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Abstract: Accurate quantification of ecosystem water use efficiency (eWUE) over agroecosystems is
crucial for managing water resources and assuring food security. Currently, the uncoupled Moderate
Resolution Imaging Spectroradiometer (MODIS) product is the most widely applied dataset for
simulating local, regional, and global eWUE across different plant functional types. However, it
has been rarely investigated as to whether the coupled product can outperform the uncoupled
product in eWUE estimations for specific C4 and C3 crop species. Here, the eWUE as well as gross
primary production (GPP) and evapotranspiration (ET) from the uncoupled MODIS product and the
coupled Penman–Monteith–Leuning version 2 (PMLv2) product were evaluated against the in-situ
observations on eight-day and annual scales (containing 1902 eight-day and 61 annual samples) for
C4 maize and C3 soybean at the five cropland sites from the FLUXNET2015 and AmeriFlux datasets.
Our results show the following: (1) For GPP estimates, the PMLv2 product showed paramount
improvements for C4 maize and slight improvements for C3 soybean, relative to the MODIS product.
(2) For ET estimates, both products performed similarly for both crop species. (3) For eWUE estimates,
the coupled PMLv2 product achieved higher-accuracy eWUE estimates than the uncoupled MODIS
product at both eight-day and annual scales. Taking the result at an eight-day scale for example,
compared to the MODIS product, the PMLv2 product could reduce the root mean square error (RMSE)
from 2.14 g C Kg−1 H2O to 1.36 g C Kg−1 H2O and increase the coefficient of determination (R2) from
0.06 to 0.52 for C4 maize, as well as reduce the RMSE from 1.33 g C Kg−1 H2O to 0.89 g C Kg−1 H2O
and increase the R2 from 0.05 to 0.49 for C3 soybean. (4) Despite the outperformance of the PMLv2
product in eWUE estimations, both two products failed to differentiate C4 and C3 crop species in
their model calibration and validation processes, leading to a certain degree of uncertainties in eWUE
estimates. Our study not only provides an important reference for applying remote sensing products
to derive reliable eWUE estimates over cropland but also indicates the future modification of the
current remote sensing models for C4 and C3 crop species.

Keywords: ecosystem water use efficiency; cropland; remote sensing; PMLv2; MODIS

1. Introduction

Ecosystem water use efficiency (eWUE), the ratio of gross primary production (GPP,
the total amount of carbon fixation by vegetation through photosynthesis) and evapotran-
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spiration (ET, the sum of evaporation from soil and transpiration through plant leaves), is a
critical indicator connecting the terrestrial carbon and water cycles and reflecting multiple
ecosystem functions [1,2]. Cultivated cropland accounts for approximately 12% of the
Earth’s non-ice-covered land surface and provides indispensable survival supplements
(e.g., food and fiber) for human beings [3,4]. Accurate quantification of eWUE over agroe-
cosystems is therefore pivotal for the management of water resources and assurance of
food security.

The satellite-based remote sensing (RS) technique has been recognized as the most
practical and feasible means to derive the long-term eWUE at a global scale. With the
aid of the RS technique, plenty of eWUE-related research obtained the eWUE at local,
regional, and global scales through the free combination of various RS-based GPP and
ET products. Essentially, the contemporary GPP and ET products can be categorized into
(1) the uncoupled products (e.g., the Moderate Resolution Imaging Spectroradiometer
(MODIS) [5], Vegetation Photosynthesis Model (VPM) [6], SatelLite Only Photosynthe-
sis Estimation (SLOPE) [7], FLUXCOM [8] products for GPP estimates, the MODIS [9],
Global Land Evaporation Amsterdam Model (GLEAM) [10], Global LAnd Surface Satellite
(GLASS) [11], and FLUXCOM [12] products for ET estimates) and (2) the coupled products
(e.g., the Penman–Monteith–Leuning version 2 (PMLv2) [13], Boreal Ecosystem Produc-
tivity Simulator (BEPS) [14], and Breathing Earth System Simulator (BESS) [15] products
for both GPP and ET estimates). The uncoupled products commonly treat vegetation
photosynthesis and transpiration as two independent processes and simulate GPP and
ET based on various individual algorithms (e.g., the light use efficiency model for GPP
estimation and the Penman–Monteith equation for ET estimation). However, the photosyn-
thesis and transpiration of vegetation are intrinsically coupled because the stomata on the
surface of plant leaves can simultaneously regulate the exchange of water and carbon in the
vegetation–atmosphere interface. Over the past decades, relying on the assumption that the
stomatal conductance is positively and linearly correlated with the carbon assimilation rate,
mounting stomatal conductance models have been developed, such as the Ball–Berry [16],
Ball–Berry–Leuning [17], optimality-based unified stomatal optimization [18], and best-
fitted [19] models. Using these stomatal conductance models, the coupled products can
couple the estimation of vegetation photosynthesis and transpiration and simulate GPP
and ET collectively.

