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Abstract: Arbitrary-oriented object detection (AOOD) is a crucial task in aerial image analysis but
is also faced with significant challenges. In current AOOD detectors, commonly used multi-scale
feature fusion modules fall short in spatial and semantic information complement between scales.
Additionally, fixed feature extraction structures are usually used following a fusion model, resulting
in the inability of detectors to self-adjust. At the same time, feature fusion and extraction modules
are designed in isolation and the internal synergy between them is ignored. The above problems
result in feature representation deficiency, thus affecting the overall detection precision. To solve
these problems, we first create a fine-grained feature pyramid network (FG-FPN) that not only
provides richer spatial and semantic features, but also completes neighbor scale features in a self-
learning mode. Subsequently, we propose a novel feature enhancement module (FEM) to fit FG-FPN.
FEM authorizes the detection unit to automatically adjust the sensing area and adaptively suppress
background interference, thereby generating stronger feature representations. Our proposed solution
was tested through extensive experiments on challenging datasets, including DOTA (77.44% mAP),
HRSC2016 (97.82% mAP), UCAS-AOD (91.34% mAP), as well as ICDAR2015 (86.27% F-score) and its
effectiveness and high applicability are verified on all the above datasets.

Keywords: deep learning; object detection; remote sensing; feature representation enhancement

1. Introduction

As a fundamental task in remote sensing image understanding, arbitrary-oriented-
object-detection (AOOD) is attracting the attention of researchers more and more. At the
same time, with the rapid development of convolutional neural network (CNN)-based
methods [1–5], many outstanding AOOD detectors stand out [6–12]. However, different
from object detection in natural images, AOOD is more challenging mainly due to the
following two reasons:

1. Objects in remote sensing images tend to have random orientation and larger aspect
ratios, which increase the feature representation complexity of detectors.

2. Remote sensing images, due to their wide imaging range, contain complex and diverse
ground objects and scenes, resulting in increased interference targets and features.
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However, the existing design of AOOD detectors cannot adapt to the feature repre-
sentation of remote sensing objects very well. Although AOOD detectors use the oriented
bounding box (OBB) as the object’s marker, which can better fit the object’s spatial con-
tour, the feature representation ability of each detection unit (DN) (i.e., feature point in
multi-scale detection layers) does not change.

Take the classic anchor-based object detector as an example, as shown in Figure 1,
at each position of the multi-scale detection layers, a certain number of anchors will be
preset for overlap calculation with GT (ground truth). When an anchor and GT meet certain
position and overlap conditions (i.e., label assignment strategy), it will be determined as
positive or negative. However, no matter whether HBB (horizontal bounding box) or OBB
(oriented bounding box) is used as the labeling of GT, the effective receptive field (ERF) [13]
of each DN does not change; that is, no matter what shape and aspect ratio of the object
appears at the current position, existing detectors use a fixed feature vector to represent it.
This means that for the red high potential DN in shallow feature layers shown in Figure 1a,
its feature learning area is limited and does not coincide with the space occupied by the
target. This issue has been discussed by some scholars [14,15] and summarized as a feature
misalignment problem; however, these researches have not conducted in-depth summary
and analysis of internal causes.

Multi-Scale Detection Layers

…

…

…

…

: DN

…

Detection Layer 0:
128 × 128

Input Image Slicing

: ERF
: HBB : OBB

(a)

…

…

…

…

: DN

…

: ERF
: HBB : OBB

Detection Layer 2:
32 × 32

Multi-Scale Detection Layers

(b)

Figure 1. Illustration of the relationship between DN and GT and ERF. A part of the input image is
captured inside the detector (RetinaNet-R [16]). The HBB and the OBB are the predicted box. The red
box is virtual and represents only one pixel in detection layers. The ERF is calculated according to [13].
It should be noted that this is only a local scene captured from a large remote sensing image input.
(a) Detection Layer 0; (b) Detection Layer 2.
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For this issue, one intuitive solution is using multi-scale feature representations to
compensate for the uncertainty caused by the change of image and target size. However,
another problem arises, as shown in Figure 1b. With the deepening of the network and the
down sampling operation, the ERF of DN has expanded. In the detection layer 2 with the
size of 32 × 32, the marked DN expands its knowledge learning range but also receives
more complex background information. The case in Figure 2 shows the negative impact
of the disorderly expansion of ERF, which occurs in a real application scenario. Because
the containers and cargo ships in the port have very similar characteristics, they are easily
confused when they appear in the ERF of the same DN. Therefore, the container on the
shore is also mistakenly identified as a ship with a high confidence. To deal with those
problems, an ideal situation is that the field of vision focused by each DN is the whole
body of the target, and does not contain additional background. However, due to the
randomness of target size and input image size, it is difficult to achieve the above situation.
More importantly, through the above case study, we observed that multi-scale feature
fusion and feature extraction units are mutually constrained and auxiliary, because they
jointly affect the ERF of each DN.

In summary, we need multi-scale fusion models to provide rich feature informa-
tion to meet the size transformation of the target, and feature extraction operators to
achieve the adaptive adjustment of ERF to suppress background information and high-
light the key areas. However, the existing feature fusion models, such as FPN [17] and
FPN-variants [18–21], cannot realize the information supplement between neighbor-scale
features. The existing feature adaptive learning operators based on deformable convolution
(DCN) [14,22,23] cannot achieve the synergy between the capture of key areas and back-
ground suppression, and their design is mostly separated from the fusion model, which
does not form a good chemical reaction.

ship 0.87

ship 0.73

Prediction

：DN

：ERF

Issue of Background Interface

Figure 2. Example of wrong detection caused by background interference. In this case, RetinaNet-R
is used. The prediction confidence threshold is 0.3. The container at the port is mistaken as a freighter
because they have similar features.

