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Abstract: High-resolution coastline detection and monitoring are challenging on a global scale,
especially in flat areas where natural events, sea level rise, and anthropic activities constantly modify
the coastal environment. While the coastline related to the 0-level contour line can be extracted
from accurate Digital Terrain Models (DTMs), the detection of the real-time, instantaneous coastline,
especially at low tide, is a challenge that warrants further study and evaluation. In order to investigate
an efficient combination of methods that allows to contribute to the knowledge in this field, this
work uses topographic total station measurements, Global Navigation Satellite System Real-Time
Kinematic (GNSS RTK) technique, and the Structure from Motion (SfM) approach (using a low-cost
drone equipped with optical and thermal cameras). All the data were acquired at the beginning of
2022 and refer to the areas of Boccasette and Barricata, in the Po River Delta (Northeastern of Italy).
The real-time coastline obtained from the GNSS data was validated using the topographic total station
measurements; the correspondent polylines obtained from the photogrammetric data (using both
automatic extraction and manual restitutions by visual inspection of orhophotos) were compared
with the GNSS data to evaluate the performances of the different techniques. The results provided
good agreement between the real-time coastlines obtained from different approaches. However,
using the optical images, the accuracy was strictly connected with the radiometric changes in the
photos and using thermal images, both manual and automatic polylines provided differences in the
order of 1–2 m. Multi-temporal comparison of the 0-level coastline with those obtained from a LiDAR
survey performed in 2018 provided the detection of the erosion and accretion areas in the period
2018–2022. The investigation on the two case studies showed a better accuracy of the GNSS RTK
method in the real-time coastline detection. It can be considered as reliable ground-truth reference for
the evaluation of the photogrammetric coastlines. While GNSS RTK proved to be more productive
and efficient, optical and thermal SfM provided better results in terms of morphological completeness
of the data.

Keywords: GNSS RTK; optical and thermal images; SfM photogrammetry; real-time coastline; Po
River Delta; automatic extraction; multi-temporal comparison

1. Introduction

Coastal areas are a highly dynamic and complex environment, hosting approximately
10% and 44% of the Earth’s population at elevations of 0–10 m and up to 150 km from
the coast, respectively. The population density in these areas is expected to increase by
25% by 2050 [1]. These areas, characterized by significant socio-economic activities, are
continuously exposed to natural risks (storms, storm surges, cyclones, hurricanes, extreme
precipitation, and flooding) and sea level rise generated by climate change [2–4]. In many
areas, mainly in river deltas, these effects are exacerbated by land subsidence [5–7].
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These challenging environments are characterized by large topographic changes, dif-
ferences in bed cover (rough surfaces alternating with textureless and reflective surfaces),
the presence of water as channels, thin patches and deeper puddles, variations in the
coastline due to the combined effects of human activities on land and sea, regional en-
vironmental modification, and climate change. All these effects can represent important
challenging aspects for the monitoring of these areas [8].

Many studies were conducted by different researchers in the field of high-resolution
deformations monitoring in coastal areas due to erosion and accretion phenomena. Struc-
ture from Motion (SfM) photogrammetry, LiDAR (Light Detection And Ranging), and
Global Navigation Satellite System (GNSS) techniques were used to extract high-resolution
and high-precision digital terrain models (DTMs). The comparison between these data
acquired at different times and co-registered in the same reference system provided the
areas and volumes involved in the deformation processes. In particular, for coastal areas,
erosion and/or accretion can be measured by comparing the 0-level contour lines extracted
from the DTMs [9–11].

In this context, the high-resolution coastline identification becomes a crucial challenge
when analyzing flat areas. Reconstructing past coastlines can be achieved by using archival
data: cartographies, aerial photogrammetry, and satellite imagery [12,13]. In many cases,
more so for historical data, georeferenced digital models cannot be obtained due to the
absence of Ground Control Points (GCPs) coeval with the past surveys and/or the lack of
information about the tidal level when images were acquired. In these cases, the restitution
can be performed directly on 2D orthophotomaps where the unknown tide level, with the
water that can cover large portions when flat areas are involved, can have a very negative
impact on the result of the real coastline [14].

The extraction of coastline from optical images can be performed automatically by
means of various methods developed in recent decades. Supervised [15] and unsuper-
vised [16,17] image classification methods, specific tools (Automatic Coastal Extraction
Tool [18]) and suitable indices [19] can be used. In the latter approach, many indices are
available to detect the coastline in an easy way using satellite images [20–25].

Furthermore, drones equipped with optical and thermal cameras are increasingly used
in environmental surveys. The applications of these sensors on drones are available for
the detection of peat fires [26], wildlife detections and monitoring [27,28], building audits,
forest monitoring [29], agriculture parameters estimations [30], etc. Due to the general low
resolution of thermal images, thermal and optical images can be combined to generate
higher-resolution and high-quality thermal mapping models [31,32]. These data, easily
acquired by low-cost drones, can also find applications in the definition and monitoring of
the coastline.