Previous findings revealed that the coupled products outperformed the uncoupled
products in both GPP and ET estimations [13,15]. However, the evaluation of eWUE
is much more complicated than that of individual GPP or ET, mainly because the error
in GPP and ET estimates could be offset or expanded to some extent in the ultimate
eWUE estimates (for example, the underestimation of both GPP and ET may lead to an
unbiased estimate of eWUE) [2]. Therefore, it is imperative to assess the performance
of the coupled and uncoupled products in eWUE estimations. Moreover, the coupled
products (i.e., PMLv2 and BESS) have been proven to achieve better results in eight-day
and annual eWUE estimations than the uncoupled products (e.g., MODIS) for different
plant functional types (PFTs) [2,13]. However, these studies mainly focused on a PFT level,
and few evaluations of the performance of the coupled and uncoupled products in eWUE
estimations were conducted at a species level (i.e., C4 and C3). Relative to C3 plants, C4
plants are more adaptable to the conditions of high light intensity, high temperature, and
low water supplements [20]. On the one hand, C4 plants have more active photosynthesis
efficiency and potential production than C3 plants. On the other hand, C4 plants commonly
consume less water (through transpiration) when they fix the same amount of carbon
dioxide (CO2) as C3 plants. Overall, C4 plants commonly reach a higher eWUE than
C3 plants to better survive under a harsh environment. Whereas now, the knowledge
on whether the coupled product can better monitor the different magnitudes of eWUE
between C4 and C3 than the uncoupled product is still relatively limited and should be
drawn more attention.
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The overarching goal of this study was to explore whether the coupled product can
outperform the uncoupled product in eWUE estimations for specific C4 and C3 species.
To this end, this study applied the widely used coupled PMLv2 and uncoupled MODIS
products (both providing GPP and ET estimates with a 500 m spatial resolution and an
eight-day temporal resolution) to calculate eWUE. Subsequently, the eWUE as well as
GPP and ET from the two products were validated against the observed eWUE at the five
cropland sites planted with two major crop species (namely, C4 maize and C3 soybean)
from the FLUXNET2015 dataset and AmeriFlux dataset. This study is expected to provide
important information on (1) which remote sensing product is more effective for deriving
higher-accuracy eWUE for C4 and C3 crop species, and (2) how to further improve the
MODIS and PMLv2 products for GPP, ET, and eWUE estimates.

2. Data and Methods
2.1. In-Situ Data

The daily observed GPP and ET data collected from the US-Ne1, US-Ne2, US-Ne3,
US-Ro1, and US-Ro5 sites from the FLUXNET2015 dataset (http://fluxnet.fluxdata.org/,
accessed on 7 October 2023) and AmeriFlux dataset (https://ameriflux.lbl.gov/, accessed
on 7 October 2023), which were planted with C4 maize and C3 soybean, were used for eval-
uating the GPP, ET, and eWUE estimates from the coupled PMLv2 and uncoupled MODIS
products. The sites were selected by the following criteria: (1) the sites planted by C4 maize
or C3 soybean or maize–soybean rotation, and (2) the land cover type extracted from the
MODIS Land Cover Type Yearly L3 Global 500m product (MCD12Q1) corresponding to
the site is croplands, which will affect the coefficients for estimating ET and GPP as well
as eWUE. Please see Table 1 and Figure 1 for a detailed description of these five cropland
sites. The daily daytime partitioning method-based GPP (termed ‘GPP_DT_VUT_REF’)
and daily gap-filled ET using the Marginal Distribution Sampling (MDS) method (termed
‘LE_F_MDS’) were chosen for analysis. The provided daily quality control (QC) flag for
observed GPP and ET (termed ‘NEE_VUT_REF_QC’ and ‘LE_F_MDS_QC’, respectively)
was used to eliminate the poor-quality in-situ observations. Specifically, the daily GPP and
ET were summed up to an eight-day scale, and the daily QC flag for observed GPP and ET
(ranging from 0 to 1; the higher QC flag represents that the quality of daily observed GPP
and ET data is higher) in every 8 days was averaged. Only the eight-day observed GPP
and ET with eight-day average QC flags higher than 0.75 were collected for evaluating the
eight-day GPP, ET, and eWUE from the RS products to avoid the uncertainty that might be
introduced by the inaccurate in-situ observation as much as possible.

Table 1. Description of the five cropland sites selected in this study.