Seeing the above challenges, we propose an innovative AOOD detector called AFRE-
Net (adaptive feature representation enhancement network), which effectuates adaptive
feature representation enhancement for DNs in multi-scale detection layers. AFRE-Net is
committed to achieving feature relevance learning between adjacent scales and end-to-end
ERF transformation, so as to strengthen the feature representation in the detection layer. The
overall architecture of the proposed AFRE-Net is shown in Figure 3, which consists of four
modules: (1) The backbone for basic feature extraction; (2) An FG-FPN (fine-grained feature
pyramid network) for providing finer multi-dimensional feature maps and performing
feature fusions; (3) A feature enhancement module (FEM) and (4) a rotation detection
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module for category prediction (CP) and bounding box regression (BBR). As opposed to the
regular feature pyramid network (FPN) [17], FG-FPN is designed to make better use of the
low-dimensional feature maps rich in spatial information, and it uses a more fine-grained
fusion method to provide a basis of features for subsequent FEM. In FEM, we apply the ERF
transformation based on DCN, and invented a background suppression and foreground
enhancement algorithm named relative-Conv, to achieve automatic and adaptive object
representation enhancement. Extensive experimental tests on three benchmark remote
sensing datasets (DOTA, HRSC2016, UCAS-AOD), as well as a text recognition dataset
(ICDAR2015) demonstrate the state-of-the-art performance of our AFRE-Net.

The contributions of our work can be concluded as follows:

1. Our systematic analysis has mined three aspects that need to be considered together
to improve the detector’s feature representation ability: fusion module, receptive field
adjustment, and background suppression.

2. We propose a novel FG-FPN to provide finer features and fuse them in a more
efficient manner. Different from FPN and its modifications, we focus on neighbor-
scale information supplement to fullfil all-scale features.

3. A novel background suppression and foreground enhancement convolution module
called relative conv is proposed to encourage DNs to learn the key areas adaptively.

4. We propose a new ERF transformation algorithm to make the sampling position more
accurately located on the main body of the target, obtaining stronger semantic features.

Rotation Detection Module

Input

FG-FPN

Multi-Scale Feature Cubes

256 ×W × H

AFREM

2 ×
W
×

H

Stacked Convs

256 ×W × H

Stacked Convs

Stacked Convs

Reg
.

Cls.

X
Y

Width
Height
θ

Class1, Conf
Class2, Conf

…
ClassN, Conf

Feature Enhancement Module

Detection Results

Stacked Convs

5 ×
W
×

H

Pre-Prediction

Category Map

Predicted Box

Backbone

Enhanced Features

Figure 3. The overall architecture of the AFRE-Net. AFRENet is composed of a backbone, a fine-
grained feature pyramid network, a feature enhancement module, and a rotation detection module.
AFPEM denotes adaptive feature representation enhancement module. PB and CM denote the
predicted box and classification map, respectively.
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2. Related Work
2.1. Arbitrary Oriented Object Detection

AOOD is an extension of object detection tasks in natural scenes [24,25], which follows
the basic natural object detector pipeline. Concretely, detectors can be divided into anchor-
based methods and anchor-free methods. For anchor-based detectors, YOLO [26,27] series
lead the one-stage field and have achieved remarkable effects by designing regression mod-
els that balance accuracy and speed. R-CNN series [28,29] represent two-stage detectors
and use region proposal network (RPN) to filter potential DNs. The latter often achieves
higher detection accuracy due to its ability to control positive and negative samples well;
however, the authors of ATSS [30] point out that the sample learning strategy is the key
factor. After that, plenty of intelligent positive and negative sample learning strategies
have been proposed [31,32].

Additionally, numerous scholars have attempted to tackle the practical issues that arise
in AOOD. For example, refs. [10–12,33] have focused on solving the discontinuous problem
of angle parameter regression in the training process, and constantly refining the loss func-
tion to improve performance. Some other scholars attempt to use a target representation
vector that can eliminate such boundary discontinuities to represent instances, such as polar
coordinates [12], ellipse bounding box [34], and middle lines of boxes [35]. Additionally,
to obtain better-refined rotated anchor boxes, RR-CNN [36], R3Det [37], and CFC-Net [38]
focus on spatial alignment and anchor refinement to guide the training process. However,
none of them try to explain the limitations of detection units on target feature expression in
a deeper perspective.

2.2. Feature Fusion Module

Feature pyramid network (FPN) [17] is the most frequently used feature fusion struc-
ture, because it can well integrate low-level spatial information with high-level semantic
information, and can well cope with the feature differences caused by the change of
target size. After FPN is proposed, PANet [18] proposed a dual-path fusion mode of
top-down plus bottom-up to enhance the semantic representation of low-level feature
maps. BiFPN [20] refined the design of this pattern and further improved its performance.
Recursive-FPN [21] adds the additional feedback connection of FPN to the bottom-up
backbone layer and it convolves features with different void rates based on switchable
atrous convolution. However, these methods are not designed from the perspective of scale
information supplement. Considering that no feature pyramid can completely cover the
full size of all targets and input images, we need to mine the feature correlation of critical
scale as far as possible to make up for this deficiency.

2.3. Feature Enhancement Module

FEM in AOOD has a broader scope of reference and is not limited to using a certain
class of methods or specific means to be called feature representation enhancement. For
example, some scholars [14,39] focus on solving feature misalignment between classifi-
cation and box regression (localization), arguing the classification score of anchor boxes
cannot reflect real localization accuracy. FFN [40] enhances the model’s feature expression
ability for sub-optimal detection units in a creative way, but its design is too complex.
Han et al. [14] were the first to attempt to alleviate this inconsistency through deformable
convolutions [22] in AOOD; however, they ignore the adaptive feature representation
learning. Ref. [39] proposed rotated align convolution (RAC) to improve feature repre-
sentation of ship targets. However, they did not consider that the selection of sampling
location should fall on the main body of the target body, and did not analyze the impact of
background information interference within the detection unit on feature expression.