Several researchers conducted studies for the coastline detection and monitoring using
different methods. Zanutta et al. [33] performed 3-D surveys of the coast in the Emilia
Romagna region (Northern Italy) using the photogrammetric SfM by drone equipped with
optical camera and GNSS (PPK, post-processed kinematics). They demonstrated the ability
of these methodologies for coastline monitoring by using 3D digital models extracted from
the surveys. However, the authors refer to the 0-level coastline extracted from digital
models, but do not investigate the applicability of these methods in the real-time coastline
detection. Michałowska et al. [34] used aerial photographs and orthophotomaps over a
65-year time interval for the coastline monitoring of the southern coast of the Baltic Sea
(Slowinski National Park) in order to study the erosion and accumulation phenomena. They
took advantage of the absence of anthropogenic impact and non-tidal sea with periodic sea
level fluctuations. In this case, the authors compared the foredune toe line, the natural line
formed by vegetation on the beach obtained on the basis of the visual interpretation of the
orthophotomaps. However, with this approach they did not detect the real ground–water
separation. Romagnoli et al. [35] analyzed the evolution of the long-term patterns of coastal
change of Lipari (Aeolian Islands, Italy) in the last 60 to 70 years using a multidisciplinary
approach, which includes aerial photogrammetric images, drone surveys, and satellite
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data, high-resolution multi-beam bathymetry and field observations. The authors digitized
the coastline from orthomosaics for the multi-temporal comparison without analyzing the
aspects linked to the tide level, since the study was focused on the long-term scale.

In the above-mentioned works, the authors focused their analyses on the restitution
and comparison of the 0-level coastline, but the real-time ground–water separation was
not investigated.

Typically, the restitution of the 0-level contour line can be performed by acquiring
high-resolution data (from aerial optical images, LiDAR, GNSS, classical topography, etc.)
of the area under investigation in low tide. In this way, after the generation of the 3D model
(point cloud) and the Digital Terrain Model (DTM), the automatic 0-level contour line is
assumed to represent the estimation of the coastline. On the contrary, the detection of the
real-time coastline is a challenge due to several reasons: (i) high tide and low tide real-time
contour levels can be extracted from DTMs covering areas below the mean sea level, which
may not be available in many cases; (ii) the tidal stations, which provide the tidal elevation,
can be far from the area under investigation, making the information related to the tidal
data less accurate in the study area or with delays or advances compared to the forecasts. In
this context, while the above-mentioned works focused on estimating and monitoring the
coastline related to the 0-level contour line, the real-time coastline detection has received
limited attention.

This work focuses on the identification of the real-time (instantaneous) coastline, in
low tide elevation using high-resolution geomatics techniques. For this aim, the main
objective is to analyze the performances of the different techniques in terms of coverage,
resolution, and accuracy. In addition to the more commonly used techniques, the extraction
of the real-time coastline from thermal imagery by means of a supervised classification
method is performed. Data related to the instantaneous coastline are used for the definition
of the involved transition surfaces from land to sea, taking advantage of several aims:
(i) accurate definition of the free beach area; (ii) boundaries detection of the areas assigned
to bathing facilities and/or for fishing-related activities; (iii) strip of surface interested by
the periodic water fluctuation (periodically flooded, from low tide to high tide and vice
versa) that can be used in the multi-temporal comparisons, etc.

In detail, the real-time detection of the coastline was investigated by means of GNSS
RTK (Real-Time Kinematic) measurements, topographic total station, and SfM photogram-
metric surveys using a low-cost drone acquiring both optical and thermal images. The
test sites were located in the flat area of the Po River Delta (PRD) (an area subject to the
phenomenon of land subsidence in northern Italy) [6]. The Boccasette and Barricata beaches
were investigated at the beginning of 2022 (Figure 1).

In both cases, the coastline in low tide conditions was surveyed simultaneously
with the different techniques, reducing the field work to one hour to avoid different tide
elevations in the acquired data. Thermal images were acquired only for a portion of
Barricata Beach.

The comparison between the different techniques applied in these sample sites was
used to evaluate the accuracy and reliability of the methods. This approach could rep-
resent a valid tool for analyzing the multi-temporal evolution of the coastline, which is
fundamental for long-term monitoring and risk-mitigation activities in the area.