Site ID Site Name Longitude Latitude Elevation Time Maize Year Soybean Year Dataset

US-Ne1
Mead—irrigated

continuous
maize site

−96.4766 41.1651 361 m 2001–2020 2001–2020 − AmeriFlux

US-Ne2
Mead—irrigated
maize–soybean

rotation site
−96.4701 41.1649 362 m 2001–2012

2001, 2003,
2005, 2007,
2009, 2010,
2011, 2012

2002, 2004,
2006, 2008 FLUXNET

US-Ne3
Mead—rainfed
maize–soybean

rotation site
−96.4397 41.1797 363 m 2001–2012

2001, 2003,
2005, 2007,
2009, 2011

2002, 2004,
2006, 2008,
2010, 2012

FLUXNET

US-Ro1 Rosemount-G21 −93.0898 44.7143 290 m 2004–2016
2005, 2007,
2009, 2011,
2013, 2015

2004, 2006,
2008, 2010,
2012, 2014,

2016

AmeriFlux

US-Ro5 Rosemount-G19 −93.0576 44.6910 283 m 2017–2020 2018, 2020 2017, 2019 AmeriFlux

http://fluxnet.fluxdata.org/
https://ameriflux.lbl.gov/
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Figure 1. Satellite images over a grid area of 500 m × 500 m centered at five cropland sites accessed 
through Google Maps. 

2.2. Uncoupled MODIS GPP and ET Products 
The MOD17A2 GPP and MOD16A2 ET products with an eight-day temporal resolu-
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MOD17 GPP product relies on the light use efficiency (LUE) scheme (namely, the MOD17 
model), which regards the GPP as the product of the photosynthetically active radiation 
(PAR), the fraction of photosynthetically active radiation (FPAR), the maximum LUE, and 
the environmental scalars [21]. Specifically, the PAR is calculated from the income 
shortwave radiation provided by the National Center for Environmental Prediction—De-
partment of Energy (NCEP-DOE) Reanalysis II meteorology dataset; the FPAR is directly 
adopted from the MOD15A2 LAI/FPAR product; the maximum LUE is derived from a 
PFT-dependent look-up table; and the environmental scalars (representing the hydrolog-
ical and thermal stresses on photosynthesis efficiency) are calculated by two piecewise 
linear functions of the vapor pressure deficit (VPD) and air temperature (Ta), respectively. 
Moreover, the MCD12Q1 land cover type product is used to identify the PFT of each pixel.  

Figure 1. Satellite images over a grid area of 500 m × 500 m centered at five cropland sites accessed
through Google Maps.

2.2. Uncoupled MODIS GPP and ET Products

The MOD17A2 GPP and MOD16A2 ET products with an eight-day temporal resolution
and a 500 m spatial resolution were downloaded from Level-1 and the Atmosphere Archive
and Distribution System Distributed Active Archive Center (LAADS DAAC) (https://
ladsweb.modaps.eosdis.nasa.gov/search/order, accessed on 7 October 2023). The MOD17
GPP product relies on the light use efficiency (LUE) scheme (namely, the MOD17 model),
which regards the GPP as the product of the photosynthetically active radiation (PAR),
the fraction of photosynthetically active radiation (FPAR), the maximum LUE, and the
environmental scalars [21]. Specifically, the PAR is calculated from the income shortwave
radiation provided by the National Center for Environmental Prediction—Department of
Energy (NCEP-DOE) Reanalysis II meteorology dataset; the FPAR is directly adopted from
the MOD15A2 LAI/FPAR product; the maximum LUE is derived from a PFT-dependent
look-up table; and the environmental scalars (representing the hydrological and thermal
stresses on photosynthesis efficiency) are calculated by two piecewise linear functions of
the vapor pressure deficit (VPD) and air temperature (Ta), respectively. Moreover, the
MCD12Q1 land cover type product is used to identify the PFT of each pixel.

The MOD16 ET product is generated by the improved ET algorithm [9] over the
previous algorithm [22] based on the Penman–Monteith equation (namely, the MOD16
model). Modified from the Penman equation that assumes ET is controlled by the dry-
ing power of the atmosphere (i.e., VPD and wind speed) and the available energy [23],
the Penman–Monteith equation further considers the surface control on evaporation and

https://ladsweb.modaps.eosdis.nasa.gov/search/order
https://ladsweb.modaps.eosdis.nasa.gov/search/order
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transpiration by using surface conductance and introducing mechanism-based aerody-
namic conductance, which is contingent upon wind speed, surface roughness, vegetation
height, and atmospheric stability [24]. In the MOD16 model, daily ET is the sum of ET
from daytime and nighttime, where daytime is determined by downward solar radiation
being above 0. During the daytime, stomatal conductance is assumed to be controlled
by vapor pressure deficit and daily minimum air temperature. During the nighttime, the
stomata are assumed to be completely closed, leading to zero plant transpiration through
the stomata. However, transpiration through the leaf boundary layer and leaf cuticles
still occurs. Meanwhile, ET comprises evaporation from wet and moist soil, evaporation
from the rainwater intercepted by the canopy, and transpiration through stomata on plant
leaves and stems. Canopy conductance for plant transpiration is calculated by using LAI
from the combination of MOD15A2H and MCD15A2HCL to scale stomatal conductance
up to canopy level, which assumes that leaf area and FPAR do not vary during a given
eight-day period. The Global Modeling and Assimilation Office (GMAO) meteorological
forcing dataset is used to drive the MOD16 model, including average and minimum air
temperature, incident PAR, and specific humidity.