In addition, the performance of CNN in rotational feature extraction is known to be
subpar [41]. Therefore, the research on rotation invariant feature extraction, as highlighted
by works such as [42–44], plays a crucial role in improving CNN-based detectors. To
achieve enhanced rotation invariant features, spatial and channel interpolation techniques
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are often employed [45,46]. For instance, Cheng et al. [6] were the pioneers in utilizing
a fully connected layer as the rotation invariant layer, constraining it within the loss
function. Furthermore, ReDet [8] takes a different approach by adaptively extracting
rotation-invariant features from equivariant features based on the orientation of the Region
of Interest (RoI). This adaptive extraction process contributes to the overall effectiveness of
the detector. Oriented Reppoints [23] proposes an adaptive point set feature representation
for AOOD tasks based on [47]. Although it can realize the adaptive transformation of
ERF, its learning process is unordered and it does not realize the adaptive background
suppression within a single feature extraction operator. Moreover, the above methods did
not consider how to integrate the design of feature fusion with subsequent FEM as a whole.
Our experiments show when the feature fusion module and ERF transformation are more
fit, the feature representation ability of the detector is stronger.

3. Methodology

In this section, we will introduce the design of each independent module in AFRE-Net
in detail. The overall pipeline of our detector is first introduced in Section 3.1. Then, we
detail the FG-FPN in Section 3.2. Later, the adaptive feature representation enhancement
module is unveiled in Section 3.4. Finally, experiment details about label assignment
strategy are presented in Section 3.5.

3.1. Overall Pipeline

AFRE-Net is built based on RetinaNet-R [16] (baseline detector), which has classic
object detector architecture and is easy to transfer. The overall pipeline of our AFRE-Net is
shown in Figure 3. AFRE-Net consists of four main parts:

(1): A backbone network (ResNet [48] in our experiments) for basic feature extraction.
(2): A feature pyramid network for multi-scale feature fusions. We replace FPN [17] with

our FG-FPN. FG-FPN is more capable of taking advantage of lower dimensional
feature maps, which contain richer spatial information, can provide more fine-
grained feature vectors for subsequent FEM, and enhance feature capture for small
objects. FG-FPN fuses the feature maps with a top-down-top (rather than top-down
only in FPN) pathway so the network constructs both rich semantic features and
spacial information.

(3): A feature enhancement module (FEM). FEM is designed to reconstruct the feature
vectors of DNs in the detection layer, including the automatic transformation of the
FRF and adaptive background suppression.

(4): A rotation detection module (RDM). RDM converts semantic features into predicted
bounding boxes and confidence of prediction categories for regions. RDM is a multi-
task module and the regression targets are obtained in it. In our experiments, we
adopt the five-parameter method to describe the bounding box, which is denoted as:

{(x, y, w, h, θ)}, (1)

where x, y, w, h are coordinates of the bounding box center, the width, and the height,
respectively. Parameter θ ∈

[
−π

4 , 3π
4
]

denotes the angle from the position direction of
x to the direction of w. We have

tx = (x− xa)/wa, ty = (y− ya)/ha,

tw = log(w/wa), th = log(h/ha),

tθ = tan(θ − θa).

(2)

3.2. FG-FPN
3.2.1. Overall Architecture

It can be seen in Figure 4, RetinaNet-R employs the C3, C4, C5 in the backbone network
as the foundation for the following feature fusions. C3, C4, and C5 are performed by 1 × 1
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convolution to obtain the same channel dimension (256 in the baseline). Then, P5 is obtained
through a convolution layer of 3 × 3. The top-level feature P5 is transmitted in a top-down
manner and fused with low-level features layer by layer to obtain P4 and P3. In this way,
layer Pi (i = 3, 4, 5) is the same size as layer Ci. Based on P5, P6 is obtained through a 3 × 3
convolution with stride set to 2. P7 is obtained through a Relu activation function and a
3 × 3 convolution with stride set to 2.

However, the structure of FPN has the following defects:

(1): The utilization efficiency of low-level features is insufficient. It is necessary to add
lower-level features rich in spatial information to participate in the fusion process,
in order to improve the feature perception ability of small objects.

(2): There are barriers between high-level features and low-level feature maps, as using
only the top-down linking makes it impossible for high-dimensional feature maps to
communicate directly with low-level feature maps (such as C3 and P5).

(3): Lack of mining for the correlation of features between adjacent scales.

Therefore,

(1): We re-enable the C2 layer in ResNet (yellow layer shown in Figure 5);
(2): After performing the top-down fusion, we perform the down-top feature fusion as

well, which means using top-down-top structure.
(3): We design an attention mechanism for mining inter-scale correlations, achieving the

goal of simulating full-scale pyramid layers.

It should be noted that both the size and the numbers of the detection layer in FG-FPN
have not changed, and C2 is only used to generate polished P2 (blue layer in Figure 5). All
the feature channels are set to 256. Additionally, in order to better ensure the integrity
of low-level spatial characteristics, depthwise convolution is used when P2 P3 is down-
sampled and pointwise convolution is used when P4 P5 is down-sampled. In this way,
high-level features can extract richer spatial information, and, most importantly, can greatly
enhance the effectiveness of the proposed FEM in later processing stages.

C4

C3

C5

Conv2D
1×1, s1

P4

P3

P5

UpSample

＋

UpSample

＋

Conv2D
1×1, s1

Conv2D
1×1, s1

Conv2D
3×3, s1

Conv2D
3×3, s1

Conv2D
3×3, s1

P6

P7

Conv2D
3×3, s2

ReLu + Conv2D
3×3, s2

Backbone

Detection Layer

N / 8

N / 16

N / 32

Figure 4. FPN structure of the RetinaNet. Conv2D 1 × 1, s1 refers to 1 × 1 convolution with stride
set to 1. N denotes input image size. N/4 denotes the feature map resolution. ⊕means addition.
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Figure 5. Structure of FG-FPN. Conv2D 1 × 1, s1 refers to 1 × 1 convolution with stride set to 1. N
denotes input image size. N/4 denotes the feature map resolution. ⊕means addition. ALAM refers
to arhat layer attention module.

After strengthening the feature map of each scale, we tried to find a way to compensate
for the differences between scales. Considering such an extreme situation, by building
a feature pyramid with countless scales, we can cover the object scale transformation
of various sizes, but this is obviously unrealistic. Therefore, we try to use the attention
mechanism to generate a feature map with inter scale correlation. It is equivalent to further
enhancing representation between scales.