The procedure followed the subsequent phases (Figure 2):

1. Validation of the GNSS RTK real-time coastlines using the polylines measured with
the total station;

2. Extraction of the DTMs and orthophotos from optical and thermal photogrammetric
data;

3. Georeferencing and validation of the photogrammetric data;
4. Restitution of the real-time coastlines on the optical and thermal orthophotos;
5. Extraction of the automatic real-time coastline from the thermal orthophoto;
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6. Comparison between the reference GNSS RTK polylines with those obtained from the
photogrammetric orthophotos, both in terms of distances and surfaces generated by
polyline intersections;

7. Evaluation of accuracies and performances of the different techniques;
8. Extraction of the 0-level contour lines from the DTMs;
9. Extraction of the 0-level contour lines from the DTM generated using an ALS (Airborne

Laser Scanning) LiDAR survey conducted in 2018;
10. Comparison between the obtained 0-level contour lines to evaluate modifications of

the coastlines in terms of erosion and/or accretion in the 2018–2022 period.
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Figure 1. (a) Location of the Po River Delta (PRD) in northern Italy; (b) location of the studied areas;
Boccasette beach (c) in the Barbamarco lagoon and Barricata beach (d) in the Bonelli Levante basin.

This work is organized as follows. Section 2 introduces the two study areas in the PRD.
Section 3 describes the surveys performed using the different techniques, the available
LiDAR data collected in 2018, the procedures adopted in the processing, and the approaches
used in the coastline comparisons. Section 4 provides the experimental results focusing
on real-time and 0-level coastlines multi-temporal comparisons. Section 5 discusses the
obtained results, and Section 6 summarizes the work and provides some conclusions.
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Figure 2. Flowchart of the methodology proposed in this work.

2. The Study Areas

The coastal areas under investigation, the Boccasette and Barricata beaches, are located
in the PRD. It is the last portion of the Po River basin, subdivided into seven branches that
flow into the Adriatic Sea. In the past, PRD was affected by high values of land subsidence
rates ([14,36,37] and references therein). Currently, the phenomenon, even strongly reduced,
is still ongoing [38–40], and most of the area lies below the mean sea level (in the order of
2–3 m), protected by earthen levees for hydraulic safety [41–43].

The Boccasette beach is a flat coastal portion in the northern part of the main branch
of the Po River (Po di Venezia). It is characterized by fine sand and extends for about
4.4 km in the southeast-northwest direction, from the northern mouth of the Barbamarco
lagoon to the Po di Maistra mouth (Figure 1). Similarly, Barricata beach is a flat coastal
portion in the southern part of the Po di Venezia branch: it is characterized by fine sand and
extends for about 3.2 km in the north-south direction, from the mouth in the center of the
Bonelli Levante basin to the Po di Tolle mouth (Figure 1). Both areas are located outside the
embankments, on islets connected to the earthen levees with two bridges. That of Barricata
is only open in the summer. Additionally, bathing establishments are active in both areas
during the summer, which occupy about 200 m of the beaches around the access bridges.

3. Materials and Methods
3.1. The Surveys
3.1.1. GNSS RTK and Classical Topographic Measurements

The surveys of the coastline were carried out under low tide conditions to reconstruct
the morphology of the studied areas below the mean sea level. Information about tide
elevation was provided by the Forecasting and Tide Reporting Centre (Centro Previsioni
e Segnalazioni Maree) service of the Venice Municipality [44]. Based on these data and
considering the delay reported in the PRD, the survey was conducted on 27 January and 25
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February 2022 for the Boccasette and Barricata beaches, respectively. Measurements were
carried out in winter to avoid interferences with (i) bathing establishments and (ii) other
anthropic activities (fishing, and similar) that are mainly active in summer. In addition, due
to fact that the motion of waves on flat areas greatly complicate the estimation of the ground–
water separation by the operator, the measurements were performed during minimum wind
speed, which minimizes the sea waves motion on the beaches, simplifying the operator’s
choices. The surveys start far from bathing establishments, from the southeastern corner
and from the northern corner in the Boccasette and Barricata areas, respectively (Figure 1).

In both cases, taking into account the minimum tide level (−0.5 m at 13:55 for Boc-
casette and −0.3 m at 13:35 for Barricata), the measurements started half an hour earlier
and ended half an hour later (from 13:25 to 14:25 for Boccasette and from 13:05 to 14:05 for
Barricata), in order to carry out the survey with the three different techniques in the same
tide conditions.