2.3. Coupled PMLv2 GPP and ET Products

The PMLv2 GPP and ET products with an eight-day temporal resolution and a 500 m
spatial resolution were downloaded from the Google Earth Engine (https://developers.
google.com/earth-engine/datasets/catalog/CAS_IGSNRR_PMLV2_v017, accessed on
7 October 2023). The PMLv2 product adopts a coupled diagnostic biophysical model
to simultaneously estimate GPP and ET (namely, the PMLv2 model). More specifically, a
rectangular hyperbola function (for GPP estimation) and the Penman–Monteith equation
(for plant transpiration estimation) are connected by a biophysical canopy conductance
model [13]. Meanwhile, the Priestley–Taylor equation incorporating a soil evaporation
coefficient controlled by precipitation and equilibrium evaporation is employed for esti-
mating soil evaporation, and a revised Gash model is employed for estimating canopy
interception. The leaf area index, albedo, and emissivity from the MODIS products and the
daily maximum, minimum, and mean air temperature; atmosphere pressure; wind speed;
specific humidity; precipitation; and incoming shortwave and longwave solar radiation
from the Global Land Data Assimilation System (GLDAS) meteorological forcing dataset is
used to drive the PMLv2 model. Readers can refer to the original algorithm articles for the
description of the PMLv2 model [25,26].

2.4. Calculation of eWUE

In this study, the eWUE was calculated as follows:

eWUE =
GPP
ET

(1)

where the GPP and ET are derived from the in-situ observation, the extracted collocated
uncoupled MODIS product, and the extracted collocated coupled PMLv2 product. This
study evaluated the accuracy of eWUE from the two RS products on both eight-day and
annual scales. On an eight-day scale, the eWUE was calculated by following two criteria:
(1) only the data with both ET > 1 mm 8d−1 and GPP > 1 g C m−2 8d−1 are used, and
(2) only the WUE values smaller than 10 g C Kg−1 H2O are used [2]. On an annual scale,
all eight-day GPP and ET were first summed into annual data, and the annual GPP and ET
were then used to calculate annual eWUE.

2.5. Evaluation Criteria

Three criteria were employed to evaluate the accuracy of the GPP, ET, and eWUE
from the coupled PMLv2 and uncoupled MODIS products against the in-situ observation,

https://developers.google.com/earth-engine/datasets/catalog/CAS_IGSNRR_PMLV2_v017
https://developers.google.com/earth-engine/datasets/catalog/CAS_IGSNRR_PMLV2_v017
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including the root mean square error (RMSE), the coefficient of determination (R2), and the
average absolute errors (Bias). They are calculated as follows:

RMSE =

√
1
N ∑N

i=1(Varsim(i)− VarEC(i))
2 (2)

R2 =

 ∑N
i=1
(
VarEC(i)− VarEC

)(
Varsim(i)− Varsim

)√
∑N

i=1
(
VarEC(i)− VarEC

)2
√

∑N
i=1
(
Varsim(i)− Varsim

)2

2

(3)

Bias =

N
∑

i=1
(Varsim(i)− VarEC(i))

N
(4)

where Var represents the variables of GPP, ET, or eWUE; subscript sim represents the GPP,
ET, or eWUE estimates from the coupled PMLv2 and uncoupled MODIS products; subscript
EC represents the GPP, ET, or eWUE observed by the eddy covariance system; i represents
the ith eight-day data; N represents the sample number; and the over-bar represents the
mean value.

3. Results
3.1. Accuracy of Eight-Day GPP and ET

Figure 2 shows the comparison of the eight-day observed GPP and RS-based GPP from
the PMLv2 and MOD17 products for C4 maize and C3 soybean at the five cropland sites.
For maize, the PMLv2 product could achieve paramount improvements over the MOD17
product in simulating GPP, as indicated by the RMSE reducing from 49.29 g C m−2 8d−1

to 31.68 g C m−2 8d−1, the R2 increasing from 0.72 to 0.86, and the Bias decreasing from
−18.88 g C m−2 8d−1 to −6.05 g C m−2 8d−1. It is noteworthy that the PMLv2 product
and the MOD17 product both displayed obvious underestimations of medium and high
observed GPP and slight overestimations of low observed GPP. These underestimations of
medium and high observed GPP found in the MOD17 product could be partially alleviated
by the PMLv2 product; however, it is still noticeable. For soybean, the PMLv2 product
(with the RMSE = 17.32 g C m−2 8d−1, R2 = 0.81, and Bias = 8.45 g C m−2 8d−1) also
outperformed the MOD17 product (with the RMSE = 22.23 g C m−2 8d−1, R2 = 0.62, and
Bias = −1.13 g C m−2 8d−1) in reproducing observed GPP. Similar to the result for maize,
the MOD17 product still seriously underestimated the medium and high observed GPP
and slightly overestimated the low observed GPP for soybean. By contrast, the PMLv2
product presented an overall overestimation of observed GPP.

