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Abstract: Surface water is an important parameter for water resource management and terrestrial
water circulation research that is closely related to human production and livelihood. With the
rapid development of remote sensing technology and cloud computing platforms, the use of remote
sensing technology for large-scale and long-term surface water monitoring and investigation has
become a research trend. Based on the Google Earth Engine (GEE) cloud platform and Landsat
series satellite data, in this study, the Emergency Geomatics Service (EGS) operational surface water
mapping algorithm and water index masking were utilized to extract the spatial scope of the water
body. The validated models of the Secchi disk depth (SDD), chlorophyll-a (Chl-a) and suspended
solids (SS) concentration were applied to water quality parameter inversion and water quality
evaluation. Surface water extent extraction and water quality maps were created to analyze the
spatial distribution of the water body and the spatial–temporal evolution characteristics of the water
quality parameters. A verification experiment was carried out with the surface water in Zhejiang
Province as the research object. The results show that the surface water in the study area from 1990 to
2022 could be accurately extracted. The kappa coefficients were all greater than 0.90, and the overall
accuracies of the extractions were greater than 95.31%. From 1990 to 2022, the total surface water area
in Zhejiang Province initially decreased and then increased. The minimum water area of 2027.49 km2

occurred in 2005, and the maximum water area of 2614.96 km2 occurred in 2020, with an annual
average variation of 193.92 km2. Since 2015, the proportion of high SS and Chl-a concentrations,
and low SDD water bodies in Zhejiang Province have decreased, and the proportion with better
water quality has increased significantly. The spatial distribution map of the surface water and the
inversion results of the water quality parameters obtained in this study provide a valuable reference
and guidance for regional water resource management, disaster monitoring and early warning,
environmental protection, and aquaculture.

Keywords: GEE; Landsat; EGS operational surface water mapping algorithm; surface water; water
quality parameter inversion; long sequence time series remote sensing monitoring

1. Introduction

Surface water refers to the water that exists on the surface of the Earth’s crust and is
exposed to the atmosphere, including rivers, lakes, reservoirs, and ponds. It plays a crucial
role in the balance between ecosystems and socio-economic development and provides
essential resources for the survival of living organisms and the development of human
society [1–3]. Surface water resources have a variety of ecosystem service values such
as water storage, flood control, aquaculture, power generation, and transportation. With
the gradual shortage of water resources, the social function of surface water is becoming
increasingly significant, and the economic importance of surface water is continuously
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increasing [4,5]. The area of surface water resources has shrunk, and the pollution of
the water environment has substantial negative impacts on the ecological environment
and human development [6–8]. Therefore, understanding the spatial extent and time
series features of surface water resources and investigating the variations in water quality
parameters are significant for ecological protection, social production, and life development.

With the progress of remote sensing technology and the rapid development of cloud
computing technology, the traditional hardware environment dependence problem has
been solved, which makes large-scale and long-term water body monitoring more effi-
cient [9]. Based on the characteristics of water spectral curves, scholars have proposed
a variety of water information extraction methods, such as the single band threshold-based
method, the spectrum photometric-based method, and the water index-based method.
The single-band threshold-based method uses the characteristics of water’s strong absorp-
tion and low spectral reflectance in the near-infrared and shortwave infrared bands to
distinguish water from other ground objects by setting a threshold [10]. This method has
the benefits of simplicity of operation and easy implementation. However, it does not
make full use of multi-band information and is often affected by other ground objects
with similar spectral characteristics. The spectrum photometric-based method identifies
the spectral characteristics of water information by analyzing the spectral characteristic
curves of ground objects in the original band or transformation space of remote sensing
images. Then, it uses logical judgment rules to extract water information [11]. The spectrum
photometric-based method has a high precision and wide application and has good adapt-
ability to the complex distribution of ground objects. Nevertheless, the model construction
process is cumbersome and the computational complexity is high [12]. The most commonly
used water index-based method is based on the ratio operation between characteristic
bands to enhance the contrast between water and other features, which is used to identify
water information. Mcfeters (1996) first proposed the normalized difference water index
(NDWI), using the ratio of band 2 (green band) to band 4 (near-infrared band) of Landsat
thematic imager (TM) to recognize the water body. Xu (2006) used Landsat TM bands 2
(green band) and 5 (mid-infrared band) to evaluate the modified NDWI (MNDWI) [13,14].
Feyisa et al. developed a new index (the automated water extraction index, AWEI) using
the five spectral bands of the Landsat 5 TM to increase the contrast between water and
other dark surfaces and to maximize the separability of water and non-water pixels through
band difference solution, addition, and the application of different coefficients [15]. With
the development of computer technology, such as supervised classification, decision tree
algorithms, the random forest method, and other machine learning algorithms have also
been widely used in remote sensing water information extraction. Tulbure et al. used
the random forest model to study the scope and dynamic changes of surface water and
floods (1986–2011) in the Murray-Darling Basin (MDB). In addition to band reflectance, the
explanatory variables of the model also include the brightness temperature, normalized
difference vegetation index (NDVI), enhanced vegetation index (EVI), digital elevation
model (DEM) derivative variables, and multiple water body indexes [16]. Wang et al. pro-
posed a multi-dimensional and densely connected new deep convolutional neural network
(DenseNet) for identifying water bodies from high-resolution multi-spectral images. Its
extraction accuracy is higher than those of the water body index method and classical
convolutional neural networks [17].