3.2.2. ALAM

The Arhat layer attention module (ALAM) is proposed to create a strong correlation
between neighbor scales. Specifically, we regard the Pi as the query, and PD

i−1 (down-
sampling output of Pi−1) as the Key and Value. PD

i−1, Pi−1 ∈ RH×W×C. Layer output AHTi
is calculated as:

AHTi = so f tmax(
Pi ⊗ PD

i · T√
H ·W · C

)⊗ PD
i−1, (3)

where,⊗ denotes element-wise multiplication, PD
i ·T denotes the transposition function, i ∈

{3, 4, 5}. Di is generated from ReLU(Conv2D(AHTi)). Through ALAM, Di is equivalent
to a correlation map between neighbor scales, which are significantly different from FPN
and its variants. Because we use the attention mechanism to connect the upper and lower
levels, we enrich them by building a pseudo pyramid to cover more scale information.

As shown in Figure 6, to further demonstrate the effectiveness of FG-FPN embedded
with ALAM, we visualized the highest-resolution feature layers of BiFPN and FG-FPN
after the same training iterations. It can be seen that FG-FPN has a more divergent heatmap
distribution, but has a stronger response to the target. This is because ALAM allows
for more implicated neurons in a single feature unit, which can cover a larger range of
receptive fields.

3.3. FEM

FEM is a multi-stage feature enhancement module because we perform a pre-prediction
before accurate detection. As shown in Figure 3, FEM takes FG-FPN output XLI as the
module input, where LI denotes the layer index of different feature maps, assigning multi-
scale feature cubes into two separate task brunches (i.e., classification and bounding box
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regression). Classification and regression subnetworks are fully convolutional networks
with a fixed number of stacked convolution layers (two in our experiments.) Note that
here we only set one anchor in each DN and focal loss and smooth L1 loss are used for
classification and bounding box regression, respectively. Softmax is used to generate cat-
egory confidence and then the classification map (CM) is obtained. CM has the shape of
2×W × H. For each point (i, j) in CM, CM(i, j) saves category labels and corresponding
confidence, which are recorded as CML(i, j) and CMC(i, j), respectively. For predicted box
(PB), PB(i, j) preserves the box position vector and has a shape of 5×W × H. Finally, FEM
re-inputs XLI , PB, and CM into AFREM to complete feature representation enhancement.

(a) (b)

Figure 6. Feature heatmap visualization of P3 in BiFPN [20] and D3 in FG-FPN. This experiment
scenario is selected from baseline and AFRE-Net after 10K iterations of training on the DOTA dataset,
respectively. It can be seen that FG-FPN has a stronger response to the targets’ proposals, and can
better distinguish the foreground and background. (a) Feature heatmap from BiFPN; (b) Feature
heatmap from FG-FPN.

3.4. AFREM

The pipeline of AFREM is shown in Figure 7. To adaptively achieve ERF transfor-
mation, we design the ERF transformation algorithm based on deformable convolutional
networks (DCN) [22], making it more suitable for objects in AOOD scenes. Relative convo-
lution network (Relative Conv) is proposed to mitigate the impact of background features
and magnify foreground information in a self-learning manner.

3.4.1. ERF Transformation

DCN pioneered the idea of changing the sampling position of the convolution kernel
for each feature point in a self-learning manner. Outstanding works like oriented-reppoints
and align-conv both achieve effective ERF transformation for remote sensing objects. How-
ever, the lack of control in the training process of the former leads to slow convergence
of the network, and the lack of refined design of the latter leads to the inability of the
sampling point to fall on the key area of the target of interest. Therefore, we try to use a
more convenient way to make up for the two shortcomings at the same time.

Taking the convolution of 3× 3 as an example, sampling offsets in both directions
(18 values) are claimed at each point, making it possible to expand the ERF of DNs by
providing learning capabilities in the sampling process. However, when applying DCN in
AOOD, due to the larger object ratios and random orientations, intelligent ERF transforma-
tion faces challenges. As shown in Figure 8a, since PB is derived by OBB-guided regression,
it basically fits the contour of the target. However, we hope that our sampling points (dark
blue points in Figure 8a) can evenly fall on the target body, rather than just be limited to
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a certain part of the target (ERF box with mapping to original input in Figure 8a) or the
boundary of the target. Alignment convolution in [14] ignores the solution to this problem.
In our experiments, we try our best to place each sampling point on the main body of the
object, as this ensures that the learned knowledge is focused on the object itself rather than
the background features. Hence, we have designed a sample point reassignment strategy,
as shown in Figure 8b. We use a shrunk PB to constrain the sampling position, making the
sampling point better located inside the rotated bounding box.

Feature Cube

F×W × H

Category Map

Predicted Box

Calculate offsets

W × H × 18

Deformable Conv F×W × H

Calculate CM Values

CMV

Relative Conv
F×W × H

Feature Cube

Outputs

Figure 7. Pipeline of AFREM.

Given an F×W × H (F denotes feature channels) feature cubes XLI , for each position
P(x0, y0), we obtain ERF transformation results FELI by

FELI(P) = Deformable(XLI , offsets(P)), (4)

where offsets(P) is the position bias with the size of W × H × 18. The original offsets of
3× 3 convolutions can be defined as OG = {(−1, -1), (−1, 0), (−1, 1), (0, −1), . . . , (1,1)},

offsets(P) = OG + σS, (5)

where σS is the shifting vector from the original sampling box to shrunk PB. As shown in
Figure 8b, PB is scaled down with a shrinkage coefficient α to obtain shrunk PB (SPB). Let
(x, y, w, h, θ) represent the PB in position P, shrunk box can be defined as (x, y, αw, αh, θ).
We set α = 0.85 in our experiments to suitably fit the target body. Since PB is derived from
horizontal anchor box Va(wa, ha) by

SPB = αVa · tw,h · RT(θ), (6)

the sampling DN SP in position P can be calculated as

Sp =
1
S
(P +

1
K
· SPB), (7)

where K is the kernel size and S is the down-sampling strides of current feature maps.
Then, we can obtain offsets(P) by

offsets(P) = Sp −OG − σS. (8)
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Figure 8. Illustration of ERF transformation. (a) Explanation diagram of the relationship between PB,
sampling point, and ERF; (b) Identify sampling points through shrunk PB.