Figure 3 shows the comparison of the eight-day observed ET and RS-based ET from
the PMLv2 and MOD16 products for C4 maize and C3 soybean at the five cropland sites.
Overall, the PMLv2 product exhibited similar performances to the MOD16 product for
maize and soybean. Moreover, the PMLv2 and MOD16 products tended to overestimate
and underestimate the observed ET for both maize and soybean, respectively. For maize,
the PMLv2 product showed a decreased RMSE of 1.05 mm 8d−1, an increased R2 of 0.05,
and a decreased absolute Bias of 1.20 mm 8d−1 in comparison to the MOD16 product. For
soybean, these two products showed negligible disparities in ET estimations.
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3.2. Time Series of Eight-Day GPP and ET

Figure 4 shows the time series of the eight-day observed GPP and RS-based GPP from
the PMLv2 and MOD17 products at five cropland sites. Overall, both the PMLv2 and MOD17
products could effectively capture the seasonal variation of observed GPP. Not surprisingly,
C4 maize (with a mean of annual maximum observed GPP of 192.93 ± 14.80 g C m−2 8d−1

(mean ± standard deviation)) showed higher photosynthesis capacity than C3 soybean
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(with a mean of annual maximum observed GPP of 116.14 ± 16.66 g C m−2 8d−1). However,
both the PMLv2 and MOD17 products cannot reflect the distinct photosynthesis capacity
between C4 and C3 species, where the means of annual maximum GPP from the PMLv2 and
MOD17 products for maize (105.98 ± 13.42 g C m−2 8d−1 and 56.74 ± 7.61 g C m−2 8d−1,
respectively) were consistent with those for soybean (92.95 ± 16.28 g C m−2 8d−1 and
53.24 ± 10.56 g C m−2 8d−1, respectively). Even worse, in most cases, the severe underesti-
mations for soybean from both the PMLv2 and MOD17 products and the severe underes-
timations for maize from the PMLv2 product were observed during the peak of growing
seasons, while the underestimations for soybean from the PMLv2 product were insignifi-
cant. In addition, these underestimations of observed GPP from the MOD17 product were
more remarkable than those from the PMLv2 product.
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Figure 5 shows the time series of the eight-day observed ET and RS-based ET from
the PMLv2 and MOD16 products at the five cropland sites. Overall, both the PMLv2 and
MOD16 products also effectively captured the seasonal variation of the observed ET and
showed no systematic underestimations or overestimations of observed ET. Unlike the
results for GPP, there were marginal differences in the magnitude of observed ET between
C4 maize (with a mean of annual maximum observed ET of 45.15 ± 5.64 mm 8d−1) and
C3 soybean (with a mean of annual maximum observed ET of 42.23 ± 5.11 mm 8d−1).
The PMLv2 and MOD16 products provided relatively consistent ET estimates at all five
sites. Additionally, the main disparity between the PMLv2 and MOD16 products was
that the PMLv2 product tended to generate higher ET estimates than the MOD16 product
at the green-up stage (the period that GPP and ET continuously increased during each
growing season) at some growing seasons, while both two products generated consistent ET
estimates during the senescence stage (the period that GPP and ET continuously decreased
during each growing season).
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3.3. Performance of the PMLv2 and MODIS Products in eWUE Estimations

Figure 6 shows the comparison of the eight-day observed eWUE and RS-based eWUE
from the PMLv2 and MODIS products for C4 maize and C3 soybean at the five cropland
sites. Overall, the PMLv2 product was able to achieve higher-accuracy eWUE estimates in
contrast to the MODIS product, as indicated by the RMSE reducing from 2.14 g C Kg−1

H2O to 1.36 g C Kg−1 H2O and the R2 increasing from 0.06 to 0.52 for maize, with the
RMSE reducing from 1.33 g C Kg−1 H2O to 0.89 g C Kg−1 H2O and the R2 increasing
from 0.05 to 0.49 for soybean. Moreover, the MODIS product exhibited considerable
underestimations and overestimations of high and low observed eWUE for both maize
and soybean, respectively. By contrast, the PMLv2 product greatly reduced these above-
mentioned biases found in the MODIS product but still showed moderate underestimations
of high observed eWUE for maize and slight overestimations of low observed eWUE for
both maize and soybean.
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Figure 6. Scatter plots of the eight-day observed eWUE and RS-based eWUE from the PMLv2 and
MODIS products for C4 maize and C3 soybean at the five cropland sites. The PMLv2 eWUE was
calculated as the ratio of GPP and ET from the PMLv2 product. The MODIS eWUE was calculated as
the ratio of GPP from the MOD17 product and ET from the MOD16 product.

