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Abstract: Instance segmentation has been widely applied in building extraction from remote sensing
imagery in recent years, and accurate instance segmentation results are crucial for urban planning,
construction and management. However, existing methods for building instance segmentation (BSI)
still have room for improvement. To achieve better detection accuracy and superior performance, we
introduce a Hybrid Task Cascade (HTC)-based building extraction method, which is more tailored to
the characteristics of buildings. As opposed to a cascaded improvement that performs the bounding
box and mask branch refinement separately, HTC intertwines them in a joint multilevel process. The
experimental results also validate its effectiveness. Our approach achieves better detection accuracy
compared to mainstream instance segmentation methods on three different building datasets, yielding
outcomes that are more in line with the distinctive characteristics of buildings. Furthermore, we
evaluate the effectiveness of each module of the HTC for building extraction and analyze the impact
of the detection threshold on the model’s detection accuracy. Finally, we investigate the generalization
ability of the proposed model.

Keywords: deep learning; remote sensing; building extraction; instance segmentation; hybrid task
cascade

1. Introduction

The ever-growing cities have witnessed drastic changes and exerted great influence on
people’s daily lives. Mapping the landscapes of cities is essential for better understanding
the urban space and human activities, facilitating more informed decision making in urban
policies. The high spatial resolution (HSR) remote sensing imagery contains abundant
and detailed land cover information [1]. As one of the main artificial features in a city,
the extraction and analysis of the building information provide valuable insights for
a wide range of geographic and environmental applications. The automatic building
extraction from high-resolution aerial images is currently an active research area and
an issue of high importance to many urban scenarios, including disaster assessment,
humanitarian aid, change detection in human settlements, urban planning and so on [2–6].
However, for building identification, it remains a challenge to fully leverage the inherent
characteristics of building targets and different hierarchical features in building remote
sensing images to obtain more accurate building locations.

The appearance of building rooftops in remote sensing images varies due to many
factors, including lighting conditions, variety of reflections and diversity of image resolu-
tion [7–9]. Moreover, compared with natural images, the spatial scale of high-resolution
remote sensing building objects in urban scenes varies greatly, especially for building
rooftops in different shapes and sizes. These characteristics raise challenges to the accurate
identification of building objects [10]. Previous traditional research usually relied on artifi-
cial design features, such as edge, spectral, shape, and texture features to extract buildings
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from remote sensing imagery [11]. Some scholars also combined these handcrafted features
with machine learning methods such as random forest (RF) [12] and support vector ma-
chines (SVM) [13] for building detection and classification. However, these approaches are
labor-intensive with time-consuming tasks and their performance depends on the low-level
hand-engineered local features.

Recent advancements in artificial intelligence (AI) have led to the growing popularity
of deep learning algorithms for object detection tasks. In particular, deep Convolutional
Neural Networks (CNNs) have been extensively utilized to extract objects from remote
sensing images. The deep learning approach is capable of automatic learning and feature
extraction from datasets. It also produces more stable results with stronger universality.
In recent years, deep learning models have been increasingly adopted for building extrac-
tion from remote-sensed imagery. Relevant studies mainly made use of state-of-the-art
models, e.g., Faster R-CNN [14], FCN [15], and Mask R-CNN [16], for a wide variety of
purposes including object detection, semantic segmentation, and instance segmentation.
Among them, Mask R-CNN-based methods have received growing attention in building
recognition tasks. This is due to their ability to provide more detailed and accurate local-
ization and segmentation results for the detected targets. More recently, cascade structure
networks have been widely applied due to their ability to achieve higher detection accuracy
and provide promising alternatives to the existing deep learning models. Moreover, the
application of cascade structure networks in the remote sensing image analysis contributes
to addressing specific challenges, such as detecting small objects and handling blurred
object boundaries in target detection. However, cascade structure models have rarely been
used in building object detections from remote sensing imagery. To address the challenges
in automatic building extraction, we introduce the hybrid task cascade network (HTC) [17],
which combines the advantages of Mask R-CNN and Cascade R-CNN [18] and propose
a HTC-based automatic building detection method to extract building information from
remote sensing imagery. By incorporating global semantic context (GSC), bounding box
information (BBI) and mask information (MI), it can obtain more accurate, regular and
smoother results of the building detection. The main contributions of this study are listed
as follows:

1. This study introduces the hybrid task cascade network for building detection from
remote sensing imagery based on the inherent characteristics of building targets. We
also investigate the impact of global semantic features on the performance of building
object detection.

2. We compare the influence of the integrated architecture in HTC, which makes the
bounding box prediction and mask prediction intertwined, and the mask information
flow architecture, which combines mask information at different stages of the cascade
structure to improve the accuracy of mask detection.

3. Extensive experiments are conducted on three diverse remote sensing imagery build-
ing datasets, including CrowdAI mapping challenge dataset [19], WHU aerial image
dataset [20]) and Chinese Typical City Buildings Dataset [21]. The results demonstrate
the superiority of the HTC network over the swin-transformer-based method and
other existing state-of-the-art (SOTA) segmentation methods.

The remainder of the paper is structured as follows. In Section 2, we provide a
review of relevant literature on image segmentation and its applications in remote sensing
imagery. Section 3 outlines the details of our HTC-based building extraction method.
The experimental setup, including the datasets, evaluation metrics, and selected baseline
models, is described in Section 4. In Section 5, we elaborate on the experimental results in
detail. Section 6 summarizes the findings, provides discussions, and highlights our future
work. Finally, Section 7 concludes the paper.

2. Related Works

This section provides an overview of the current trends in semantic segmentation
and instance segmentation using deep learning models, specifically focusing on their
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application in extracting buildings from aerial and satellite imagery. It also highlights the
main contributions of promising CNN-based approaches in this field.

2.1. Encoder–Decoder Structure-Based Semantic Segmentation

In recent years, models based on encoder–decoder structures, such as FCN [15],U-
Net [22] and FPN [23], have been widely used for their capability to perform dense pre-
dictions on images without using fully connected layers and generate segmentation maps
of any size. The commonality among these models is that the encoder performs feature
extraction with multi-stage down-sampling. Then, the decoder gradually recovers the size
and structure of the image during up-sampling and generates semantic annotations. The
fully convolutional network (FCN), proposed by Long et al., is a landmark pixel-based
segmentation method. The decoder structure of FCN is the simplest and contains only one
deconvolution operation, while U-Net and FPN adopt multiple up-sampling in the decoder
structure. With such a U-shape structure, the U-Net and FPN models can extract features
of different scales and combine high-level semantic information with low-level geometric
details through the fusion of multiscale feature maps. Compared with U-Net which only
make predictions in the last layer of the decoder, the feature pyramid network (FPN) makes
independent predictions for feature maps at multiple scales and takes the pixel with the
highest confidence as the result. All of these encoder–decoder methods aim to obtain richer
information and enhance model performance by combining them in different ways.

