic prevention and control policy.

Table 3. Details of the three low-risk buildings and three high-risk buildings.

Residential Compound Building District Status Latitude (N) Longitude (E)

Jintaichengliwan Number 9 Fengtai Low-risk (Open) 39.868516 116.335501
Lixinjiayuannanqu Number 1 Fengtai High-risk (Lockdown) 39.871384 116.336488

Jinbaohuayuanbeiqu Number 8 Shunyi Low-risk (Open) 40.176438 116.656291
lunengqihaoyuanxiyuan Number 36 Shunyi High-risk (Lockdown) 40.182606 116.659425

Bolinzaixian Number 2 Changping Low-risk (Open) 40.110905 116.449914
Rongshangweilai Number 1 Changping High-risk (Lockdown) 40.109944 116.459685
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We summarized the raster values of the 100 m grid to which the buildings belonged
and drew line graphs. Figure 9 shows the population mobility over time of the three high-
risk buildings and three low-risk buildings. From the perspective of coefficient of variation,
the population mobility intensity of the three high-risk buildings is very low, while the
population mobility intensity of the corresponding three low-risk buildings is relatively
high. This indicates that the high-risk buildings are in a lockdown state, strictly limiting
the movement of the population, while the low-risk buildings are in an open state that the
population can access freely. It is worth noting that the population of high-risk buildings
fluctuates significantly during certain time periods. We believe that this phenomenon
may be due to medical staff coming to perform nucleic acid testing, people from low- and
medium-risk buildings in the same residential compound entering the vicinity of high-risk
buildings, or because of the sampling bias of Baidu’s heat map data [7,8,48,58,61]. Overall,
our results demonstrate the strong execution of China’s “surgical control and dynamic zero
COVID-19” epidemic prevention and control policy. It was the superiority of that policy
that safeguarded the lives and health of the Chinese people and liberated their freedom to
the greatest extent possible.
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Figure 9. Population mobility over time of the three high-risk buildings and three low-risk buildings
(a–c). The numbers in the horizontal coordinates represent each of the 24 time periods of the day (i.e.,
0:00–1:00, 1:00–2:00, 2:00–3:00, 3:00–4:00, etc.).
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5.4. Advantages and Limitations

Considering the importance and difficulty of mapping population distribution with
high spatiotemporal resolution over large areas, we integrated ambient population data,
nighttime light data, and building volume data and innovatively proposed a spatial down-
scaling framework for Baidu heat map data during work time and sleep time. After
rigorous validation using mobile signaling data, the results show that our proposed spatial
downscaling framework has excellent accuracy, and the generated population distribution
maps with high spatiotemporal resolution can explore subtle changes in population den-
sity within cities over time. What we essentially propose is a spatial downscaling idea;
regardless of what kind of data based on location services are used (e.g., Baidu heat map
data, Tencent location big data, etc.) and regardless of the spatial resolution of the acquired
data (e.g., 500 m, 400 m, etc.), this idea can be used to perform spatial downscaling on these
dynamic data. In addition, the relevant data used in this paper are easily available, so our
proposed spatial downscaling framework can be transferred to other regions, and once
those data are obtained, the population density distribution can be mapped at a specific
time period in a specific region.

Although our proposed spatial downscaling framework can effectively map the dy-
namic population distribution, it still has some limitations. The Baidu heat map data
are sampled data, so there are some potential uncertainties, such as children and elderly
people who do not have smartphones and those who have smartphones who do not install
Baidu-related products, which can lead to some bias in the results [58,61]. Since work time
and sleep time are different for people in different occupations, it is difficult to fully define
the difference between these two time periods, so our division of these two time periods
cannot cover everyone [1]. In addition, on weekends or other holidays, residents have more
free time, the types of activities are more abundant, and the activities are more random [48].
Therefore, our ambient population data cannot be used as a spatial downscaling weight
layer for these days, leading to limitations in the use of our spatial downscaling framework
on these days. Although the nighttime light data we used from Luojia 1-01 have the highest
spatial resolution of all nighttime light data available, Luojia 1-01 has stopped updating
the data at present due to satellite itself design, resulting in inconsistent time matching
between the acquired Luojia 1-01 NTL data and the Baidu heat map data, which may lead
to incorrect pixel value assignment in the spatial downscaling process [55,56]. In summary,
despite these objective limitations, this study still provides a method that can map the
population distribution with high spatiotemporal resolution over a large area when a better
solution is difficult to obtain.

6. Conclusions

In this study, we integrated ambient population data, nighttime light data, and build-
ing volume data; innovatively proposed a spatial downscaling framework for Baidu heat
map data during work time and sleep time; and mapped the population distribution
with high spatiotemporal resolution (i.e., hourly, 100 m) in Beijing. Then, we validated
the generated population distribution maps with high spatiotemporal resolution using
the highest-quality validation data (i.e., mobile signaling data). Finally, we performed
correlation analysis. The major findings of this study are as follows:

(1) Verification results show that our proposed spatial downscaling framework for both
work time and sleep time has high accuracy.

(2) The relevant statistical analysis indicates that the distribution of the population in
Beijing on a regular weekday shows “centripetal centralization at daytime, centrifugal
dispersion at night” spatiotemporal variation characteristics.

(3) The results of the feature importance assessment indicate that the interaction between
the purpose of residents’ activities and the spatial functional differences leads to the
spatiotemporal evolution of the population distribution.
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(4) During the COVID-19 pandemic, China’s “surgical control and dynamic zero COVID-
19” policy was strongly implemented, which ensured the life and freedom of move-
ment of the Chinese people to the greatest extent possible.

In addition, our proposed spatial downscaling framework can be easily transferred to
other regions due to the easy availability of relevant datasets, which is of great significance
to explore the underlying mechanisms between environmental-related human diseases and
various environmental problems. Future research can focus on refining complex human
activity patterns and combining them with our proposed spatial downscaling framework
to further improve accuracy.
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