Figure 7 shows the time series of the eight-day observed eWUE and RS-based eWUE
from the PMLv2 and MODIS products at the five cropland sites. Overall, the eWUE
calculated from the MODIS product was commonly much lower than the observed eWUE
during the peak of growing seasons and much higher than the observed eWUE during
the start and end of growing seasons for both maize and soybean. By contrast, the PMLv2
product overall better captured the seasonal variation of observed eWUE compared to the
MODIS product. In particular, the eWUE calculated from the PMLv2 product was generally
moderately lower than the observed eWUE for maize and was consistent with the observed
eWUE for soybean during the peak of growing seasons. Moreover, the eWUE calculated
from the PMLv2 product tended to be slightly higher than the observed eWUE for both
maize and soybean during the start and end of growing seasons (e.g., the year 2002 at the
US-Ne1 and US-Ne2 sites).
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Figure 7. Time series of the eight-day observed eWUE and RS-based eWUE from the PMLv2 and
MODIS products at the five cropland sites. The PMLv2 eWUE was calculated as the ratio of GPP
and ET from the PMLv2 product. The MODIS eWUE was calculated as the ratio of GPP from the
MOD17 product and ET from the MOD16 product. The years with white backgrounds represent that
C4 maize was planted this year. The years with grey backgrounds represent that C3 soybean was
planted this year.

Figure 8 shows the comparison of the annual observed GPP, ET, and eWUE and RS-
based GPP, ET, and eWUE from the PMLv2 and MODIS products for C4 maize and C3 soy-
bean at the five cropland sites. Overall, the PMLv2 annual GPP, ET, and eWUE performed
better than the MODIS annual GPP, ET, and eWUE with lower Bias and RMSE, and higher
R2. For GPP and ET estimations, the PMLv2 product with a Bias of −256.3 g C m−2 year−1

and 26.1 mm year−1 and an RMSE of 332.57 g C m−2 year−1 and 76.65 mm year−1 for maize
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performed better than that with a Bias of 365.36 g C m−2 year−1 and 72.58 mm year−1 and
an RMSE of 396.87 g C m−2 year−1 and 82.53 mm year−1 for soybean, respectively. For
eWUE estimations, the PMLv2 product for soybean with a Bias of 0.43 g C Kg−1 H2O and
an RMSE of 0.52 g C Kg−1 H2O outperformed that for maize with a Bias of −0.55 g C Kg−1

H2O and an RMSE of 0.71 g C Kg−1 H2O. However, the MODIS product for soybean
produced better estimates than that for maize for all the GPP, ET, and eWUE at an an-
nual scale, as indicated by the RMSE and Bias reducing from 834.74 g C m−2 year−1 and
−799.7 g C m−2 year−1, 126.80 mm year−1 and −76.97 mm year−1, 1.30 g C Kg−1 H2O
and −1.18 g C Kg−1 H2O for soybean to 195.85 g C m−2 year−1 and −48.7 g C m−2 year−1,
83.31 mm year−1 and −34.07 mm year−1, 0.29 g C Kg−1 H2O and 0 g C Kg−1 H2O for
maize, respectively.
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Figure 8. Scatter plots of the annual observed and RS-based GPP, ET, and eWUE at the five cropland
sites from the PMLv2 products (left) and MODIS products (right) for C4 maize and C3 soybean. The
PMLv2 eWUE was calculated as the ratio of GPP and ET from the PMLv2 product. The MODIS
eWUE was calculated as the ratio of GPP from the MOD17 product and ET from the MOD16 product.
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4. Discussion
4.1. Uncertainty of RS-Based GPP, ET, and eWUE Estimations