Many improved encoder–decoder methods have been employed for building ex-
traction from remote sensing images in recent studies due to its ability to obtain more
information and better address the scale-variance problems of building objects in remote
sensing images. For instance, Shrestha et al. [24] proposed an improved FCN, which
used the exponential linear unit (ELU) in place of the commonly used ReLU activation,
and applied conditional random fields (CRFs) at the end of the network to reduce the
noise and to sharpen the boundary of the buildings. Yang et al. [25] improved the accuracy
of building extraction by paying more attention to the edge and using edge information
to refine the segmentation results. Tang et al. [26] proposed Capsule–Encoder–Decoder
and introduced a vector named capsule to store the characteristics of buildings and their
components to improve generalization capabilities on different remote sensing datasets.
In [27], three parallel pre-trained ResNet sub-CNNs followed by a fusion operation and a
U-shaped deconvolution network were used to learn building features at different scales.
It also used the Sobel filters in both the foreground and background as well as an edge
detection loss function called the edge constraint loss (ECL) to obtain more precise masks.
Huang et al. [9] proposed a novel approach for building extraction by introducing a gated
feature labeling unit. This unit reduces unnecessary feature transmission and refines the
coarse classification maps at each decoder stage of the fully convolutional network (FCN).
Their method leveraged both HSR images and LiDAR point clouds, leading to significant
improvements in building the extraction performance. In [28], a non-local block [29] was
introduced at the top of the encoder to obtain global information by capturing the depen-
dencies among pixels. Moreover, in the decoder part, they fused the multi-scale features by
concatenating different deconvolution layers. In this way, they also achieved good perfor-
mance. Yuan et al. [30] proposed a multi-scale adaptive semantic segmentation network
(MSST-Net) and achieved good performance with the open access WHU building data set.
They used a CNN to decode the features at different stages in Swin Transformer [31] and
to concatenate the multi-level decoding outputs. Swin Transformer [31], inspired by the
attention-based transformers [32] and attached with shifted windows, appeared promising
to solve the scale-variance problem in remote sensing images for the powerful ability to
catch spatial and global information. Girard et al. [33] trained a semantic segmentation
network that aligned predicted frame fields to ground truth contours, in which they uti-
lized the frame fields along with the raster segmentation to aid polygonization methods in
resolving ambiguities caused by discrete probability maps.
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2.2. Mask R-CNN Structure-Based Instance Segmentation

The instance segmentation approach combines the advantages of both object detection
and semantic segmentation. It goes beyond the differentiation of individual objects and
aims at also recovering more accurate locations and detailed shapes of objects. Recently,
instance segmentation methods based on the Mask R-CNN structure, combined with other
feature extraction techniques, have been widely applied to extract ground objects from
remote sensing images [2,4,6]. For example, Zhao et al. [34] utilized the Douglas–Peucker
(DP) algorithm [35] and Minimum Description Length (MDL) optimization [36] to reduce
the number of points in the initial polygons generated by Mask R-CNN by 86%. This
simplification process resulted in significantly simplified building polygons compared
to the original irregular polygons generated by Mask R-CNN. The regularized polygons
obtained through their approach were found to be suitable for various cartographic and
engineering applications. By combining Sobel edge detection algorithm and Mask R-CNN,
Zhang et al. [37] integrated the artificial edge features and features extracted by RestNet50
to improve the efficiency and accuracy of the building extraction. Fang et al. [38] proposed
an attention-based FPN (AFPN), in which channel attention was introduced into each layer
of the classical FPN to improve the identification of small buildings. Then, a two-stage
coarse-to-fine contour sub-network was designed to refine building instance contours,
which adjusted the deviation between the contours obtained by the Sobel operator and the
ground truth through a loss function to further improve the contour accuracy. Based on an
improved Mask R-CNN model, which used a modified ResNet101 [39] for feature extraction,
Han et al. [5] achieved a high building detection accuracy in a manually annotated building
dataset. Zhao et al. [40] introduced global context and boundary refinement blocks (BRB) to
upgrade feature extraction, and added channel and spatial attention modules to boost the
effectiveness of the detection block. They also employed a recurrent neural network (RNN)
structure to sequentially decode the vertices of building polygons after the feature extraction
stage of Mask R-CNN. In contrast to the traditional approach of converting pixel-level
segmentation results into regularized building boundaries, this method directly obtains
vector-formatted regularized building outlines. It provides convenience for engineering
mapping and other related applications. Chen et al. [3] implemented Swin Transformer
to replace the backbone of a current SOTA algorithm, the multiple attending path neural
network (MAP-Net) [41], and obtained a more accurate result in the building extraction.

Instance segmentation methods have diversified the applications of building extrac-
tion from remote sensing imagery. Chen et al. [2] proposed a building area calculation
method based on the number of building pixels, which enables the timely and accurate
assessment of the losses caused by natural disasters such as earthquakes and floods. Amo-
Boateng et al. [4] implemented Mask R-CNN to detect the rooftops of buildings in a typical
rural settlement to estimate the solar generation potential of such areas.

To sum up, there has been a large body of research on the automatic building extraction
from remote sensing images with deep learning models. However, few researchers have
taken the detection threshold of the model into account to improve its accuracy. More-
over, the fact that building objects in remote sensing images have more regular contour
shapes than other targets has been neglected. Based on this characteristic of buildings, we
believe that high-quality bounding boxes can have a significant impact on improving the
detection accuracy of building targets. In addition, existing models for building extraction
from remote sensing images rarely take global semantic information into consideration.
Moreover, the constant threshold commonly used for bounding box evaluation often leads
to unsatisfactory results. Models with cascade structure, e.g., Cascade R-CNN [18], were
proposed to tackle this issue with resampling by cascade regression, albeit with limited
improvement. Hybrid Task Cascade (HTC) [17] proposed by Chen et al. provide a viable
alternative for instance segmentation which could extract more comprehensive information
and thus enable more precise recognition. It has rarely been used for building extraction
tasks with an exception of Liu et al. [42]. However, despite the improvements made in the
feature extraction backbone network and RPN network in this study, a detailed analysis
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of the specific impacts of each module in the HTC network for building extraction from
remote sensing images was not conducted, e.g., the influence of global semantic informa-
tion. Furthermore, no relevant analysis was performed regarding the influence of detector
thresholds on the model. Finally, they also failed to compare the HTC-based method with
other SOTA cascade structure instance segmentation methods and more diverse classes
of instance segmentation methods, e.g., the anchor-free instance segmentation method.
Nonetheless, HTC could be leveraged for automatically extracting buildings from remote
sensing imagery.