In the GNSS RTK survey a Leica Viva GS 15 GNSS receiver was used. The GNSS
antenna was fixed to the operator’s backpack by measuring the height from the phase center
to the ground (Figure 3a). The sampling rate was set to one second and the operator walked
along the ground–sea transition estimating the real-time coastline in the planned hour. A
total of 3600 and 3035 points were acquired and distances of 4.78 and 3.99 km were traveled
for the Boccasette and Barricata beaches, respectively, with average distance between points
of 1.3 m (in the Barricata the survey finished early due to the minor length of the beach).
Data were registered in the UTM reference system (EPSG:6876 RDN2008/Zone 12, N-E). At
the same time, a total station Leica TCR1201 was used. The station was stationed on a GCP
(used for the low-cost drone survey) and oriented to a second GCP for the co-registration of
the topographic data in the same reference system of the photogrammetric and GNSS RTK
surveys. The measurements were made with a second operator equipped with a prism
that walked along the ground–sea border, estimating the real-time coastline and acquiring
a point every two steps (Figure 3b). After about 1 h, 278 points were acquired covering
0.644 km in Boccasette and 230 points covering 0.568 km in Barricata (average distance
between points of 2.4 m). Subsequently, the ellipsoidal elevations obtained with the GNSS
measurements were converted to orthometric elevations using parameters provided by the
IGMI (Istituto Geografico Militare Italiano).
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Figure 3. Acquisition of (a) real-time kinematic and (b) topographic points in the Boccasette area. The
photographs highlight the cloudy day, which makes colors uniform (resulting in poor radiometric
changes in the optical images) and presents in the ground–water estimation.

3.1.2. The 3D Photogrammetric Survey Using a Low-Cost Drone

During the survey period, a low-cost drone, Parrot Anafi, equipped with an optical
camera (Sony IMX230) with a CMOS sensor of 1/2,4” and diagonal of 7.83 mm, resolu-
tion of 21 MP, focal length of 4 mm (equivalent focal of 23 mm, 4608 × 3456 pixels in
the image plane), and low-resolution thermal imaging (FLIR camera Lepton 3.5) with
3224 × 2448 pixels in the image plane was used. Before the measurement time, GCPs were
uniformly distributed along the investigated areas (Figure 4a); their location was measured
using the Leica Viva GS 15 GNSS receiver by applying the RTK approach, co-registering
the photogrammetric data in the same reference system of the data acquired with the
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other techniques. In detail, 32 and 29 GCPs were measured in Boccasette and Barricata,
respectively. In the hour of the measurements, for each investigated area, 4 optical pho-
togrammetric surveys longitudinal to the coast were carried out with an overlap greater
than 15% (Figure 4c); each flight was set with an elevation of 60 m, acquiring 6 strips, with
each covering 420 m of the longitudinal coast in about 15 min (the runtime of a single
battery) and with an overlap between the subsequent images greater than 60% (Figure 4).
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Figure 4. (a) SfM (Structure from Motion) photogrammetric targets used during the surveys; (b) im-
ages acquisition by the low-cost drone; (c) covered surface by the four photogrammetric flights in the
Barricata area; the image (b) highlights the better weather conditions compared to the Boccasette one
(Figure 3), featuring a sunny day that improves the colors brightness (resulting in good radiometric
changes in the optical images).

Finally, 960 optical images were acquired, covering a surface of about 1.68 × 0.21 km,
longitudinal and transversal to the coastline of the Boccasette area. The experience de-
veloped on Boccasette beach allowed us to optimize the time in the acquisition of optical
images in the Barricata area: for this reason, in addition to 1065 optical images (covering
1.58 × 0.21 km) of the ground–water transition area, a new flight was performed only
for Barricata beach during the same hour of survey using the thermal camera. A total
of 55 images were acquired in a strip, setting a flight altitude of 110 m and covering an
area of about 0.32 × 0.07 km of ground–water separation. The thermal camera on the
low-cost drone provided RGB images where the radiometry of each pixel is linked to a
scale of temperature (Figure 5). In this way, the performances of the coastline extraction
from thermal images can be evaluated.
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way, these data were co-registered in the same reference system of the surveys previ-
ously described (Section 3.1.1). In a previous work [14], the 0-level coastline was extracted 
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mean sea level. Furthermore, the orthophotos were used to generate the temporary 
coastline (real-time) during the surveys, corresponding to a tide elevation of −0.5 m and 
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Figure 5. Optical (a) and thermal (b) images acquired with the low-cost drone, representing the
same portion of the Barricata coastal area (around the GCP 8); the acquired coastal portion can be
subdivided into three main classes. From left to right: the dry sand, the wet sand, and the sea water.
In terms of radiometric changes of the RGB images, the ground–water border is more evident in the
thermal image.