Water quality parameters refer to indicators that reflect the specific substances in or
physical properties of the water, such as the dissolved oxygen content (DOC), pH value,
turbidity, total nitrogen content, and total phosphorus content. Water quality parameters
provide data support for the evaluation of water quality conditions, and shift the evaluation
criteria from subjective judgment to quantitative description, which is more objective, sci-
entific, and reliable. For water color remote sensing, any water component parameter with
significant spectral characteristics or optical properties, namely, photoactive compounds,
can be quantitatively inverted via remote sensing, such as the chlorophyll content, sus-
pended solids, and DOC. The inversion methods mainly include empirical/semi-empirical
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methods and analytical/semi-analytical methods [18]. The empirical/semi-empirical model
mainly realizes the inversion of water quality parameters based on the statistical relation-
ships between the water quality parameters and remote sensing parameters. The semi-
empirical method adds the theoretical analysis of the relationships between remote sensing
parameters and water quality parameters to the statistical relationship. The core of the
analytical/semi-analytical method is the bio-optical model. Thus far, numerous experts
and scholars have constructed models using different water quality parameters based on
Landsat data. Based on Landsat data and actual measured water quality data, Brivio et al.
used regression analysis to establish an inversion model of the chlorophyll-a concentration
in Lake Garda [19]. Sharaf El Din et al. extracted the principal components to develop
algorithms for turbidity and total suspended solids (TSS) based on Landsat-8 surface re-
flectance data [20]. According to Landsat operational land imager (OLI) data, Song et al.
established a remote sensing model for estimating transparency using the ratio of the red
to blue bands and achieved the inversion of the global water transparency [21].

The main purpose of this study is to extract the surface water coverage based on
the Google Earth Engine (GEE) cloud platform and long-term Landsat remote sensing
images and to retrieve water quality parameters, including chlorophyll-a (Chl-a) and
suspended solids (SS) concentration, and transparency, which are characterized by the
Secchi disk depth (SDD). The spatial extent of the surface water and the spatial–temporal
distribution of the water quality in Zhejiang Province from 1990 to 2022 were mapped, and
the characteristics of the spatial–temporal variations in the water area and water quality
parameters were analyzed. The results of this study provide data and technical support for
the scientific management of regional water resources.

2. Study Area and Datasets
2.1. Study Area

Zhejiang Province, China, is located in the south wing of the Yangtze River Delta
along the southeast coast of China (27◦02′–31◦11′N, 118◦01′–123◦10′E). It has a land area of
105,500 km2. The terrain of Zhejiang Province is diverse, mainly including mountains and
hills. The terrain elevation decreases from southwest to northeast in a stair-step manner.
Zhejiang Province is located in the subtropical monsoon zone and has a mild and humid
climate, abundant water resources, and a well-developed water system. The geographical
location and topographic map of the study area is shown in Figure 1.
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Figure 1. Study area: (a) geographical distribution and topographic map of Zhejiang Province, and
(b) locations of the main districts and cities in Zhejiang Province.

2.2. Datasets

Landsat is an earth observation satellite mission jointly planned by National Aeronau-
tics and Space Administration (NASA) and the United States Geological Survey (USGS).
The project provides valuable data for a wide range of applications, including land use
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planning, resource management, and environmental monitoring. All Landsat images are
publicly available through the USGS Earth Explorer. The 30 m resolution remote sens-
ing images (including surface reflectance data and top of atmosphere data) of Zhejiang
Province from 1990 to 2022 originated from the remote sensing data of the Landsat 5, 7, and
8 satellites. The European Commission Joint Research Centre (JRC) provides a rich, global
long-term surface water data set, which provides data support for the investigation and
research of water resources [22]. The spatial and temporal distribution information of global
surface water from 1984 to 2021, as well as statistical data about the scope and variation,
such as the occurrence (the frequency with which water was present), was obtained from
the JRC global surface water dataset. The nearly global elevation data were obtained from
the Shuttle Radar Topography Mission (SRTM) global digital elevation model released by
NASA. Due to the stability of the elevation data and the span of the study period, in this
study, we only used the digital elevation data for 2000 instead of data for all of the research
years. Landsat Global Inland Water, a global inland water body dataset based on Landsat
satellite data provided by GLCF (Global Land Cover Facility), includes the changes in
inland water bodies around the world over the last 35 years. The datasets we used in this
study are also accessible on the GEE platform [23]. The first 1 m resolution national-scale
land-cover map of China, SinoLC-1, was established using a deep learning-based frame-
work and open-access data including global land-cover (GLC) products, open street map
(OSM), and Google Earth imagery [24]. The SinoLC-1 was created by the Low-to-High
Network (L2HNet), which can be found at: https://www.sciencedirect.com/science/article/
abs/pii/S0924271622002180?via%3Dihub (accessed on 15 March 2023). The datasets used in
this study is shown in Table 1.