Undoubtedly, the accuracy of RS-based eWUE is tightly related to the performance
of individual GPP and ET products. Overall, the PMLv2 product could provide higher-
accuracy GPP estimates than the MOD17 product for maize and soybean. From the
perspective of model structure, the MOD17 and PMLv2 products adopt the LUE model
and the light response curve (i.e., the rectangular hyperbola function), respectively, which
are established on different theoretical bases. The LUE model, which assumes the GPP is
equal to the product of APAR and LUE, has the advantage of ease of use and few model
inputs/parameters [3]. However, some limitations in the LUE model still exist. First, the
LUE scheme lacks a solid mechanism explanation in comparison to the process-based model.
Second, no consensus has been reached on which formulas of FPAR and environmental
scalar are the most effective in the LUE scheme. Third, different environmental stress
factors may have interactions among themselves [27]. The abovementioned issues can
reduce the accuracy of the LUE model. In addition, the light response curve, which reveals a
rectangular hyperbola function between light saturation and photosynthesis [28], has been
recognized as one of the reliable methods to partition GPP from net ecosystem exchange
(NEE) and simulate GPP [25,29–31]. Despite the better performance of the PMLv2 product
than the MOD17 product, neither model exhibited sufficiently satisfying accuracy in GPP
estimation over cropland, which could further introduce large errors in eWUE estimation.
One common weakness of the PMLv2 and MOD17 products is that both two products
cannot accurately reflect the distinct photosynthesis capacity between C4 and C3 crop
species (see Figure 2), primarily because both two products fail to differentiate C4 and
C3 crop species in their model calibration and validation processes [5,13]. In reality, the
carbon assimilation capacity of different crop species (C4 vs. C3) varies largely. A previous
manuscript found that the calibrated maximum LUE of C4 maize was significantly larger
than that of C3 soybean in the MOD17 model [4]. Moreover, another study revealed that the
best-fitted maximum LUE of C4 maize was 1.69–2.63 times higher than that of six other C3
crop species (namely, potato, winter wheat, rape, paddy rice, soybean, and winter barley) in
the MOD17 model [32]. However, the current MOD17 model simply assumes that C4 and
C3 crop species have the same maximum LUE [5] and thus cannot well monitor the different
magnitudes of GPP between C4 maize and C3 soybean. A similar issue can be also found in
the PMLv2 product. Moreover, the MOD17 product severely underestimated the observed
GPP during the peak of growing seasons for both maize and soybean (see Figure 4), which
is consistent with the previous findings [4,33,34]. These biases in the MOD17 product
predominantly stem from the underestimation of the maximum LUE, which is obtained
from a simple Biome-specified Parameters Look-Up Table (BPLUT). A recent study applied
the Bayesian inference in conjunction with the Markov chain Monte Carlo approach to
re-calibrate the free parameter (including but not limited to the maximum LUE) in the
MOD17 model at globally distributed flux sites and further substantiated that the updated
BPLUT could benefit the performance of the MOD17 model [33]. In addition, one possible
explanation for the better performance of the PMLv2 product for C3 soybean than C4 maize
is that the most of the in-situ data at 11 cropland sites used for the model calibration were
collected for C3 species, and therefore the PMLv2 product may achieve an overall high
retrieval accuracy as much as possible.

In comparison to the result of GPP estimation, the PMLv2 and MOD16 products
showed more consistent accuracy of ET estimates, whereas the PMLv2 only slightly out-
performed the MOD16 product (see Figure 3). Their almost consistent performance in ET
estimations could be attributed to the fact that two products calculate ET based on the
Penman–Monteith algorithm logic. However, the PMLv2 and MOD16 products systemati-
cally overestimated and underestimated the observed ET, respectively. One possible reason
may be that the two products use different meteorological datasets to drive the model. Take
the MOD16 product for example, the MOD16 product using the GMAO meteorological
inputs shows a more significant underestimation of observed ET than that using tower-
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based meteorological inputs [9]. The VPD from the GMAO meteorological data (with a
coarse spatial resolution) may inadequately monitor water stress over smaller subregions,
leading to uncertainty in the MOD16 product [35]. In addition, some previous studies
attributed the general underestimation of ET in Continental U.S. (CONUS) croplands from
the MOD16 product to model parameterization uncertainty [36,37]. Re-calibrating the
model parameters according to C3 and C4 crop species could enhance the accuracy of the
MOD16 algorithm in CONUS croplands [38]. Note that all these problematic issues in the
MOD16 product may also occur in the PMLv2 product in ET estimation.

The PMLv2 product has been proven to outperform the MODIS product in eight-
day eWUE estimations for both C4 maize and C3 soybean (see Figure 6). The MODIS
product commonly exhibited noticeable overestimations and underestimations under low
and high observed eWUE for both maize and soybean, respectively. During the peak of
growing seasons (characterized by high observed eWUE), both the MOD17 and MOD16
products underestimated observed GPP and ET, respectively; however, the degree of
underestimations of the observed GPP was larger than that of the observed ET. Therefore,
the eWUE calculated from the MODIS product was still lower than the observed eWUE.
During the start and end of growing seasons (characterized by low observed eWUE), the
MOD17 and MOD16 products overestimated and underestimated observed GPP and ET,
respectively, thus leading to the overestimations of observed eWUE. By contrast, the PMLv2
product achieved significantly more satisfactory performance in eWUE estimations and
only slightly underestimated the observed eWUE during the peak of growing seasons
for maize and slightly overestimated the observed eWUE during the start and end of
growing seasons for both maize and soybean. The underestimations of observed eWUE for
maize mainly stem from the underestimation of GPP from the PMLv2 product, which has
been discussed above. The slight overestimations of observed eWUE for soybean can be
explained by that the overestimations of GPP were more pronounced than that of ET and
the small value of ET.