3. Methodology

In this study, the Hybrid Task Cascade network (HTC) [17] is introduced to enhance the
performance of building extraction from high-resolution remote sensing imagery. The ar-
chitecture of the proposed network is shown in Figure 1.

Figure 1. Structure of our HTC building detection model.

Compared to the classical Cascade-Mask-RCNN [43], it exhibits several distinctive
characteristics: (1) Instead of performing bounding box regression and mask prediction
in parallel, it integrates these tasks. (2) By using a direct path to feed the mask features
from the previous stage to the current one, it reinforces the information flow between mask
branches. (3) It adopts a fully convolutional branch to explore more global contextual
information, fusing it with bbox and mask branches at the same time.

3.1. Network Stucture of HTC

The HTC network primarily consists of a feature extraction network and a three-stage
prediction head, mainly focusing on the interaction and fusion of information between the
backbone network and the various components. It performs joint processing by interleaving
bounding box refinement and masking operations at each stage, as well as full convolutional
branching to extract the global semantic context. By incorporating these tasks, the bounding
box features, mask features, and global context form a tighter connection, which effectively
contributes to the improvement of detection accuracy through the backpropagation.

The following provides a detailed description of the structure of the HTC network.
The ResNet50 [39] with the Feature Pyramid Networks (FPN) is first used to extract building
rooftop features from input imageries. The extracted feature maps are inputted into the
Region Proposal Network (RPN) to extract candidate regions of buildings, and the proposed
bounding boxes of the candidate regions are remapped onto the feature maps.

Simultaneously, a semantic segmentation branch is constructed based on the output
of the feature pyramid. It performs up-sampling and down-sampling operations on the
semantic features extracted at different levels of the feature pyramid, combining high-level
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features with global information and low-level features with local information. The trans-
formed feature maps from different levels are then fused through element-wise summation.
Subsequently, further feature fusion is performed using four 3 × 3 convolutional layers.
Then, two 1 × 1 convolutional layers are utilized to obtain global semantic features of
buildings and the semantic segmentation results. The semantic segmentation results are
compared with the semantic annotations to compute the loss of the branch, while the global
semantic features are inputted into each bounding box and mask heads, allowing the model
to be more discriminative on the cluttered background. By incorporating global semantic
annotations for supervised learning, the model can pay more attention to the recognition of
small and medium-sized building objects, leading to higher detection accuracy. Moreover,
this approach aligns well with the focus of our building extraction task, for it optimizes the
detection threshold progressively and effectively reduces redundant predictions and the
overlapping of building targets.

Secondly, the proposal boxes selected by the region proposal network (RPN) are used
to extract Regions of Interest (RoIs), and each RoI is pooled into a 7 × 7 feature map using
the RoIAlign layer that was the bounding box feature xbox

1 . Then, a fully connected branch
is employed to regress and classify each RoI’s bounding box. In the case of traditional Mask-
RCNN, following the RPN and RoIAlign layer, the features within the proposal regions
are fed into a segmentation head for mask prediction. However, HTC uses the optimized
bounding box b1, which is obtained from the first-stage bounding box head with an
Intersection over Union (IoU) threshold of 0.5 for mask prediction. More accurate bounding
boxes can provide more precise object positions and boundary information, thereby offering
better initialization and localization for the subsequent fully convolutional mask branch.
By using accurate bounding boxes as initial regions, the HTC model can achieve more
accurate pixel-level segmentation of building objects. Subsequently, the features extracted
by backbone network x, along with b1 and the semantic segmentation features s, are fused
and used as inputs to the first stage’s mask prediction head M1 to extract mask information
xmask

1 . In the mask prediction head M1, before using the deconvolution operation to obtain
the mask prediction m1, we also learn the intermediate feature m−1 through four 3 × 3
and a 1 × 1 convolution layers. The mask information m−1 from the first stage is further
fused to the mask branch of the next stage, which allows for interconnection and mutual
influence between adjacent stages’ mask branches. All features are supervised through
backpropagation, leading to more accurate mask segmentation.

At the same time, the optimized bounding boxes b1 are fed into the bounding box head
B2, with an IoU threshold of 0.6, to further optimize their positions and sizes and extract
the features xbox

2 of the bounding boxes b2. The mask feature m−1 from mask head M1,
the bounding box feature xbox

2 from bounding box head B2 and the semantic segmentation
feature s are fused again and then inputted into the mask prediction head M2 to obtain the
mask feature m−2 .

Finally, in the third stage, the above operation is repeated. By using the bounding
box head B3 with an IoU threshold of 0.7, much more accurate bounding boxes b2 can be
obtained, together with the mask feature m−2 and the semantic segmentation feature s to
obtain mask information xmask

3 . The final mask prediction results m3 are obtained in the
mask head M3 by a deconvolution operation. The formula of HTC is expressed as:

xbbox
i = P(x, bi−1) + P(S(x), bi−1), (1)

bi = Bi(xbox
i ), (2)

xmask
i = P(x, bi) + P(S(x), bi), (3)

mi = Mi(Fmask
i , m−i−1)), (4)
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In the given expression, we denote x as the features extracted by the backbone network.
The variables xbox

i and xmask
i represent the box and mask features obtained from x and

the input RoIs. The pooling operator P(·), such as RoI Align or ROI pooling, is applied.
Bi and Mi refer to the box and mask heads at the i-th stage, while bi and mi denote the
corresponding box predictions and mask predictions. m−i represents the intermediate
feature of the i-th mask head. The semantic segmentation head is represented by S, and F
denotes a function that combines the features at the current stage with the preceding one.

3.2. Loss Function

Firstly, the overall loss function Loss is formulated in the form of multi-task learning,
which consists of the bounding box regression loss Lbbox, mask loss Lmask and semantic
segmentation Lseg. The overall loss function is expressed as follows:

Loss =
3

∑
i=1

αi(Li
bbox + Li

mask) + βLseg, (5)

Here, we set αi = [1, 0.5, 0.25] in three stages of the HTC, respectively, and β = 1
by default, which follows the same definition as in HTC [17]. This multi-task learning
framework enables the model to jointly optimize these three components, leading to
improved performance in various aspects of the task.