3.4.2. Relative ConV

For a DN, to automatically suppress background and highlight foreground targets, it is
necessary to enable it to learn which regions are more important during back-propagation.
In a standard 2D convolution, the output feature Y can be obtained by

YLI(P) = ∑
g∈OG

W(g) · XLI(P + g), (9)

where P is the position of each DN, P ∈ {0, 1, . . . , W − 1} × {0, 1, . . . , H − 1}, and W(g) is
the kernel weights. W(g) is the weights in an ordinary 3 × 3 convolution layer, which is
updated and iterated with the optimization of the model. In relative convolution, we define
the output YR by

YR(P) = ∑
g∈OG

(δRJ(g) + 1)W(g) · X(P), (10)
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and

RJ(g) =


0, CML(g) 6= CML((0, 0))
1, CML(g) = CML((0, 0))

and CML(g) 6= −1
(11)

CML is the category label obtained in FEM, δ is the accommodation coefficient and can be
calculated by

δ = CMC + η, (12)

where CMC is the category prediction confidence. Symbol η = −0.2 is used to control the
learning intensity. Figure 9 illustrates the operating mode of the relative convolution. By
using it, detectors can obtain enhanced representations by strengthening learning about
foreground targets.

Relative Conv Enhanced
Representation

Figure 9. Illustration of Relative ConV.

3.5. Label Assignment Strategy

Label assignment strategy (LAS) has a significant impact on the overall accuracy of the
model since it encourages the model to select and refine positive samples reasonably and
effectively during training. To enhance the robustness of our AFRE-Net, we have decided
to optimize the LAS in our detector. In the FEM, we utilize intersection over union (IoU) as
the matching metric. Specifically, we set the foreground and background thresholds for
determining whether an anchor is positive or negative to 0.5 and 0.4, respectively. These
thresholds help us differentiate between foreground and background regions effectively. In
the RDM, we employ dynamic anchor learning (DAL) [31] for intelligent anchor selection,
which aims to activate more positive anchors during the refinement process. The matching
degree, denoted as md, is defined as follows:

md = α · sa + (1− α) · f a− uγ (13)

u = |sa− f a| (14)

where sa denotes IoU of the anchor input, and f a represents the IoU between the GT box
and the regression box. The term u is the absolute difference between the IoU of the anchor
and the IoU between the GT box and the regression box. In our experiments, we set α to
0.3, and γ to 5. If the IoU of an anchor is greater than md, it will be classified as positive;
otherwise, it will be classified as negative. This approach allows us to effectively determine
the positive anchors based on their IoU values.

4. Experimental Results and Analysis
4.1. Datasets

Our AFRE-Net was assessed on three publicly available and challenging datasets,
namely DOTA [49], HRSC2016 [50], and UCAS-AOD [51].

DOTA is an extensive dataset consisting of aerial images that capture complex scenes
relevant to AOOD. It comprises a total of 2806 aerial images, with 1411 images for training,
458 images for validation, and 937 images for testing. These images contain a total of
188,281 instances belonging to 15 categories. The image size ranges from 800 × 800 to
4000 × 4000, and all instances are labeled with OBB, which exhibit variations in scales,
aspect ratios, and orientations. To facilitate training, we divided the images into regular
1024 × 1024 patches with a stride of 200. The categories and corresponding IDs are as
follows: Plane (PL), Baseball diamond (BD), Bridge (BR), Ground track field (GTF), Small
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vehicle (SV), Large vehicle (LV), Ship (SH), Tennis court (TC), Basketball court (BC), Storage
tank (ST), Soccer-ball field (SBF), Roundabout (RA), Harbor (HA), Swimming pool (SP),
and Helicopter (HC).

HRSC2016 is a high-resolution ship detection dataset that contains images collected
from six international harbors. It consists of 1061 images, with image sizes ranging from
300 × 300 to 1500 × 900. The dataset includes 436 images for training, 541 images for
validation, and 444 images for testing. All ship objects are labeled with OBB, and the
substantial variation in ship sizes poses a significant challenge for detection.

UCAS-AOD is an aerial image dataset specifically designed for oriented aircraft and
car detection. It comprises 1510 images, including 1000 airplane images and 510 car images.
We randomly divided the dataset into training, validation, and test sets in a ratio of 5:2:3.

Additionally, to assess the scenario generalization capabilities of our AFRE-Net, we
utilized the ICDAR-2015 [52] dataset as a benchmark for testing. This dataset consists
of 1000 training images and 500 test images. The text boxes in this dataset are labeled
with OBB and exhibit a very large aspect ratio, making them particularly challenging
for detection.

4.2. Implementation Detail

For all datasets, we only set one horizontal anchor with aspect ratios of {1}, and resize
all images to 1024 × 1024. Data augmentation techniques, such as random flip, rotation,
and HSV color space transformation, are employed. The training optimizer used is Adam,
with the initial learning rate set to 5× 10−4. At each decay step, the learning rate is divided
by six. We utilize ResNet50 as the backbone network, which has been pre-trained on
ImageNet. For DOTA, the models are trained on a single RTX 3090, and the batch size is
set to two. Regarding HRSC2016, the detector undergoes a total of 12 K iterations during
training, with the learning rate decaying at 8 K and 11 K, respectively. We evaluate the
performance using average precision (AP) as the metric, following the same definition as
the PASCAL VOC 2012 object detection challenge [53]. Unless explicitly stated, mAP refers
to AP50.