Table 1. Landsat time series and GEE datasets.

Landsat Time Series Datasets
Years Satellite Sensor Years Data Resolution

1990–1995
2000–2010
2015–2022

Landsat5 TM
Landsat7 ETM+
Landsat8 OLI

1984–2021 JRC Global Surface Water
Mapping Layers, v1.4

30 m2000 NASA SRTM DEM

2000 GLCF: Landsat Global
Inland Water

2021 SinoLC-1 1 m

3. Methods

Based on the GEE cloud platform and long-term Landsat remote sensing data, in
this study, the Emergency Geomatics Service (EGS) operational surface water mapping
algorithm was used to extract the surface water coverage area, and the verified model
was utilized to retrieve the Chl-a, SS, and SDD. Water body distribution and water quality
maps were created to analyze the temporal and spatial variation characteristics of the water
body area and water quality parameters. The technical workflow of this study is shown
in Figure 2.

3.1. Data Pre-Processing

In this study, the top of atmosphere (TOA) data and surface reflectance (SR) data
from Landsat data, which had been geometrically corrected, were obtained from the (GEE)
cloud platform. The existence of clouds has a great impact on remote sensing information
extraction and target recognition. To ensure the quality of the remote sensing images, TOA
data with less than 20% cloud coverage were selected when filtering data, and the quality
assessment band was used for the cloud removal processing to generate long-term Landsat
image data from 1990 to 2022 with an interval of 5 years using the median synthesis method.
Based on the Zhejiang border shape file, the remote sensing images were cropped and the
TOA data and SR data covering the study area were retained.

https://www.sciencedirect.com/science/article/abs/pii/S0924271622002180?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0924271622002180?via%3Dihub
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3.2. Water Spatial Range Mapping Based on EGS Operational Surface Water Mapping Algorithm

The EGS operational surface water mapping algorithm is a direct and fully auto-
matic surface water extent extraction method. This algorithm uses historical inundation
frequency products to mark land and water areas and sample the feature information;
then, it implements land and water classification using the random forest algorithm to
realize the extraction of the surface water [21]. Random forest is an ensemble algorithm,
which belongs to the bagging type. It takes the decision tree as the basic unit and forms
a random forest by integrating a large number of decision trees. Each time, it samples with
replacements from the training set to form a new training set, and uses the new training
set to train sub-models. The final results are obtained by voting or averaging, so that the
results of the overall model have higher accuracy and generalization performance.

The JRC Global Surface Water Mapping Layers v1.4 dataset obtained from the GEE
cloud platform contains the location and temporal distribution information about global
surface water from 1984 to 2021 and includes statistical data on the scope of and changes
in these water surfaces [25]. For the purpose of ensuring that all of the water sampling
points are water samples, the algorithm generates permanent water data (water occurrence
frequency of >80%) based on JRC global surface water data for masking. It extracts six bands
of information (blue, green, red, near-infrared, and shortwave infrared 1 and 2) from the
TOA data using the permanent water mask, combined with the permanent land (water
occurrence frequency of 0%) as training samples. The number of samples in each category
was greater than 600, with a ratio of 7:3 for the training and validation datasets. In the
random forest algorithm, the number of decision trees was set to 100 and the separation of
water and land was realized.