Among the loss components, Lbbox combines two terms, Lcls and Lreg, which are used
for classification and bounding box regression, respectively. Lmask is formulated using
the binary cross-entropy form as described in Mask R-CNN [16]. Additionally, in our
task, the semantic segmentation loss Lseg also appears in the form of binary cross-entropy,
serving the purpose of distinguishing the foreground and background. They are given
as follows:

Li
bbox(ci, bi, ĉi, b̂i) = Lcls(ci, ĉi) + Lreg(bi, b̂i), (6)

Li
mask(mi, m̂i) = BCE(mi, m̂i), (7)

Lseg(s, ŝ) = BCE(s, ŝ), (8)

Here, the bbox regression loss Lreg is a smoothL1 loss and the classification loss also
takes the form of a BCE loss. The bounding box regression loss is given as follows:

Lreg = ∑ SmoothL1(yi, ŷi), (9)

where ŷi is the predicted box and yi is the box label. Finally, the smoothL1 loss and BCE
loss is written as follows:

LSmoothL1(y, ŷ) =

{
0.5(ŷ− y)2, if |ŷ− y| < 1,
|ŷ− y| − 0.5, otherwise.

(10)

LBCE(y, ŷ) = − 1
N

N

∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)], (11)

where yi represents the true label, ŷi represents the predicted label probability and N is the
number of samples.

4. Experiments

In this section, we present our experiment setups, datasets used, evaluation metrics
and experimental results.

4.1. Implementation Details

To ensure the consistency of the experimental results, FPN was used in all backbones.
The experiments were conducted using the PyTorch framework on a 3060 GPU. A weight
decay rate of 0.0001 and a momentum value of 0.9 were applied. The detectors were trained
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using a batch size of 16 images per GPU for 12 epochs. The initial learning rate was set to
0.02, and it was decreased by a factor of 0.1 after the 8th and 11th epochs, respectively.

4.2. Datasets

The proposed method was evaluated on three challenging building instance segmenta-
tion datasets: CrowdAI Mapping Challenge Dataset [19], the WHU aerial image dataset [20]
and the self-annotated dataset proposed in [21]. Traditional instance annotations are used
to supervise the bbox and mask branches, while the semantic branch is supervised by
COCO-stuff [44] annotations. By employing the Python COCOAPI, we convert traditional
COCO annotations into the COCO-stuff format and perform grayscale transformation to
obtain foreground–background semantic annotations.

4.2.1. CrowdAI Mapping Challenge Dataset

The CrowdAI Mapping Challenge dataset is a large-scale remote sensing imagery
building dataset published by [19] for the mapping challenge. It is comprised of a total
of 280,741 satellite images for training, along with an additional 60,317 images for testing.
In academic research, the experiment is commonly conducted with small-scale CrowdAI
datasets, which usually comprise 8366 images for training and 1820 images for testing.
Each image is presented in JPEG format with a resolution of 300 × 300 pixels. Furthermore,
their annotations are provided in the MS-COCO format [45], offering useful information
about the objects and their characteristics within the images. The samples displayed in
Figure 2 showcase a diverse range of buildings in the CrowdAI dataset, in varying sizes
and shapes.

Figure 2. Samples of CrowdAI Mapping Challenge Dataset and corresponding building labels.

4.2.2. WHU Aerial Image Dataset

The WHU aerial image dataset, proposed by Ji et al. [20], consists of JPEG images with
a resolution of 512 × 512 pixels. The dataset contains over 187,000 buildings with varying
sizes and appearances, captured in Christchurch, New Zealand. It is divided into a training
set of 4736 images and a test set of 2416 images. Some samples are illustrated in Figure 3.
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Figure 3. Samples of WHU Aerial Image Dataset and building labels.

4.2.3. Chinese Typical City Buildings Dataset

The dataset utilized in this study was provided by Fang et al. [21]. It comprises a
total of 7260 tiles, with 5985 images allocated for training purposes and 1275 for testing.
The dataset encompasses a diverse range of urban areas in four major Chinese cities: Beijing,
Shanghai, Shenzhen and Wuhan. In total, it contains 63,886 instances of buildings. Each im-
age in the dataset is presented in TIF format and possesses dimensions of 500 × 500 pixels,
with a spatial resolution of 0.29 m per pixel. The dataset exhibits a wide coverage, en-
compassing diverse architectural styles with significant variations in terms of shape, size,
color and other distinctive features of buildings. Some samples from this building instance
segmentation dataset are shown in Figure 4.

Figure 4. Samples of Self-Annotated Dataset and building labels.

4.3. Evaluation Metrics

In this study, the proposed method is evaluated using the standard MS COCO met-
rics [45], which include mean average precision (AP) and mean average recall (AR) at
multiple IoU values, e.g., AP, AP50, AP75. Additionally, the mean average precision is com-
puted for objects of different scales, denoted as APs, APm and APl . The IoU is calculated
using the equation below:

IoU =
intersection

union
=

Spred ∩ Sgt

Spred ∪ Sgt
, (12)

where Spred and Sgt represent the prediction results and the ground truth, respectively, and
the AP and AR are calculated at 10 IoU overlap thresholds ranging from 0.50 to 0.95 in
increments of 0.05, following the evaluation metrics [45]. The formulas are given as follows:
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AP =
AP0.50 + AP0.55 + . . . + AP0.90 + AP0.95

10
, (13)

AR = 2
∫ 1

0.5
recall(o)do =

2
n

n

∑
i=1

max(IoU(gti)− 0.5, 0), (14)

In addition, AP50 and AP75 are AP calculated at IoU thresholds of 0.5 and 0.75, respec-
tively. Between them, the AP75 is a much more strict evaluation metric, which can better
reflect the position accuracy of the algorithm. Furthermore, the metrics APs, APm, and APl
are used to evaluate the performance of the methods on detecting buildings of different
sizes. Specifically, APs measures the performance in detecting small buildings with an
area S < 32× 32 pixels, APm measures the performance in detecting buildings with an
area 32× 32 < S < 96× 96 pixels, and APl measures the performance in detecting large
buildings with an area S > 96× 96 pixels.