3.2. The 2018 LiDAR Data

An ALS LiDAR survey was carried out in the PRD coastal area, outside the levees,
on 14 April 2018, using the Optech ALTM Galaxy sensor. These data were available at
the Veneto Region (Direzione Pianificazione Territoriale and Unità Organizzativa Genio
Civile di Rovigo) and the Local Authority of “Parco Regionale Veneto del Delta del Po”.
The survey was included in the monitoring activities of the sand islets (where Boccasette
and Barricata beaches are located), considerable storm surge barriers that protect the levees
from the erosive action generated by the motion of the sea waves. The 3D points were
acquired together with ortho-images characterized by GSD (Ground Sample Distance) of
20 cm. Measurements were performed using an integrated GNSS/INS (Inertial Navigation
System) system for georeferencing the data during the low tide elevation, so as to cover
as much as possible of the ground–sea transition area (using a flight altitude of about
1500 m). Finally, orthometric elevations of the acquired 3D points were obtained from the
ellipsoidal one by using the geoid model grids provided by the IGMI. In this way, these
data were co-registered in the same reference system of the surveys previously described
(Section 3.1.1). In a previous work [14], the 0-level coastline was extracted for the PRD area,
including the Boccasette and Barricata case studies (for more details, see Ref. [14]).

3.3. Processing and Comparisons
3.3.1. SfM Photogrammetric Images Processing

The SfM photogrammetric technique was used to generate the 3D point cloud for
both Boccasette and Barricata beaches. Agisoft Metashape software version 1.8.4 [45,46]
was applied together with the coordinates of the available GCPs to georeference the data.
In detail, the GCPs were subdivided in Control Points (CPs, 24 and 22 for Boccasette
and Barricata, respectively) used in the processing, and Check Points (ChPs, 8 and 7 for
Boccasette and Barricata, respectively) used to evaluate the accuracy of the extracted 3D
point clouds [47] (Figure 6).

Subsequently, a DTM and the corresponding orthophoto were generated for both
study areas to extract the 0-level contour line, which is assumed to be the real coastline that
can be used in the multi-temporal comparisons. The survey in low tide elevation provided
clear advantages in the reconstruction of the ground morphology below the mean sea level.
Furthermore, the orthophotos were used to generate the temporary coastline (real-time)
during the surveys, corresponding to a tide elevation of −0.5 m and −0.3 m in Boccasette
and Barricata, respectively. In this case, the restitution of the polylines was performed by
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the operator using the visual estimation of the ground–sea boundary, due to the high noise
of the automatic contour levels extracted from the DTMs in the ground–water transition.
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3.3.2. Automatic Real-Time Coastline Extraction from Thermal Images

In the first phase, because the low-cost drone used in the survey provides the thermal
images only in terms of RGB bands, they were used in Agisoft Metashape software version
1.8.4 to extract the orthophoto of the acquired area, which was georeferenced using the
available GCPs detectable on the thermal images.

The obtained data were used in the QGIS software version 3.18 to extract the automatic
polyline representing the real-time coastline. In this way, a pixel-based classification
technique, which includes supervised and unsupervised approaches, was used. In general,
supervised classification provides more accurate results, but is time-consuming and requires
greater use of resources due to the identification of training samples [48]. On the other hand,
supervised classification is commonly adopted in coastline extraction, especially when
high-resolution images are used [49]. For this reason, in this work supervised classification
was applied to estimate land–water separation. This approach subdivides the spectral range
of an image into regions that are linked to a type of land cover. The method requires a priori
knowledge of the land cover type to be classified to correctly choose the training samples.

Using the extracted thermal orthophoto, 10 training samples, equally subdivided in
terms of the number of pixels, were defined to separate water and ground regions (this
procedure was also applied to the optical orthophotos). This way, the orthophotos were
transformed into black and white raster images, and the real-time coastlines were extracted
based on the separation polyline between the pixels belonging to the two regions.

Subsequently, the polylines were optimized by simplifying the form and eliminating
pixel irregularities by introducing new points along the geometry with a step of 2 m
(points-to-path algorithm). This value was chosen to align with the order of the coastline
estimation, resulting in more regular polylines.

From the thermal orthophoto, the restitution of the real-time coastline was performed
by the operator by visual inspection of the land–water boundary.
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3.3.3. Coastline Comparisons

The obtained real-time coastlines were compared to each other, both in terms of
distances and surfaces generated by polyline intersections. This allowed us to evaluate
the following: (i) performances, including accuracies, of the different real-time coastlines
generated using the GNSS RTK, total station, manual and automatic restitution on optical
and thermal orthophotos with the same tide elevation, in both study areas; (ii) multi-
temporal changes using the 0-level contour line derived from the DTMs extracted using
the SfM approach (drone DTM 2022) and the ALS LiDAR survey performed in 2018.

In the first series of comparisons, the GNSS RTK coastline was assumed as the ground
truth due to the accuracy of this technique and the spatial coverage, which is greater than
that of the polylines obtained with the other methods. However, to evaluate the accuracies
linked to the land–water estimation by the operator (depending on the sensitivity of the
operator in the identification of the coastline), which can be very complex on flat areas
influenced by the sea waves motion, the GNSS RTK coastline was compared with the
topographic coastline surveyed by other operators in the overlapped areas, in order to
validate the GNSS RTK data.