4.2. Implications and Future Work

This study first evaluated the performance of the coupled PMLv2 and uncoupled
MODIS products in the eight-day and annual GPP, ET, and eWUE estimations for C4 maize
and C3 soybean and subsequently analyzed the uncertainty in the RS-based GPP, ET, and
eWUE estimates. To acquire high-accuracy eWUE based on the widely used RS-based GPP
and ET products over cropland, some modifications for the RS-based products should be
implemented to eliminate those systematic biases of eWUE: (1) the PMLv2 and MODIS
products are expected to separately calibrate the model free parameter over cropland
by differentiating C4 and C3 crop species to better reflect their different photosynthesis
and transpiration; (2) the MOD17 product should be re-parameterized to eliminate the
severe systematic underestimations of observed GPP; and (3) both two products should be
calibrated and validated at more cropland sites to enhance their feasibility.

The coupled product can effectively avoid internal inconsistencies between ET and
GPP from the uncoupled product and therefore could provide higher-accuracy eWUE
estimates [13]. Over the years, a large amount of eWUE-related research (e.g., the spatial
and temporal variation of eWUE, the response of eWUE to drought and natural and human
activities, and the driver of eWUE changes [1,39–48]) has been conducted for various PFTs
(including but not limited to cropland); however, most of these studies calculated eWUE
based on the MODIS product, whose accuracy is strongly queried by this study as well as
previous studies [2,13,49]. This study indicates that the coupled product is more suitable
and effective to be applied in the eWUE-related research for different crop species to reduce
the uncertainty from the inaccurate RS-based eWUE estimates from the uncoupled products.
In future work, more coupled products (e.g., BESS and BEPS) and those high-accuracy
uncoupled products (e.g., GLASS and FLUXCOM) could be further validated for more
various crop species (e.g., barley, rape, and wheat) to explore the best combination of GPP
and ET products for eWUE estimations. Note that some uncertainties may be caused by
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the imperfect match between 500 m remote sensing pixels and in-situ observations. For the
sites with homogeneous landscapes (such as the US-Ne1, US-Ne2, and US-Ne3 sites, please
see Figure 1), the in-situ observations could be treated as the relative truth to validate the
remote sensing data collected at the collocated pixels, and the evaluation is more reliable.
However, for the sites with less homogeneous landscapes (such as the US-Ro1 and US-Ro5
sites), the mismatch issue may not be negligible and reduce the reliability of the evaluation.
Take the US-Ro5 site for example, a few trees that fall within 500 m of the site may lead
to a certain degree of errors in eWUE estimates from the MODIS and PMLv2 products,
since the remote sensing products treat the underlying surface of the 500 m pixel as the
homogeneous cropland. However, it is difficult to quantitatively explore the uncertainty
without a specific and sophisticated C4 and C3 species map. In future work, more attempts
should be implemented to address this issue.

5. Summary and Conclusions

This study evaluated the eight-day and annual GPP, ET, and eWUE from the uncou-
pled MODIS product and the coupled PMLv2 product against the in-situ observations for
C4 maize and C3 soybean at five cropland sites from the FLUXNET2015 and AmeriFlux
datasets. The main conclusion of this study can be drawn as follows: (1) For GPP estimates,
the PMLv2 product showed paramount improvements for C4 maize and slight improve-
ments for C3 soybean, relative to the MODIS product. (2) For ET estimates, the PMLv2
product exhibited similar performances to the MOD16 product for C4 maize and C3 soy-
bean. (3) For eWUE estimates, the coupled PMLv2 product could achieve higher-accuracy
eWUE estimates than the uncoupled MODIS product at both eight-day and annual scales.
Taking the result at an eight-day scale for example, compared to the MODIS product,
the PMLv2 product could reduce the RMSE from 2.14 g C Kg−1 H2O to 1.36 g C Kg−1

H2O and increase the R2 from 0.06 to 0.52 for C4 maize, as well as reduce the RMSE from
1.33 g C Kg−1 H2O to 0.89 g C Kg−1 H2O and increase the R2 from 0.05 to 0.49 for C3
soybean. (4) Despite the outperformance of the PMLv2 product, both two products failed
to differentiate C4 and C3 crop species in their model calibration and validation processes,
leading to a certain degree of uncertainties in eWUE estimates.
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