4.4. Baseline Methods

In this study, the HTC builing instance segmentation method is compared with five
baselines, Mask R-CNN [16], Cascade Mask R-CNN [43], SCNet [46], SOLOv2 [47] and
Swin Mask R-CNN [48]. Mask R-CNN is a classic instance segmentation method; recent
works showed its popularity for building the instance extraction. Cascade Mask R-CNN
effectively integrates cascade structures into instance segmentation, which can obtain better
detection accuracy than traditional Mask R-CNN. SCNet, proposed by Vu et al. [46], uti-
lizes stacking and skip connect operations to connect mask branches of the Cascade Mask
R-CNN into a sequence of successive convolutional layers, ensuring sample consistency
and improving the model training speed and accuracy. It also introduces a feature relay op-
eration to establish a feature prior for bounding box feature to mask prediction. In addition,
they introduced a global context branch similar to that in the HTC model for multi-label
prediction and fused a global feature with a box and mask branch. SOLOv2 is a powerful,
novel and efficient anchor-free instance segmentation model that dynamically segments
each instance in an image by decomposing the mask branches into mask kernel predic-
tion and mask feature learning. Swin Mask R-CNN, which introduces Swin Transformer
into traditional Mask R-CNN, employs a patch-based approach and the “shift window”
conception to effectively capture pixel relationships within each patch while promoting
an information exchange between patches. Consequently, this architecture significantly
enhances the performance of object detection and instance segmentation tasks and has been
frequently used in SOTA methods. All of the baseline models adopt the same settings and
use ResNet50 and FPN as the backbone, except for Swin Mask R-CNN, which uses Swin
Transformer as the backbone with the window size set to 7 × 7 and transformer blocks with
sizes of 2, 2, 6 and 2 in the 4 stages, respectively.

5. Experimental Results

This section presents a comparative analysis of the results obtained from five baseline
models and our proposed HTC building detection method, followed by a comparison of
their actual performance on the three test sets.

5.1. Results on the CrowdAI Mapping Challenge Dataset

Table 1 presents a comparison of results obtained using different instance segmentation
algorithms on the CrowdAI Mapping Challenge Dataset. In general, the HTC-based
method demonstrates superior performance across various evaluation metrics, including
bounding box and mask accuracy. Our approach exhibits significant improvements in
AP and AR for both the bounding box branch and mask branch, surpassing the baseline
methods. Specifically, AP is increased by 0.6–3% and 0.3–2.2% in the bounding box and
mask branches, respectively, while AR is enhanced by 1.0–3.8% and 0.8–2.9%, respectively.
Moreover, for small-sized building instances, the bounding box branch and mask branch
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achieve an improvement of 0.3–2.6% and 0.4–2.9% in APs. For medium-sized buildings,
APm is enhanced by 0.3–3.1% and 0.1–1.2% in the two branches. Additionally, for large-scale
building instances, APl shows improvements of 1.7–4.2% and 0.3–4.0% in the bounding
box branch and mask branch, respectively.

Table 1. Experimental results on the CrowdAI Mapping Challenge Dataset.

Methods
Bounding Box (%) Mask (%)

AP AP50 AP75 APs APm APl AR AP AP50 AP75 APs APm APl AR

Mask R-CNN 55.7 82.4 64.6 27.1 71.4 69.8 61.1 54.3 82.6 64.4 26.4 69.2 68.5 59.6
Swin Mask R-CNN 56.0 82.5 65.5 28.4 71.4 72.0 61.0 54.9 83.4 64.9 27.7 69.4 71.6 59.8

SOLOv2 — — — — — — — 53.7 82.4 63.0 25.3 69.4 72.0 60.2
Cascade Mask R-CNN 58.1 83.5 66.1 29.4 73.9 71.0 63.5 55.2 83.5 65.0 27.8 69.7 70.1 60.5

SCNet 58.1 83.8 66.1 29.2 74.2 72.3 63.9 55.6 83.7 65.3 27.5 70.3 72.2 61.7
Proposed Method 58.7 84.1 66.6 29.7 74.5 74.0 64.9 55.9 84.2 66.1 28.2 70.4 72.5 62.5

To further illustrate and analyze the results, selected samples are shown in Figure 5,
with a focus on the areas outlined by blue circles. Firstly, as illustrated in the first row, Swin
Mask R-CNN exhibits an imperfect segmentation of certain building contours. Secondly,
in the second row, baseline methods overlook some small-scale buildings and edge targets,
whereas our method successfully detects them. Furthermore, in the third rows, baseline
methods erroneously detect non-building objects, e.g., vehicles and shadows. Moreover, in
the fourth row, compared to the baseline method, our approach extracts building masks
with more regular contours and closer approximation to real building outlines. Finally,
from the fifth line, we can observe that our method performs well in identifying buildings
with interior holes, whereas the baseline methods either fails to recognize the interior
holes or produces blurred boundaries. These findings indicate that the proposed method
outperforms the baseline methods.

Figure 5. Example of results on the CrowdAI Mapping Challenge Dataset: (a) Original image,
(b) Label, (c) Mask R-CNN, (d) Swin Mask R-CNN, (e) SOLOv2, (f) Cascade Mask R-CNN, (g) SCNet
and (h) HTC.

5.2. Results on the WHU Aerial Image Dataset

The experimental results on WHU Aerial Image Dataset are listed in Table 2. Our
method achieves a state-of-the-art performance in all evaluation metrics related to bounding



Remote Sens. 2023, 15, 4907 12 of 20

box accuracy. However, it slightly falls behind Swin Mask R-CNN in certain evaluation
metrics for mask detection accuracy. The proposed method obtains more precise bounding
box results than the five baselines, with AP, AP50, AP75 and AR values of 66.5%, 85.5%,
75.8% and 70.7%, respectively. Specifically, AP is increased by 0.6–2.8%, while AR is
enhanced by 0.8–2.7% compared to the baseline models.

Table 2. Experimental results on the WHU Aerial Image Dataset.