When only using band attributes for random forest training to extract the water
bodies, the characteristics of the same spectrum of remote sensing images have a certain
impact on the extraction results. For example, in this study, some mountain shadows
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were misjudged as water bodies. In order to further improve the classification accuracy
and eliminate the influence of misclassification and singular values, the MNDWI and
NDWI were used as masks to enhance the water body information. Slope calculation
was conducted based on NASA’s SRTM DEM (30 m), and the data with slopes of <20◦

were selected for masking. According to the high vegetation coverage characteristic in the
shadowed part of the mountains, which indicates that the NDVI value was also high, we
used the NDVI as a mask to remove the misclassification caused by the shadows of the
mountains. The comparison of surface water extent extraction efficiency using RF method
is shown in Figure 3.
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3.3. Accuracy Evaluation of Surface Water Extent Extraction Results

In this study, the accuracy evaluation of surface water extent extraction results is
divided into two parts. The first is the accuracy evaluation of the random forest training
model, which is measured by two indexes of kappa and overall accuracy (OA) [26]. The
Kappa coefficient is an indicator for consistency tests and can also be used to measure
the effect of classification. Because of the classification problem, consistency is based on
whether the model prediction results are consistent with the actual classification results.
The calculation of the kappa coefficient is based on the confusion matrix, and the value is
between −1 and 1.

The kappa coefficient calculation formula based on the confusion matrix is as follows:

Kappa =
po − pe

1− pe
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where
p0 =

Sum o f diagonal elements
Sum o f the whole matrix elements

,

pe =

∑
i

Sum o f the elements in row i× Sum o f the elements in column i

(∑ All elements o f the matrix)2

Overall accuracy: the sum of correctly classified pixels divided by the total number of
pixels is used to describe the overall classification accuracy.

OA =
Na

Nt

where Na is the number of correctly classified pixels, and Nt is the total number of pixels.
The greater the kappa and OA index values of the results obtained by statistical

calculation, the better the model classification results and the higher the accuracy. In
addition, the outcomes of this study are compared with the other two surface water data
products and remote sensing source images in the same region. The accuracy and error
of surface water extent extraction can be more intuitively and clearly shown through the
display of the effect diagrams in small areas.

3.4. Inversion and Mapping of Water Quality Parameters

Water resources are an indispensable natural resource for humans and are a funda-
mental condition for human survival and development. However, with the development
of society, the pollution of water resources and the environment has become increasingly
serious. As a basic component of water pollution control and treatment, water quality
detection has become vitally significant. Water conditions can be evaluated using various
water quality parameters, including the water transparency, suspended solids concentra-
tion, chlorophyll concentration, and dissolved organic matter. Therefore, the inversion of
water quality parameters is of great significance for water resource management, water en-
vironment protection, and water pollution prevention and control. Regarding water quality
parameter inversion methods, the empirical/semi-empirical algorithm is generally more
accurate and convenient to use, but it lacks a certain physical basis. The physical basis of
the analysis model is powerful; nonetheless, the overly complex physical mechanism leads
to the demand for a large amount of field data and cumbersome operation processing in
the inversion of the model. In this study, a large number of previous studies were selected
based on spatial–temporal conditions and some actual site data. Based on the water mask
after the land–water separation, the Landsat SR data were masked and combined with the
screened models to retrieve three water quality parameters in Zhejiang Province, including
the Chl-a, SS, and SDD. The models of Chl-a, SS and SDD are shown in Table 2.

Table 2. Information about the water quality parameter inversion models.

Parameters Models References

Chl-a YChl−a = 124.3× Rred
2 + 15.28× Rred + 0.914 [27]

SDD YSDD = 6715.539× (Rblue + Rgreen)
2 − 2794.743× (Rblue + Rgreen) + 336.465 [28]

SS lnSS = 14.656× (Rgreen + Rred)/(Rgreen/Rred) + 1.661 [29]

3.5. Analysis of the Spatial Distribution of the Water Bodies and the Evolution of the Temporal-
Spatial Patterns of the Water Quality Parameters

Based on the spatial mapping results of the surface water, statistical analysis of the
area in the entire region and in different districts and cities in Zhejiang Province in different
years was conducted, and the temporal variations in the spatial distribution of the water
bodies were obtained. In order to characterize the degree of the dynamic changes in the



Remote Sens. 2023, 15, 4986 8 of 21

surface water area in each region, the coefficient of variation (CV) of each district was
calculated separately.

CV(i) =
µi
xi

, (1)

where µi is the standard deviation, and xi is the average value. If the CV value is high,
there is a large difference between the individual data and the overall average value (or
central tendency), and the data fluctuation is more intense; in other words, the water area
in the region changes greatly.

Grade division was performed on the inversion results of the water quality parameters
according to the different concentration ranges. The proportion of water bodies with differ-
ent concentrations by year was compiled to obtain the spatial–temporal variation trends of
the different concentration water bodies under different water quality parameters. Through
calculations and drawing the Sankey diagram for the different concentrations in the same
research phases, the transformation of the water bodies with different concentrations was
vividly depicted.