4.3. Ablation Studies

In this section, we conduct a series of experiments on DOTA and HRSC2016 to test our
proposed AFRE-Net. We first verify the progressiveness of FG-FPN at the entire detector.
Then, FEM is disassembled from the model to analyze its vital impact on overall perfor-
mance. Finally, the respective capabilities of FRF expansion and RC are verified separately.
Our ablation experiments demonstrate that when FG-FPN is combined with our meticu-
lously designed FEM, our detector can achieve greater efficacy, thereby demonstrating the
advantages of AFRE-Net.

To ensure fair comparisons, our baseline model adopts the same configuration as de-
scribed in Section 4.2. Furthermore, we set the depth of the detection head (i.e., the rotation
detection module in Figure 3) to a uniform value of 2, as it has a significant impact on the
final detection result. In contrast to our AFRE-Net, which only utilizes one preset anchor
with an aspect ratio of {1}, our baseline model employs three horizontal anchors with aspect
ratios of {0.5, 1, 2} for matching objects. The results presented in Tables 1 and 2 demonstrate
that our baseline model achieves an mAP of 68.2% on DOTA and 86.32% on HRSC2016.

4.3.1. Effectiveness of Hyper-Parameter

The parameter η in our model is used to deal with the weight imbalance caused by
strengthening the learning of key areas in relative conv. As shown in Table 3, when η is
around −0.2, negative compensation can achieve better performance by relative conv.
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Table 1. Comparison on DOTA test dataset. R-101 represents ResNet-101 (likewise for R-50), and H-
104 denotes Hourglass-104.

Methods Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

FR-O [49] R-101 79.09 69.12 17.17 63.49 34.20 37.16 36.20 89.19 69.60 58.96 49.40 52.52 46.69 44.80 46.30 52.93
R-DFPN [54] R-101 80.92 65.82 33.77 58.94 55.77 50.94 54.78 90.33 66.34 68.66 48.73 51.76 55.10 51.32 35.88 57.94
R2CNN [36] R-101 80.94 65.67 35.34 67.44 59.92 50.91 55.81 90.67 66.92 72.39 55.06 52.23 55.14 53.35 48.22 60.67
RRPN [55] R-101 88.52 71.20 31.66 59.30 51.85 56.19 57.25 90.81 72.84 67.38 56.69 52.84 53.08 51.94 53.58 61.01
ICN [56] R-101 81.36 74.30 47.70 70.32 64.89 67.82 69.98 90.76 79.06 78.20 53.64 62.90 67.02 64.17 50.23 68.16

RetinaNet-O [16] R-50 88.67 77.62 41.81 58.17 74.58 71.64 79.11 90.29 82.13 74.32 54.75 60.60 62.57 69.67 60.64 68.43
RoI Trans. [57] R-101 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56
CAD-Net [58] R-101 87.80 82.40 49.40 73.50 71.10 63.50 76.70 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90

DRN [59] H-104 88.91 80.22 43.52 63.35 73.48 70.69 84.94 90.14 83.85 84.11 50.12 58.41 67.62 68.60 52.50 70.70
O2-DNet [35] H-104 89.31 82.14 47.33 61.21 71.32 74.03 78.62 90.76 82.23 81.36 60.93 60.17 58.21 66.98 61.03 71.04

DAL [31] R-101 88.61 79.69 46.27 70.37 65.89 76.10 78.53 90.84 79.98 78.41 58.71 62.02 69.23 71.32 60.65 71.78
SCRDet [60] R-101 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
R3Det [37] R-152 89.49 81.17 50.53 66.10 70.92 78.66 78.21 90.81 85.26 84.23 61.81 63.77 68.16 69.83 67.17 73.74

S2A-Net [14] R-50 89.11 82.84 48.37 71.11 78.11 78.39 87.25 90.83 84.90 85.64 60.36 62.60 65.26 69.13 57.94 74.12
R4Det [61] R-152 88.96 85.42 52.91 73.84 74.86 81.52 80.29 90.79 86.95 85.25 64.05 60.93 69.00 70.55 67.76 75.84

Oriented Reppoints [23] R-101 89.53 84.07 59.86 71.76 79.95 80.03 87.33 90.84 87.54 85.23 59.15 66.37 75.23 73.75 57.23 76.52

AFRE-Net (ours) R-101 89.34 85.74 53.23 75.96 79.22 81.03 87.88 90.86 83.82 87.08 65.95 67.33 76.52 73.06 64.52 77.44

1 Best results for each category are in red. Second-best results achieved by our detector are labeled in blue.

Table 2. Performance comparisons with state-of-the-art AOOD methods on the test set of HRSC2016.
NA denotes the number of preset anchors of RDM. mAP (07/12): VOC2007/VOC2012 metrics.

Methods Backbone Size NA mAP (07) mAP (12) Params (M) FLOPS

R2CNN [36] ResNet101 800 × 800 21 73.07 - - -
* RRD [62] VGG16 384 × 384 13 84.30 - 27.6 176 G

RoI Trans. [57] ResNet101 512 × 800 20 86.20 - 55.1 200 G
R3Det [37] ResNet101 800 × 800 21 89.26 96.01 41.9 336 G

* R-RetinaNet [16] ResNet101 800 × 800 121 89.18 - 35.8 236 G
* DCL [9] ResNet101 800 × 800 - 89.46 - 49.6 472 G
GWD [33] ResNet101 800 × 800 - 89.85 97.37 47.4 456 G
DAL [31] ResNet101 800 × 800 3 89.77 - 36.4 216 G
DRN [59] ResNet101 768 × 768 - 92.7 - - -

S2A-Net [14] ResNet50 512 × 800 1 90.17 95.01 38.6 198 G
AOPG [63] ResNet101 800 × 800 - 90.34 96.22 - -
ReDet [8] - 800 × 800 - 90.46 97.63 31.6 -

O-RCNN [64] ResNet101 800 × 800 - 90.50 97.60 41.1 199 G

* Baseline ResNet50 800 × 800 3 86.32 91.04 31.5 199 G
AFRE-Net (ours) ResNet50 800 × 800 1 92.36 97.32 42.2 323 G
AFRE-Net (ours) ResNet101 800 × 800 1 92.18 97.82 51.4 469 G

1 The instances of best detection performance are in bold. 2 * means that the precision and model complexity data
source is from our local machine.