Methods
Bounding Box (%) Mask (%)

AP AP50 AP75 APs APm APl AR AP AP50 AP75 APs APm APl AR

Mask R-CNN 63.7 83.9 73.3 49.3 79.8 73.6 68.0 60.4 84.8 71.4 44.5 77.3 75.2 64.2
Swin Mask R-CNN 63.9 84.8 74.2 50.0 79.5 74.2 68.2 62.7 84.9 73.5 47.2 79.1 78.1 66.5

SOLOv2 — — — — — — — 55.1 83.3 64.3 37.2 74.3 76.8 59.4
Cascade Mask R-CNN 65.9 84.7 74.7 51.2 82.3 76.6 69.9 60.5 84.8 71.5 44.5 77.5 76.7 64.1

SCNet 64.9 85.2 74.3 50.2 81.5 74.7 69.2 60.3 84.8 71.1 44.2 77.4 76.8 64.1
Proposed Method 66.5 85.5 75.8 52.1 82.7 76.5 70.7 61.7 85.5 73.1 46.1 78.3 77.9 65.4

Although our method slightly lags behind Swin Mask R-CNN in several mask accuracy
metrics, we can derive valuable insights from the specific experimental results shown in
Figure 6 (with a focus on the areas outlined by blue circles). Firstly, compared to the baseline
methods, our approach achieves more regular and smoother contour shapes. Secondly,
in the third and fourth lines, we can observe that our method demonstrates higher detection
accuracy for very small building instances. Furthermore, the precise identification of small
interior holes in buildings in the fourth line also demonstrates the superior accuracy of
our method in recognizing building outlines. Lastly, in the last row, for different regions of
large-scale building instances, the baseline methods exhibit varying degrees of redundant
detections. In contrast, our detection method, by gradually increasing the IoU threshold,
produces better mask predictions for such buildings, significantly reducing instances of
overlapping predicted masks. This characteristic makes our method more suitable for
remote sensing image building detection tasks, especially for scenarios with large and
unconventionally shaped buildings.

Figure 6. Example of results on the WHU Aerial Image Dataset: (a) Original image, (b) Label, (c) Mask
R-CNN, (d) Swin Mask R-CNN, (e) SOLOv2, (f) Cascade Mask R-CNN, (g) SCNet and (h) HTC.
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5.3. Results on the Chinese Typical City Buildings Dataset

The results obtained using different instance segmentation algorithms in this dataset
are presented in Table 3. This dataset consists of non-orthophoto images with complex back-
grounds, posing challenges in extracting building instances. Moreover, these challenges
might have contributed to the relatively lower detection performance of Swin Mask R-CNN.
However, the HTC method performs the best in all other evaluation metrics, except for a
slight inferiority to SCNet in the metric of mask precision APl . Firstly, the bounding box
branch exhibits an improvement of 0.8–3.9% in AP, while the mask branch shows an en-
hancement of 0.3–4.0%. Secondly, the bounding box branch and mask branch demonstrate
an increase of 1.9–7.5% and 1.0–6.2% in AR, respectively. Additionally, for small-sized
building instances, the bounding box branch and mask branch achieve an improvement of
0.5–2.5% and 0.2–5.1% in APs, respectively. Here, we find that SOLOv2 is quite ineffective
at detecting small target building objects. For medium-sized buildings, the APm in both
branches is enhanced by 0.7–3.8% and 0.5–3.6%. Furthermore, when considering large-scale
building instances, the bounding box branch demonstrates notable enhancements in APl ,
with improvements ranging from 0.6% to 4.7%. The SCNET achieves nearly the same accu-
racy in large target building detection. These data highlight the superiority and robustness
of the HTC method for building extraction from non-orthophoto remote sensing imagery.

Table 3. Experimental results on the Chinese Typical City Buildings Dataset.

Methods
Bounding Box (%) Mask (%)

AP AP50 AP75 APs APm APl AR AP AP50 AP75 APs APm APl AR

Mask R-CNN 47.8 72.1 52.7 23.2 54.7 58.9 61.7 45.3 71.5 49.7 17.7 51.0 58.3 58.8
Swin Mask R-CNN 46.9 72.1 52.4 22.4 53.9 57.3 59.4 45.1 71.4 49.8 17.3 51.1 57.5 57.3

SOLOv2 — — — — — — — 43.0 69.9 46.9 13.6 49.4 58.7 56.3
Cascade Mask R-CNN 50.0 71.7 55.4 24.0 57.0 61.4 64.3 46.1 71.6 50.9 18.1 51.9 59.2 59.4

SCNet 49.9 72.9 54.6 24.4 56.8 60.7 65.0 46.7 72.7 51.5 18.5 52.5 60.7 61.5
Proposed Method 50.8 73.2 56.0 24.9 57.7 62.0 66.9 47.0 72.8 52.1 18.7 53.0 60.6 62.5

Examples of detailed experimental results, as shown in Figure 7 (with a focus on
the areas outlined by blue circles), demonstrate where the HTC method outperforms
the baseline methods in building extraction. The HTC method achieves more accurate
predictions with fewer errors and clearer building contour extraction. It also reduces the
occurrence of repetitive outputs and overlapping objects. From the first, fourth, and fifth
rows, we can observe that our method can more accurately identify small target buildings
and buildings located at the edges compared to the baseline methods. Meanwhile, from the
second and fifth rows, we can observe that our method extracts building masks with more
regular and smoother contours. Finally, from the third row, we find that our method
can effectively filter out interferences, such as trees, shadows of buildings, and other
disturbances, and thus accurately identify building targets and their contours.
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Figure 7. Example of results on Chinese Typical City Buildings Dataset: (a) Original image, (b) Label,
(c) Mask R-CNN, (d) Swin Mask R-CNN, (e) SOLOv2, (f) Cascade Mask R-CNN, (g) SCNet and
(h) HTC.

5.4. Ablation Experiments

In order to understand the specific effects of each component of HTC for remote sens-
ing building extraction, we conducted experiments on the CrowdAI Mapping Challenge
Dataset and discovered some interesting experimental results.

As shown in Tables 4 and 5, the integrated structure, mask information flow and se-
mantic segmentation branch module all contribute to the improvements in model accuracy
compared to the vanilla Cascade Mask R-CNN. However, when each of the three modules
is individually excluded, the impact on the final model’s detection accuracy is not evident,
except for the detection of large-scale building objects. The absence of any single module
leads to a decrease in the model’s detection accuracy for large-scale building objects APl by
1.3–2.3% in the bounding box branch and 0.5–1.5% in the mask branch.