4. Results and Analysis
4.1. Spatial Distribution Mapping of Surface Water

The spatial distribution characteristics of the surface water in each region and the
extraction efficiency of the water body details are shown in Figure 4. The integrity and
continuity of the surface water extent extraction were good, and the main river system
characteristics in Zhejiang Province were well preserved. The overall shape and edge
characteristics of Qiandao Lake (Figure 4D), the largest lake in Zhejiang Province, were
effectively extracted. Lakes such as Hangzhou West Lake (Figure 4B) and Ningbo Dongqian
Lake (Figure 4F) were accurately and completely extracted. Moreover, the small island in
the lake was accurately distinguished and retained. The lakes, ponds, and crisscrossing
rivers in the Hangzhou–Jiaxing–Huzhou Plain in northern Zhejiang Province (Figure 4A)
and the scattered small water bodies in the Jinqu Basin (Figure 4E) were successfully
distinguished and extracted. It was found that the algorithm utilized in this study has the
ability to accurately identify the river network within the city, and it retained the continuity
characteristics of the river while extracting the water body (Figure 5).

The Kappa coefficients for each year were greater than 0.90, and the OA values were
greater than 0.95 (Table 3), indicating that the water information extraction results are
credible. Furthermore, the surface water extent extraction results were compared with the
effect pictures of GLCF, SinLC-1 products, and remote sensing source images in the same
small area. In contrast with GLCF products, the products in this study have better effects
on river continuity, integrity, and water bodies shape feature extraction. Despite SinLC-1
product with 1 m resolution, they also have high consistency.

Table 3. The performance of the surface water extent extraction accuracy for each year.

1990 1995 2000 2005 2010 2015 2020 2022

OA (%) 0.9531 0.9589 0.9677 0.9795 0.9736 0.9736 0.9648 0.9735
Kappa 0.9061 0.9179 0.9354 0.9589 0.9471 0.9472 0.9295 0.9470

Based on the extraction of the water body information in each year, the surface water
area of Zhejiang Province was counted with eleven districts as units (Table 4).
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Table 4. Statistics of surface water area in 11 districts of Zhejiang Province.

Area (km2) 1990 1995 2000 2005 2010 2015 2020 2022 xi

Hangzhou 897.96 872.13 828.72 754.06 825.89 873.74 854.20 834.56 842.65
Ningbo 168.02 150.65 162.21 126.08 159.87 172.30 184.95 187.71 163.97

Wenzhou 167.39 150.48 173.69 150.66 159.36 162.66 158.49 160.63 160.42
Jiaxing 167.42 145.16 148.27 113.37 127.42 143.11 150.33 153.58 143.58

Huzhou 268.88 228.04 254.23 203.76 243.47 298.63 317.94 304.89 264.98
Shaoxing 216.26 183.96 253.02 209.88 220.45 252.27 252.35 230.56 227.34

Jinhua 169.91 159.81 178.10 166.71 177.69 219.24 210.76 187.20 183.67
Quzhou 102.84 99.88 111.96 80.73 124.89 154.86 160.41 146.22 122.72

Zhoushan 7.94 5.82 7.09 5.19 4.81 6.78 7.01 7.35 6.49
Taizhou 156.68 139.55 146.02 134.50 149.47 155.42 162.86 163.83 151.04
Lishui 101.13 88.64 106.06 82.56 145.37 171.30 155.65 155.71 125.80

Total area 2424.41 2224.12 2369.3 2027.49 2338.70 2610.30 2614.96 2532.24 2392.69

As can be seen from Table 4 and Figure 6, the average surface water coverage area in
Zhejiang Province from 1990 to 2022 was 2392.69 km2. The total surface water area exhibited
a decreasing trend from 1990 to 2005 and reached the minimum value of 2027.49 km2 in 2005.
Subsequently, the surface water coverage area continuously increased, and the maximum
value of 2614.96 km2 was reached in 2020. The average annual change in the area was
193.92 km2. According to the statistics of the surface water data for eleven districts and
cities in Zhejiang Province, the interannual variation in the surface water area was roughly
the same as that of the total surface water area in Zhejiang, but there were some differences
in individual cities. The average annual surface water area of Hangzhou is 842.65 km2, far
exceeding that of other districts, while Zhoushan only has 6.49 km2, which is only 0.77% of
Hangzhou. The surface water area in other districts is between 100–300 km2.

Figure 6. Interannual variation in total surface water area in Zhejiang during 1990–2022.

4.2. Inversion of Water Quality Parameters and Water Quality Map
4.2.1. Chlorophyll-a Concentration

A Landsat SR median synthetic image for the study year was acquired through the
GEE cloud platform; then, the Chl-a concentration was inverted using the validated model.
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Finally, the spatial and temporal distributions of the Chl-a concentration were mapped
using the water mask data (Figure 7).
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Based on the data presented in Figure 7, the Chl-a concentrations of the water bodies in
Zhejiang Province exhibited a decreasing trend from 1990 to 2022. The distribution pattern
indicates that the concentration was lower in the mountainous regions, followed by the
hilly and basin areas in the central region, and the highest concentration occurred in the
coastal areas. The locations with rapidly increasing Chl-a concentrations strongly coincided
with the distributions of several major cities.