Subsequently, the ground truth GNSS RTK coastline was compared with the following:
(i) the restitution on the visible orthophotos; (ii) the restitution on the thermal ortophoto;
(iii) the automatic polyline extracted from the thermal orthophoto.

The comparisons were performed by calculating the 2D distances between the obtained
polylines in the overlapped areas, providing averages and standard deviations. However,
due to the complexity of several portions, which are difficult to evaluate with distances
perpendicular to the polylines, the comparisons between the different coastlines were
performed by calculating the positive/negative areas of the polygons generated by the
polyline intersections. In this study, taking into account the reference GNSS RTK polyline,
positive values were obtained in the sea direction, while negative values were attributed
in the land direction, both for distances and areas. In the comparison of GNSS RTK and
total station polylines using QGIS software version 3.18, perpendicular distances were
calculated from the measured topographic points to the GNSS RTK polyline. Areas were
calculated considering the polygons generated by the intersection between the GNSS RTK
and topographic polylines. The same approach was used when manual and automatic
restitutions were involved.

In this case, the uncertainties derived from the comparison between the reference
polylines with those obtained by the total station and manual and automatic restitutions
were evaluated using the Ratio Index (RI) and the Distributed Ratio Index (DRI) [50]. The
first is obtained by dividing the total areas of the generated polygons with the length of the
reference GNSS RTK polyline. The latter is calculated by taking into account each obtained
polygon, dividing the i-area with the length of the related polyline. This way, statistical
parameters such as average and standard deviation can be calculated in order to provide
the degree of accuracy.

3.3.4. Accretion/Erosion in the 2018–2022 Period

The multi-temporal comparison involved the contour line of 0-level obtained from
the DTMs extracted using the ALS LiDAR measurements performed in 2018 and the
photogrammetric surveys carried out with the low-cost drone in 2022. In the first phase, the
LiDAR data (in the EPSG: 32632 WGS 84/UTM Zone 32N reference system) were converted
into the reference system used in this work.

Similarly to the procedure previously described (Section 3.3.2), starting with the 2018
survey, which is assumed as reference, the comparison was carried out by calculating
areas of the polygons generated by the intersection between the multi-temporal coastlines.
Accretion (positive) and erosion (negative) were linked to the location of the 2022 coastline
compared to the 2018 coastline.
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4. Results
4.1. Photogrammetric 3D Models and Orthophotos

Three-dimensional models were generated by means of the SfM approach for Boc-
casette and Barricata beaches using optical images and the Agisoft Metashape software
version 1.8.4. CPs were used in the processing and ChPs were used to validate the
3D models.

Table 1 summarizes the accuracies in terms of RMSE (Root Mean Square Error). The
obtained values, in the order of a few centimeters, are in agreement with those reported by
Vecchi et al. [9] and Zanutta et al. [33], who worked in similar environmental contexts and
with similar settings of photogrammetric surveys using drones.

Table 1. Number of CPs used in processing, available ChPs (see Figure 6), and comparisons between
the 3D coordinates and the extracted 3D photogrammetric SfM models in terms of RMSE.

3D Model N. CPs N. ChPs
RMSE (cm)

CPs ChPs

Boccasette 24 8 4.1 4.9
Barricata 22 7 3.5 3.8

Subsequently, dense clouds were generated and orthophotos were extracted
(Figures 7 and 8).
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For a portion of the Barricata beach, a different othophoto was generated using the
thermal images. Six CPs were used in the processing based on the available visible targets.
The 3D model was extracted with RMSE on CPs of 0.11 m. After the generation of the dense
cloud, the corresponding orthophoto was obtained.
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4.2. Restitution of Real-Time Coastlines by Visual Inspection

The restitution of the ground–water polyline separation was performed by the op-
erator using visual inspection. This operation was carried out using both optical (for
Boccasette and Barricata) and thermal (only for Barricata) orthophotos. Figures 7 and 8
show the obtained polylines overlapped with the optical orthophotos together with the
real-time coastlines obtained with the GNSS RTK and topographic surveys for Boccasette
and Barricata, respectively.

Details (A) and (B) of Figure 7b,c show the difficulties of the operator in the interpre-
tation of the ground–water separation from the optical orthophoto with little variation in
radiometry of the aerial images (see Figure 3). In these cases, large errors can be performed.
On the contrary, details (A), (B), and (C) of Figure 8b–d show that manual restitution of the
real-time coastline can provide better results when the bands of the aerial images cover a
wide spectrum of the radiometric range.

4.3. Automatic Real-Time Coastline Extraction

Since the low-cost drone used here the thermal imagery from the drone was provided
in terms of RGB bands and the land–water separation is radiometrically clearer compared
to the optical images (Figure 5), we explored a procedure based on supervised classification
to automatically extract the real-time coastline. The availability of only three bands did not
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allow us to apply commonly used indexes (for example NDWI, NDVI, etc.) developed for
satellite images when other bands are available [20,21].