Table 3. Influence of hyperparameters η on HRSC2016 dataset.

η −0.45 −0.35 −0.25 −0.20 −0.15 −0.10 NaN
AP50 87.26 89.33 91.08 92.16 88.54 89.34 NaN

η 0.45 0.35 0.25 0.20 0.15 0.10 0.00
AP50 79.32 81.26 82.77 79.98 82.32 86.02 88.06

1 The instances of best detection performance are in bold. 2 Both FG-FPN and DAL are used.

4.3.2. Effectiveness of FG-FPN

Our baseline detector applies FPN as the neck to fuse multi-scale feature maps. As
shown in Table 4, when replacing FPN with FG-FPN alone, the detector achieves accuracy
gains of +1.01 and +0.92 on two datasets, respectively, proving that FG-FPN has a stronger
feature fusion ability than FPN. In particular, it can provide low-level spatial information,
which is very friendly for small targets. As can be seen in Table 1, the detection accuracy
of SV has been greatly improved. However, at the same time, the replacement of FG-
FPN also increased the number of parameters in the model, and we calculated that the
size of the weight checkpoint file increased by 6.5 M. The detailed FG-FPN complexity
is shown in Table 5. It can be seen that the introduction of FG-FPN has brought about
a certain increase in model complexity, mainly caused by ALAM, as a large number of
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intermediate parameters are generated during the calculation process of this attention
mechanism, also leading to an increase in inference time. It should be noted that this group
of testing experiments did not use any feature enhancement modules, including AFREM.
As shown in Table 5, when FG-FPN is used alone, it can only slightly improve the overall
detection accuracy of the model. However, when FG-FPN is combined with our proposed
AFREM, it can fully release the model performance, as AFREM can utilize the features rich
in low-level spatial information provided by FG-FPN, obtaining more robust target feature
representations.

Table 4. Ablation study of embeddings in AFRE-Net on DOTA and HRSC2016 dataset.

Baseline Component Settings AFRE-Net

FPN [17] X X X
FG-FPN
(ours) X X X

FEM (ours) X X X

DAL [31] X X

mAPDOTA +0 +1.01 +6.92 +4.81 +1.54 +9.01
mAPHRSC2016 +0 +0.92 +5.12 +3.79 +1.26 +6.04

1 η is set to −2.

Table 5. Module complexity on different datasets.

Datasets Modules Params (M) FLOPS Runtimes (s) mAP (%)
DOTA B+FPN 27.6 168 G 0.42 71.27

HRSC2016 B+FPN 27.6 168 G 0.36 85.24
UCAS-AOD B+FPN 27.6 168 G 0.35 84.72

DOTA B+FG-FPN 34.1 (+6.5) 321 G 0.79 72.28 (+1.01)
HRSC2016 B+FG-FPN 34.1 (+6.5) 321 G 0.68 86.16 (0.92)

UCAS-AOD B+FG-FPN 34.1 (+6.5) 321 G 0.68 86.88 (+2.16)
1 Runtimes refer to inference time, and B denotes backbone network. 2 AFREM was not used in this set of
experiments.

4.3.3. Effectiveness of FEM

FEM consists of two parts: ERF expansion and Relative ConV. We first verified how
the overall detection accuracy of the detector changes when the entire FEM module is
removed. As shown in the third and fourth control experiments in Table 4 (third and
fourth columns), the use of different combinations of embeddings in detectors results in
varying levels of detection accuracy. The combination of FG-FPN and FEM resulted in an
astonishing mAP gain of +6.92 for the detector on DOTA, while FPN plus FEM achieves
a +4.91 mAP improvement, which is also satisfactory. However, the former cannot be
compared to the latter. Similar results also occurred on HRSC2016, where the combination
of FG-FPN plus PEM achieves better performance, and improves the mAP by 5.12%.

In addition, to verify the contributions made by ERF transformation and Relative
Conv in FEM, we conducted two comparative experiments, as shown in Table 6. It should
be noted that both FG-FPN and DAL are used in these two comparative experiments.
Inside FEM, since the size of feature cubes does not change, we only need to remove the
other embedding when testing only one embedding. The experimental results show that
when the two are combined, they can play a greater role. This is because by combining the
two embeddings, DN not only can obtain the self-learning changes of the ERF, but also
can adaptively learn the key areas in it and suppress the background information, thus
obtaining better feature expression ability.

4.3.4. Effectiveness of Label Assignment Strategy

In order to eliminate the impact of LAS in our experiment, we also conducted compar-
ative experiments to verify the universality of our proposed methods. As shown in Table 6,
when using DAL in the baseline, the accuracy of the detector on DOTA increased by 1.54%
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and on HRSC06 by 1.26%, indicating that the optimization of LAS is significantly helpful in
improving the overall detection accuracy. However, the experimental results show that the
use of LAS does not affect the improvement of the model detection accuracy brought by
FG-FPN and FEM. On the contrary, when the three are combined, the maximum gain can
be achieved.

Table 6. Effects of FEM structure on DOTA an HRSC2016.

FEM Settings AFRE-Net

ERF transformation X X
AlignConV [14] X

Relative ConV X X X

mAPDOTA +3.77 +5.65 +2.89 +9.01
mAPHRSC2016 +2.85 +4.26 +4.33 +6.04

1 FG-FPN and DAL are both used in this experiments set.

4.4. Comparison with State-of-the-Art Detectors
4.4.1. Results on DOTA

We select some difficult scenarios as a demonstration of AFRE Net’s detection capabili-
ties. As shown in Figures 10 and 11, because our detector has improved the ability of feature
expression, its confidence in the predicted output of the target has been greatly improved,
and error detection has been effectively avoided (red circle in Figure 10a). Moreover,
the detection ability for small targets has also been greatly improved.