Additionally, it is noteworthy that when only the semantic segmentation branch is
used without the integrated structure and mask information flow, the model achieves
optimal detection performance on the CrowdAI validation dataset. Compared to HTC,
the detection accuracy for small-scale building objects APs is improved by 4.9% and 4.7%
in the bounding box branch and mask branch, respectively. The detection accuracy for
medium-sized buildings APm is also improved by 1.1% and 0.9% in the bounding box
branch and mask branch, respectively. Although there is a slight decrease of 0.9% and
1.1% in the detection accuracy of large-scale building objects APl , overall improvements in
AP and AR are observed with only the semantic segmentation module added to Cascade
Mask R-CNN, largely due to the more frequent presence of small and medium-sized
building objects in the images. While this result may be influenced by the characteristics
of the dataset itself and may lack generalizability, it still highlights the importance of
global semantic information for the detection of small-scale building objects in remote
sensing imagery. Small-size buildings have limited available features, and their semantic
information appears in low-level feature maps. As the network deepens, their detailed
information may be completely lost. However, HTC addresses this issue by incorporating
an additional branch for contextual information utilization in semantic segmentation and
utilizing global semantic annotation for supervised learning, thus better preserving the
information of small target buildings.
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Table 4. Ablation experiments for the bounding box branch on the CrowdAI Mapping Chal-
lenge Dataset.

Cascade Integrated Mask Info Semantic AP AP50 AP75 APs APm APl AR

3 58.1 83.5 66.1 29.4 73.9 71.0 63.5
3 3 3 58.6 84.0 66.9 29.8 74.3 72.0 64.9
3 3 3 58.7 84.1 66.6 29.8 74.4 71.7 64.9
3 3 3 58.9 84.1 66.7 30.0 74.7 72.7 65.0
3 3 61.4 87.4 69.3 34.6 75.6 73.1 67.9
3 3 3 3 58.7 84.1 66.6 29.7 74.5 74.0 64.9

Table 5. Ablation experiments for the Mask branch on the CrowdAI Mapping Challenge Dataset.

Cascade Integrated Mask Info Semantic AP AP50 AP75 APs APm APl AR

3 55.2 83.5 65.0 27.8 69.7 70.1 60.5
3 3 3 55.9 84.1 65.9 28.3 70.4 71.1 62.5
3 3 3 55.8 84.2 65.7 28.3 70.3 71.0 62.5
3 3 3 55.8 84.1 65.7 28.3 70.3 72.0 62.3
3 3 58.3 87.5 68.4 32.9 71.3 71.4 65.2
3 3 3 3 55.9 84.2 66.1 28.2 70.4 72.5 62.5

We conducted similar experiments on another two datasets, and the results were
largely consistent, except for a slight decrease in model accuracy compared to HTC when
using only the semantic segmentation branch module.

5.5. Effects of different IoU threshold

The IoU threshold has an impact on the selection of positive and negative samples
during the model training process, thereby affecting the training effectiveness of the model.
A suitable IoU threshold improves training sample quality and model performance. While
0.5 is commonly used for optimal results in general visual tasks, for building extraction
in remote sensing imagery, buildings often have regular and well-defined shapes, leading
to higher IoU values for bounding boxes. To validate this hypothesis, we conducted
experiments on different datasets. Table 6 shows the results of experiments on the CrowdAI
dataset using Mask R-CNN and HTC models, respectively. Increasing the IoU threshold by
approximately 0.1 yields slight improvements in key performance metrics, and results in
higher AP and AR.

Table 6. Experimental results on the CrowdAI Dataset with different IoU thresholds.

Methods IoU
Bounding Box (%) Mask (%)

AP AP50 AP75 APs APm APl AR AP AP50 AP75 APs APm APl AR

Mask R-CNN 0.5 55.7 82.4 64.6 27.1 71.4 69.8 61.1 54.3 82.6 64.4 26.4 69.2 68.5 59.6
Mask R-CNN 0.6 56.1 82.1 64.8 27.7 72.0 68.3 61.5 54.4 82.9 64.3 26.7 69.3 68.9 59.9

HTC (0.5, 0.6, 0.7) 58.7 84.1 66.6 29.7 74.5 74.0 64.9 55.9 84.2 66.1 28.2 70.4 72.5 62.5
HTC (0.6, 0.7, 0.8) 59.1 83.9 66.9 29.8 75.1 72.7 65.1 56.2 84.1 66.1 28.3 70.9 72.5 62.6

Table 7 shows the results of experiments on the WHU dataset using Mask R-CNN
and HTC models, respectively. By appropriately increasing the IoU threshold, we obtained
improved results. Specifically, for the HTC model, increasing the detector threshold by
0.1 led to improved precision in terms of AP, AR and detection accuracy for buildings of
different scales. Additionally, we conducted an set of experiments with an increased IoU
threshold of 0.05 to further validate our hypothesis.
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Table 7. Experimental results on the WHU Dataset with different IoU thresholds.

Methods IoU
Bounding Box (%) Mask (%)

AP AP50 AP75 APs APm APl AR AP AP50 AP75 APs APm APl AR

Mask R-CNN 0.5 63.7 83.9 73.3 49.3 79.8 73.6 68.0 60.4 84.8 71.4 44.5 77.3 75.2 64.2
Mask R-CNN 0.6 64.6 83.8 74.6 50.0 81.4 72.9 68.6 60.9 83.9 72.4 44.7 78.1 75.1 64.3

HTC (0.5, 0.6, 0.7) 66.5 85.5 75.8 52.1 82.7 76.5 70.7 61.7 85.5 73.1 46.1 78.3 77.9 65.4
HTC (0.55, 0.65, 0.75) 66.9 85.3 75.6 52.3 83.4 77.0 71.1 62.0 85.5 73.1 46.0 78.9 78.9 65.7
HTC (0.6, 0.7, 0.8) 67.2 85.1 76.2 52.6 83.9 77.0 71.2 62.4 85.2 73.6 46.5 79.2 78.8 66.0

The findings indicate that appropriately increasing the model’s IoU threshold signifi-
cantly enhances training effectiveness and improves the detection accuracy of the model
for automatic building extraction using remote sensing imagery.

5.6. Efficiency and Generalizability Tests

While our method outperforms baseline models in terms of model accuracy, the HTC
model is also comparatively more complex with more parameters, which could affect the
computational costs. To better evaluate our model, we compared the parameter sizes as
well as the detection speed of the proposed HTC-based model with other baseline models
on the WHU dataset. As shown in Table 8, while obtaining higher accuracy, our model
also sacrifices efficiency to a certain extent. This undoubtedly limits applications of the
HTC-based model to scenarios that require fast processing of remote sensing images such
as disaster monitoring. To further analyze the model efficiency of HTC-based models,
we carried out additional experiments with a modified model structure. We observe that
removing the semantic segmentation branch substantially improves the efficiency of HTC
by 38.9%. Although from the previous experimental results in Tables 4 and 5 we found that
missing global semantic information affects the detection accuracy for large target buildings,
the effect on the overall accuracy is modest. Therefore, for application scenarios that require
more efficient detection, a modified HTC model without a semantic segmentation branch
could be utilized.