Figure 9 shows the optical and thermal orthophotos of the Barricata beach overlapped
with the polylines generated by means of the following: (i) the GNSS RTK survey; (ii) the
manual restitution using visual inspection on both optical and thermal orthophotos; (iii) the
automatic polyline extracted from the supervised classification.
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Figure 9. (a) Polylines representing the real-time coastlines obtained from the GNSS RTK (i), the
manual restitution by visual inspection of the optical (ii) and thermal (iii) orthophotos, the automatic
polyline obtained from the supervised classification of the thermal orthophoto (iv). The location of
the thermal data on the optical orthophoto of the Barricata beach is also reported; (b) detail of the
thermal orthophoto; (c,d) show the two details (A) and (B).

Details (A) and (B) of Figure 9c,d show that all the obtained polylines representing the
real-time coastline are very closed, with maximum distances in the order of a few meters.

4.4. Real-Time Coastlines Comparisons

Real-time coastline comparisons were made in terms of distances and surfaces gen-
erated by polyline intersections. Figure 10 shows the distance comparisons between the
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polylines surveyed with the GNSS RTK technique and the total station topographic instru-
ment, both for the Boccasette and Barricata case studies.
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Figure 10. Comparison between GNSS RTK and the total station surveyed polylines representing
the real-time coastline both for Boccasette and Barricata beaches: (a) distances assuming the GNSS
polyline as reference in Boccasette; (b) distances assuming the GNSS polyline as reference in Barricata;
(c) distribution of the calculated distances.

The calculated differences were classified into three groups: (i) less than 1 m; (ii) be-
tween 1 and 3 m; and (iii) greater than 3 m. These values were chosen based on the type
of the analyzed surfaces (in this case flat areas) and the difficulties in the definition of the
real-time coastline due to the motion of waves on the beach. While differences less than
1 m are not significant within the accuracy of the estimation, values between 1 and 3 m can
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be acceptable. On the contrary, differences greater than 3 m highlight errors in the detection
of the real-time coastline.

The same approach was used in the comparison between the GNSS RTK technique
and the polyline extracted by the visual inspection on the orthophotos. Figure 11 shows
the obtained results together with the distribution of the distances in the three groups
previously defined.
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Figure 11. Comparison between GNSS RTK and photogrammetric polyline obtained from visual
inspection of the optical orthophoto, representing the real-time coastline both for Boccasette and
Barricata beaches: (a) distances assuming the GNSS polyline as reference in Boccasette; (b) distances
assuming the GNSS polyline as reference in Barricata; (c) distribution of the calculated distances.

Figure 10a,b show a substantial equilibrium between generated positive and negative
distances when the GNSS RTK and the polylines surveyed by the total station are compared,
both on the beaches of Boccasette and Barricata. On the contrary, Figure 11a,b show



Remote Sens. 2023, 15, 5354 16 of 22

significant positive distances obtained in Boccasette and negative distances in Barricata,
highlighting that the photogrammetric restitution was very different compared to the GNSS
RTK measurements.

In addition, in Boccasette 25.7% of the differences provided values greater than 10 m,
while in Barricata only 0.01% of the distances provided values greater than 5 m, showing
that the SfM technique, together with the restitution by visual inspection on the orthophoto,
provided very different results in the two studied areas.

The accuracy of the comparison in terms of surfaces generated by the polyline inter-
sections can be evaluated using the RI and DRI indexes. Tables 2 and 3 show the results
obtained for the Boccasette and Barricata case studies.

Table 2. Length, RI, and DRI values derived from the comparison between the GNSS RTK reference
polyline with: (i) the survey performed using the total station; (ii) the restitution by visual inspection
of the optical orthophoto considering the overlap length with the total station polyline; (iii) the
restitution by visual inspection of the optical orthophoto considering the whole dataset for the
Boccasette case study.

Comparisons Length (m) RI
DRI

Min (m) Max (m) Average (m) St. Dev. (m)

GNSS – Total station (i) 635.73 0.47 0.00 0.78 0.21 0.21
GNSS – Restitution (optical) (ii) 635.73 4.67 0.03 6.08 2.63 2.77
GNSS – Restitution (optical) (iii) 2628.52 8.81 0.03 10.60 4.09 3.75

Table 3. Length, RI, and DRI values derived from the comparison between the GNSS RTK reference
polyline with: (i) the survey performed using the total station; (ii) the restitution by visual inspection
of the optical orthophoto considering the overlap length with the total station polyline; (iii) the
restitution by visual inspection of the optical orthophoto considering the whole dataset; (iv) the
restitution by visual inspection of the optical orthophoto considering the overlap length with the
thermal data; (v) the restitution by visual inspection of the thermal orthophoto; (vi) the automatic
polyline extracted from the thermal orthophoto for the Barricata case study.