Figure 12 also shows some tough detection scenarios in AOOD (dense, small, large
aspect ratio, chaotic, and orientation random). It can be seen that AFRE-Net is able
to better cope with the above challenges. Compared with other state-of-the-art AOOD
detectors shown in Table 1, our model outperforms the best R4Det [61] by an mAP of 1.6%,
and achieves mAP improvement of 9.01% over the baseline detector. Compared with the
anchor-free reppoints, our AFRE-Net achieves better performance on most categories.

Surprisingly, the accuracy improvement ability of AFRE-Net on specific objects is
impressive. For SP, HA, RA, SBF, and ST, AFRE-Net achieves improvements of 3.39%,
13.95%, 6.73%, 11.2%, and 12.76%, respectively over the baseline. This suggests that our
proposed method has a more significant and prominent effect on improving the feature
expression of targets with large aspect ratio scales. The first reason is that the target with a
large aspect ratio is more likely to contain more area of background information within
the rectangular box of its outer contour, increasing the likelihood of interference; Secondly,
the original regular feature sampling mode makes it impossible to accurately collect all the
spatial scale features of the target when representing the target with a large-scale aspect
ratio. AFREM achieves finer feature extractions by accurately changing the sampling points.
Lastly, it can be seen that AFRE-Net has a good accuracy improvement effect on small
targets, because the application of FG-FPN improves the ability of the detector to capture
features in a small space range.

4.4.2. Results on HRSC2016

We evaluate the performance of our AFRE-Net on HRSC2016 with existing state-of-the-
art AOOD detectors, which are divided into two categories, i.e., two-stage methods, such
as R2CNN [36], RRPN [55], R2PN [65], RoI Trans. [57], and Gliding Vertex [66], and single-
stage methods, such as DCL [9], DAL [31], DRN [59], and S2A-Net [14]. As shown in
Table 2, our AFRE-Net outperforms all the detectors, especially towards two-stage methods,
by a large gap up to 4.16%. Our AFRE-Net obtains an mAP of 92.36% under the condition
that only ResNet50 is used, meaning that our model can achieve better feature extraction
and detection results with fewer parameters of backbones. Compared with the baseline
model, we improve 6.04% mAP with only one preset anchor in the FEM and RDM. In
addition, Table 2 also shows the performance of our method in terms of model complexity
and efficiency. The FG-FPN and AFREM has greatly improved the complexity of the model
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and increased the inference time of the detector, but extensive experiments have proved
that our method is powerful in improving the detection performance. We have achieved
15.8FPS inference speed on a single RTX3090, proving that the model has maintained certain
efficacy while improving its performance.

(a) (b)

Figure 10. Detection comparison between baseline detector and our AFRE-Net. AFRE-Net tends
to obtain higher confidence score and more accurate predictions. (a) Wrong Detection by baseline;
(b) Correct Detection by AFRE-Net.

(a) (b)

Figure 11. Detection comparison between baseline detector and our AFRE-Net. AFRE-Net is more
capable of generating small predictions. (a) Missed Detection by baseline; (b) Finer detection by AFRE-Net.

Figure 12. Visualization of some detection results on DOTA.
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4.4.3. Results on UCAS-AOD

The distribution of vehicle targets in UCAS-AOD is relatively dense, and the spatial
size is small, making detection difficult. As shown in Table 7, our baseline detector only
achieved an accuracy performance of 83.22% on car detection. However, after AFRE-Net
is applied, the mAP is improved to 90.62%, and the overall mAP is promoted to 91.34%,
which surpasses all other comparison methods.

Table 7. Results comparison with advanced detectors on UCAS-AOD dataset.

Methods Car Airplane mAP

Baseline 0.8322 0.8643 0.8472
* YOLOv3-O [26] 0.7463 0.8952 0.8208

Faster R-CNN-O [49] 0.8687 0.8986 0.8836
* DAL [31] 0.8925 0.9049 0.8987

* O-RCNN [64] 0.8874 0.9123 0.9003
* Oriented Reppoints [23] 0.8951 0.9070 0.9011

* ReDet [8] 0.9034 0.9107 0.9079
AFRE-Net (ours) 0.9062 0.9143 0.9134

1 The instances of best detection performance are in bold. 2 * means that the precision and model complexity data
source is from our local machine.

4.4.4. Results on ICDAR2015

To assess the robustness and generalization capability of our proposed AFRE-Net
algorithm across various application scenarios, as well as to tackle annotation boxes with
larger aspect ratio scales, we conducted training and testing on the ICDAR2015 dataset.

ICDAR2015 comprises challenging targets with significant variations in length and
width, annotated in the oriented bounding box (OBB) format. As depicted in Table 8, our
baseline model achieved an F-measure of 80.72 and a recall of 80.23%. Compared with
other text detectors, such as EAST [67], R2CNN [36], and R3Det [37], AFRE-Net obtains the
best recall performance at 88.82% and the best F-measure score at 86.27%, proving that our
proposed solution has good migration application capabilities.

Table 8. Results comparison with text detector on ICDAR 2015.

Methods Recall Precision F-Measure

RRPN [55] 82.17 73.23 77.44
EAST [67] 78.33 83.27 80.72

R2CNN [36] 79.68 85.62 82.54
R3Det [37] 81.64 84.97 83.27

Baseline 80.23 82.06 80.72
AFRE-Net (ours) 88.82 85.82 86.27

1 Best results for each category are in red. Second-best results achieved by our detector are labeled in blue.

5. Conclusions

In this paper, we make several significant contributions to arbitrary-oriented object
detection (AOOD). First, we identify the shortcomings and possible problems of the existing
AOOD detectors in the structure design of feature extraction. Specifically, we point out
that the existing models cannot automate DN learning and adjust ERF, and cannot adapt
learning focus areas and suppress background information. To address these limitations,
we conceive our detector AFRE-Net by designing a finer-grained feature fusion neck,
and proposing ERF transformation and relative conv on this basis. These modifications
enable the detector to acquire new capabilities for expressing object features. We validate
the effectiveness of our algorithm on several remote sensing datasets and application
scenarios. Extensive experimental results show that our method is effective and has a
positive impact on the future design of feature representation enhancement strategies.
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