Table 8. Parameter sizes and detection speed on the WHU Dataset.

Methods Parameters (M) fps (Frames per Second)

Mask R-CNN 335 20.64
Cascade Mask R-CNN 587 14.12

Swin Mask R-CNN 542 18.58
SOLOv2 352 15.19
SCNet 720 8.42
HTC 609 8.92

HTC (without semantic branch) 588 12.39

To further validate our model backbone selection, we used four different backbones
other than ResNet50 [39] for the experimental comparison on the WHU dataset. The ex-
perimental results are shown in Table 9. We found that although ResNet18 [39], with a
lower number of network layers, reduces the size and the training time of the model, it
sacrifices more in terms of detection accuracy. In addition, deeper networks, ResNet101 [39]
and ResNext101 [49], produce slower training without any gain in accuracy. Finally, when
we use HRNetV2p [50] as the backbone, which introduce more cross-connections among
branches, most of the accuracy metrics are improved, especially for small and medium-
sized building targets, although it lags behind in terms of efficiency. It suggests that the
method is worth being considered in scenarios where higher detection accuracy is required.
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Table 9. Experimental results on HTC with different backbone.

Backbone
Mask (%)

Parameters (M) fps (Frames per Second)
AP AP50 AP75 APs APm APl AR

Resnet-18 59.9 84.5 70.6 43.5 77.0 76.4 64.0 509 9.47
Resnet-50 61.7 85.5 73.1 46.1 78.3 77.9 65.4 609 8.92

Resnet-101 60.3 84.7 71.2 44.2 76.8 77.9 64.2 754 8.16
Resnext-101 61.3 85.0 72.4 45.5 78.2 77.7 64.8 751 8.10
HRNetV2p 62.3 85.9 73.6 46.6 79.3 77.7 65.9 980 7.60

6. Discussion

In this section, we discuss the findings based on our experiment results and discuss
our future work.

6.1. Summary of Results

Firstly, our experiments demonstrate the promising capabilities of the HTC model
based on the cascaded structure for building extraction from remote sensing imagery.
Compared to the selected baseline algorithms, the HTC method achieves higher detection
accuracy and generates more regular building contours. In addition, the HTC method
integrates the execution of tasks such as the bounding box refinement, masking, and global
semantic information extraction. This integration strengthens the information interaction
and connection between different branches, ultimately leading to accuracy improvement
through backpropagation. This approach has been shown to be effective in enhancing the
performance compared to traditional non-hybrid models that handle these tasks separately.
The method’s accuracy and robustness are validated on three challenging datasets.

Secondly, we show that through cascaded optimization algorithms, our method not
only achieves higher recognition accuracy but also reduces the overlap of predicted targets
in practical applications. This aligns well with the inherent characteristics of building
targets in remote sensing imagery, making the obtained images more suitable for real-world
engineering applications. Therefore, the HTC-based method is promising as a suitable
alternative for applications in building extraction from remote sensing imagery tasks.

Thirdly, we conduct experiments to evaluate the effectiveness of different modules
in the HTC model, revealing their contributions to improving model accuracy and their
impacts on recognizing buildings of different scales. Additionally, we find that the utiliza-
tion of global semantic information plays a vital role in accurately identifying small-sized
building targets.

Furthermore, we propose a hypothesis regarding optimal IoU thresholds based on the
relatively regular shape of building targets in remote sensing imagery. Our experiments
confirm that appropriately increasing the detector’s IoU threshold positively affects model
accuracy. We believe that this can provide valuable insights for the future application of
instance segmentation methods for automatic building detection.

Finally, some of the current limitations of the HTC method are addressed. We have
conducted generalization experiments that enable the HTC-based building instance seg-
mentation method to be effectively applied to more scenarios, such as drone disaster
assessment (DDS) [51]. In summary, we believe that our proposed method is feasible and
has sufficient application prospects.

6.2. Future Work

Our future work will primarily focus on several key directions. Firstly, we aim to
investigate the effectiveness of employing additional stages to further enhance the model’s
accuracy. In a recent study by Wu et al. [52], they proposed an enhanced cascade structure
network called Cascade R-CNN++ for high-quality object detection in multi-resolution
remote sensing imagery. They found that adding a fourth stage to Cascade R-CNN led to a
performance degradation. They attributed this to a potential mismatch between the RoI
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features and classifier. Additionally, we plan to investigate alternative backbone networks
to assess their potential impact on improving HTC’s performance.

Secondly, we intend to incorporate building regularization methods to obtain more
regular and realistic building contours. Girard et al. [33] proposed a frame-field-based
approach for building contour regularization. They trained a deep neural network that
aligned a predicted frame field to ground truth contours and utilized the frame field to
facilitate polygonization.

Moreover, we aim to explore the applicability of global semantic information in other
instance segmentation models. We also extend our efforts to explore how to reduce parame-
ters and improve the speed of model training while preserving globle semantic information.

Finally, we aim to apply our model to real-world scenarios. Experimental results
on real-world datasets demonstrate great potential for practical applications, including
mapping, urban planning, change detection, and the integration of multi-source geospatial
data for urban functional studies [53].

7. Conclusions

This study introduces the HTC model for building extraction from remote sensing
imagery and evaluates its effectiveness and robustness on three challenging building ex-
traction datasets. Experimental results demonstrate that the proposed model outperforms
existing techniques with higher accuracy and more precise contours. Moreover, the research
highlights the positive impact of incorporating global semantic information on efficient
and accurate extraction of building targets in remote sensing imagery. Additionally, by con-
sidering the inherent characteristics of building targets in remote sensing imagery, the HTC
model produces building maps that are more readily applicable.

Finally, through an experimental analysis, we conclude that appropriately increasing
the detector’s IoU threshold can improve the detection accuracy of building extraction in
remote sensing imagery to a certain extent. In summary, our proposed method holds great
potential for applications in map-making, urban planning, intelligent urban transportation,
geological exploration, urban life quality assessment and beyond. However, alongside
these advantages, it is important to address the limitations of large parameter counts and
the relatively slow training speed in HTC models, which warrants further investigation in
future studies. Our future work will focus on continuing to improve detection accuracy,
while reducing time costs and obtaining regular and smooth contours.
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