To grade the results of the Chl-a concentration inversion, the outliers in the first and
last 1% of the dataset were removed, and the water bodies were divided into five differ-
ent gradations: low (0–1.5 µg/L), medium–low (1.5–3.0 µg/L), medium (3.0–4.5 µg/L),
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medium–high (4.5–6.0 µg/L), high (6.0–7.5 µg/L). The Sankey diagram was created to
visualize the transition between the different grades of the Chl-a concentration (Figure 8).
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Figure 8. The percentage and the transition between the different grades of the Chl-a concentration,
(A) hierarchical graph and (B) Sankey diagram of Chl-a concentrations of water bodies during
1990–2022.

As can be seen from Figure 8, the percentage of low Chl-a concentrations increased
annually, and the proportion of high concentrations increased until 2010 and then rapidly
decreased. However, the percentage of low Chl-a concentrations did not exceed 10% in
all of the periods studied. The transformation between the low and medium–low Chl-a
concentration categories was much stronger than in the high-value region. The concen-
tration variations were mainly between the low, medium–low, and medium categories.
A large number of medium–low Chl-a concentration water bodies shifted to medium
Chl-a concentration water bodies in the years when the Chl-a concentrations increased
significantly, while the medium–low Chl-a concentration water bodies shifted to low Chl-a
concentration water bodies in years when they decreased dramatically. A large proportion
of the medium–high concentrations changed, but throughout the time series, they remained
in dynamic equilibrium.
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4.2.2. Secchi Disk Depth

A Landsat SR median synthetic image for the study year was acquired through the
GEE cloud platform; then, the SDD was inverted using the validated model. Finally, the
spatial and temporal distributions of the SDD were mapped using the water mask data
(Figure 9).
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Figure 9. Distribution of SDD in Zhejiang Province during 1990–2022.

As can be seen from Figure 9, the SDD of the water in Zhejiang was highly dependent
on the water depth. In most areas, except for the major rivers and reservoirs, the SDD was
less than 70 cm. The downstream SDD of the large rivers was less than 50 cm, while the
SDD in the upper reaches was around 100 cm due to the water quality and suspended
sediment. On the province-wide scale, the areas with SDDs of 200 cm or greater were the
large water bodies located in the mountainous terrain, such as the Xin’anjiang Reservoir
in Hangzhou.



Remote Sens. 2023, 15, 4986 14 of 21

To eliminate abnormal SDD values, in this study, the first and last 1% of the data were
removed, and then, the data were processed and rounded down to the nearest integer. Then,
the water bodies were divided into five categories with equal intervals: low (0–50 cm),
medium–low (50–100 cm), medium (100–150 cm), medium–high (150–200 cm), and high
(200–267 cm). The data regarding transfers between levels were collected and plotted
on a Sankey diagram (Figure 10). The percentage of low SDD (0–50 cm) water bodies
was relatively stable; the high SDD water bodies were more obviously variable. Before
1995, there were virtually no areas of water with SDD values of 150 cm or above. During
2000–2010, only a few areas had medium–high SDD (150–200 cm). After 2010, SDD values
of greater than 200 cm gradually began to appear.

Figure 10. The percentage and the transition between the different grades of the Secchi disk depth,
(A) hierarchical graph and (B) Sankey diagram of SDD values of water bodies during 1990–2022.

As can be seen from the Sankey diagram (Figure 7), numerous water bodies with
medium–low SDD values transitioned to the medium–high SDD grade after 2010. Between
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2010 and 2015, almost 60% of the medium SDD water bodies transitioned to the high and
medium–high grades. Additionally, about 50% of the low and medium–low SDD water
bodies transitioned to the medium and medium–high grades during this period. Among
the different classes of water bodies, those with the largest transformed proportion were
the medium–low and medium SDD water bodies, with nearly 50% of these water bodies
changing each year, indicating that the stability of the SDD of this class of water bodies
was worse.

4.2.3. Suspended Solids Concentration

Using the validated model and a Landsat SR median composite image of the study
year, which were obtained based on the GEE cloud platform, the SS concentrations of the
water bodies were inverted and a spatial–temporal distribution graph of the concentration
was drawn using the water mask data (Figure 11).
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As can be seen from Figure 11, the SS concentrations of the water bodies in Zhejiang
Province varied considerably between the two poles, and the regional differences were
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obvious. The SS concentrations in the upstream areas of the large rivers and the various
types of reservoirs were less than 20 mg/L. The SS concentrations in the middle and upper
reaches of the rivers remained within the range of 40–50 mg/L. The SS concentrations in
the lower reaches of the rivers were greater than 200 mg/L, and a small portion of the water
bodies within the high-value area had maximum concentrations of greater than 600 mg/L.
In the remaining areas, the SS concentrations were mostly in the range of 20–50 mg/L.

Due to the great regional differences in the SS concentration, 40 mg/L was the middle
of the largest span of the data, while more than 83% of the data were within 0–60 mg/L
(the smallest span of data). Therefore, to distinguish the different concentrations of the
water bodies better, in this study, we selected the data with the largest concentration span
in the study period, removed the outlier values in the first and last 1%, and classified
them according to an interval of 50 mg/L: low (0–10 mg/L), medium–low (10–20 mg/L),
medium (20–30 mg/L), medium–high (30–40 mg/L), and high (40–828 mg/L). Then, we
investigated the transfers between the different types (Figure 12).
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As can be seen from Figure 12, the SS concentrations were concentrated below 20 mg/L
and between 40 and 828 mg/L, and the sum of the two concentrations in the middle
category accounted for no more than 30% of the total water bodies. Low SS concentration
water bodies were virtually absent in 1990 and 1995, and they only had a small distribution
from 2000 to 2005. They began to rapidly increase after 2010, accounting for more than 20%
of the total water bodies. The percentage of the water bodies with SS concentrations of less
than 20 mg/L exhibited a fluctuating yearly increase between 1990 and 2022, with only
a slight decrease between 2005 and 2010.

The most significant changes in the SS concentration occurred between 2010 and 2015,
during which over 50% of the medium–low SS water bodies transitioned to the low SS
category, while nearly 40% of the high SS water bodies transitioned to the medium–low
category. The combined proportion of the medium SS and medium–high SS water bodies
was less variable and remained in a state of dynamic equilibrium. The reduction in the
high SS water bodies was approximately the same as the increase in the combined area of
the low and medium–low SS water bodies.

5. Discussion
5.1. Reliability of Research Results

Using permanent water points as a training set, the water areas were identified based
on the random forest method and were post-processed using NASA’s SRTM DEM data
to obtain water–land classification images. The accuracy validation of the classification
results revealed that the kappa coefficients were greater than 0.90, and the overall accuracy
(OA) was greater than 0.95% for each study year. Compared with previous surface water
extent extraction studies (Table 5), which employed a variety of different methods such
as the NDWI, MNDWI, automatic water body extraction index (AWEIsh), and water
identification (WI2015) [17,30–33], this study applied the EGS operational surface water
mapping algorithm, which delivers a better performance in terms of overall accuracy and
the kappa coefficient than the four index methods mentioned above [34,35].

Table 5. Comparison of the accuracies of the methods using different satellite data.

Satellite Research Method OA (%) Kappa Coefficient

Landsat 8

RF (this study) 97.36 0.9472
NDWI 90.81 0.8133

MNDWI 93.24 0.8610
AWEIsh 94.52 0.8862
WI2015 94.48 0.8855

In this study of water quality parameter inversion, the inland water body band model
utilized in previous studies, in which the Chl-a, SDD, and SS were modeled via regression
using Landsat’s Rred, (Rblue + Rgreen), and (Rblue + Rred)/(Rblue/Rred) as the factors,
yielded R2 values of 0.846, 0.824, and 0.808, respectively. The inversion results can better
reflect the spatial and temporal variations in the water quality parameters in Zhejiang
Province and provide a better distinction between regional water bodies.

5.2. Distribution of Surface Water and Water Quality Condition

Hangzhou had a wide area and the largest river and lake in Zhejiang Province, and
it possessed the largest surface water area, with an average annual coverage area of
842.65 km2. Huzhou and Shaoxing belong to the typical Jiangnan Water Town with a dense
network of crisscrossed river courses, and the coverage area was more than 200 km2, second
only to that in Hangzhou. Quzhou and Lishui in the western part of Zhejiang are located
in mountainous and hilly areas. The water system in these areas was underdeveloped,
and the area was smaller, only about 120 km2. Zhoushan is a coastal archipelago with
a narrow geographical area, and the surface water coverage area was less than 10 km2.
Table 6 reveals that the CV values of the cities were significantly different. The CV values
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of Hangzhou and Wenzhou were low (0.05), and the CV values of Lishui and Quzhou were
higher (0.28 and 0.23, respectively).

Table 6. Statistical table of total area and water area change index of each region.

Area of Districts Standard Deviation Area of Water CV

Hangzhou 16,597 43.78 842.66 0.05
Ningbo 9816 19.72 163.97 0.12

Wenzhou 11,773 7.83 160.42 0.05
Jiaxing 4474 16.53 143.58 0.12

Huzhou 5596 40.06 264.98 0.15
Shaoxing 8778 24.71 227.35 0.11

Jinhua 11,830 21.13 183.68 0.12
Quzhou 8716 28.80 122.72 0.23

Zhoushan 1472 1.10 6.50 0.17
Taizhou 9185 10.61 151.04 0.07
Lishui 17,738 34.82 125.80 0.28

CV is a value with relative meaning. The standard deviation data of Hangzhou is very
large, but it has the largest surface water area in Zhejiang Province (large cardinal), which
makes its CV index very low. However, the average annual surface water coverage area of
Wenzhou is only 160.42 km2, and it is mainly concentrated between the two major rivers.
Because of the exchange of water bodies between rivers and coastal waters, the water body
area presents a relatively stable state. Lishui and Quzhou are located in mountainous and
hilly regions. The water system is narrow and long, covering a small area, and there are
many small ponds, which are easily affected by climatic factors and cause relatively large
area changes. Two large reservoirs were built in Lishui and Quzhou in 2009 and 2001,
respectively, with areas of the second and tenth largest in the province (most of the top ten
were built before 1990). Therefore, the CV index of these two regions is higher.

The SS concentration was significantly higher in the downstream part of the river in
the estuary region than in the other inland water bodies due to the convergence of several
rivers and the accumulation of flowing water. Similarly, The Chla was higher and the SDD
was lower. Before 2015, the magnitude of the changes in the various types of water in
Zhejiang Province was relatively small, but there was a tendency to increase the number of
water bodies with better quality conditions. Under the appeal of a policy, the water quality
in Zhejiang Province has improved significantly since 2015. In other words, the proportion
of the water bodies with high SS and Chla concentrations decreased yearly, the proportion
with high Chla concentrations gradually converged to zero, and the proportion with high
SSD values gradually increased and reached more than 10%.

5.3. Limitations of the Study

The remote sensing data acquired in this study were synthesized using the median
of the Landsat annual satellite data. The data merging methods utilized can affect the
original data, thus creating different errors in the study results [36–38]. For example, when
using the maximum value composite, even if the merged image has been pre-processed
by removing clouds, there will still be a large amount of noise in the composite image
due to abnormal cloud boundary pixels. When using the minimum value composite, the
water region extracted using the random forest method will yield misclassification of
mountain shadows, and the most difficult issue to cope with during the post-processing is
the misjudgment of the boundaries of the mountain reservoirs and holes in the centers of
the water bodies. Therefore, the median value composite of the image was chosen for use
in this study, but the median value composite also has the problem of inadequate synthesis
of time series image pixels.

The limitation of the ground resolution of the image, the influence of river bridges,
and the lack of comprehensive data collected at the sample points resulted in some of the
narrow water bodies not being extracted completely, and intermittent patches of water
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were often formed [39–42]. In addition, the large scale of the study area, which included
a wide variety of water body morphologies in various areas, made it impossible to perform
a uniform mathematical morphology operation to fill the entire area.

6. Conclusions

This study explored the extraction of surface water extent based on the EGS opera-
tional surface water mapping algorithm and inversion of water quality variables based
on validated models using Landsat time series, and created spatial distribution maps of
surface water extent and water quality variables in Zhejiang Province at 5 year intervals
from 1990 to 2020. The main conclusions of this study are as follows:

(1) The water body extraction accuracy of the EGS operational surface water mapping
algorithm, combined with Landsat data, is superior, with kappa coefficients of >0.90 in each
of the studied time phases, and the lowest overall accuracies exceed 95.31%. Fragmented
mountain water bodies, intricate urban water networks, and meandering rivers can all be
extracted well, and the comprehensive mask consisting of multiple indices greatly reduces
the potential for the misclassification of land areas.

(2) The inter-annual variations in the surface water bodies in Zhejiang Province exhib-
ited an initially decreasing and then increasing trend, with a minimum value of 2027.49 km2

in 2005 and a maximum value of 2610.30 km2 in 2015. Based on the statistics on the coeffi-
cient of variation (CV) of the water body area in each city in Zhejiang Province, Quzhou
and Lishui experienced the most dramatic changes during 1990–2022, and Hangzhou and
Wenzhou exhibited the smallest variations in water body area.

(3) According to the multi-spectral data for the water bodies extracted from the results,
combined with the water quality band model utilized in previous studies, the water quality
parameters in Zhejiang Province were inverted and mapped. In the watershed, the changes
in the water quality conditions in Zhejiang Province during 1990–2022 exhibited increases
after 2015. The water quality conditions of all of the types of water bodies changed slightly
before 2015, while they improved significantly after 2015, and the proportion of the water
bodies with better water quality conditions increased.
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