Comparisons Length (m) RI
DRI

Min (m) Max (m) Average (m) St. Dev. (m)

GNSS – Total station (i) 563.79 0.52 0.01 0.99 0.22 0.22
GNSS – Restitution (optical) (ii) 563.80 0.93 0.02 1.43 0.46 0.38
GNSS – Restitution (optical) (iii) 1649.78 1.63 0.02 2.41 0.52 0.55
GNSS – Restitution (optical) (iv) 281.30 2.90 - - - -
GNSS – Restitution (thermal) (v) 281.30 1.29 0.22 1.49 0.89 0.56
GNSS – Automatic (thermal) (vi) 281.30 2.76 0.08 3.53 1.18 1.36

4.5. Multi-Temporal Coastlines Comparisons

The comparisons between the 0-level coastline extracted from the ALS LiDAR survey
performed in 2018 and the 0-level coastlines extracted using the DTMs obtained from
surveys carried out with the low-cost drone in 2022, both for Boccasette and Barricata
beaches, are shown in Figure 12.

Polygons generated by the intersection of polylines were classified as erosion (red,
when the 2022 drone-based coastline falls in the land direction compared to the 2018 ALS-
based coastline) and accretion (green, when the 2022 drone-based coastline falls in the sea
direction compared to the 2018 ALS-based coastline).

On Boccasette beach, accretion of 13,751 m2 was mainly located in the south of the
analyzed area where the Barbamarco lagoon opens in the Adriatic Sea. On the contrary,
erosion (14,551 m2) was evident in the northern portion (Figure 12a).
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Figure 12. Multi-temporal comparison between the 0-level coastlines obtained from: (i) the survey
performed in 2018 (ALS LiDAR); (ii) the DTMs generated using the surveys carried out in 2022 with
the low-cost drone applying the SfM approach: (a) Boccasette and (b) Barricata study areas. The
background are the optical orthophotos extracted using the data acquired in 2022.

For Barricata beach, accretion of 21,783 m2 was detected almost completely in the
central portion of the study area, while erosion (14,223 m2) was located exclusively in the
south and, mainly, in the north of the beach, where the Bonelli Levante basin opens into the
sea (Figure 12b).

5. Discussion
5.1. Analysis of the Results

The detection of the real-time coastline performed by two operators and using the
ground-based GNSS RTK and the total station was very similar, both for Boccasette and
Barricata beaches (Figure 10). The differences provided average values of less than 10
cm and standard deviation in the order of 60–70 cm in very challenging areas (Figure 3).
For 90% of the points, the differences were less than 1 m in both cases. However, while
the GNSS RTK allowed the coverage of 4.78 km for Boccasette and 3.99 km for Barricata
within the survey time, the total station had a more limited spatial coverage of 0.64 km and
0.57 km, respectively. For this reason, the GNSS RTK polyline, validated using the total
station in the overlapped area, was assumed as the ground truth of the real-time coastline
for both study areas.

Involving the restitution performed using visual inspection of the optical orthophotos,
the results of the comparison with the GNSS RTK polyline for Boccasette and Barricata
were very different. While for Barricata the differences provided an average of 1.5 m and a
standard deviation of 1.4 m, these values in Boccasette drastically increased up to 9.1 m and
11.4 m, respectively. Moreover, the points with distances greater than 3 m increased from
15% in Barricata to about 60% in Boccasette (Figure 11). The difficulty in interpreting the
land–water boundary by the operator is evident when the radiometry of the optical images
presents very small variations (Figure 3). On the contrary, the perception of the land–sea
separation is much clearer on sunny days (Figure 4b), where the radiometric changes of
the optical images cover a wide range of the spectrum. However, the automatic real-time
coastline extracted using the radiometric approach and the supervised classification of the
optical orthophotos failed both for Boccasette and Barricata case studies. The radiometric
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changes along the ground–water separation were not enough for the automatic detection.
This result is in agreement with previous studies conducted in the same areas using aerial
photographs. The poor quality of the images increases the errors of manual and automatic
restitution of the coastlines [11,14].

In addition, the ground-based GNSS RTK approach is preferable, compared to the
drone-based SfM approach, also in terms of costs and spatial coverage, since in the hour of
survey with the low-cost drone only 50% of the GNSS RTK polyline was covered.

Similar considerations can be developed by analyzing the RI and DRI indices, when
surfaces generated by polyline intersections were generated (Tables 2 and 3). In particular,
Table 3 (Barricata case study) shows that the comparison between the GNSS RTK polyline
and the restitution by visual inspection on the optical orthophoto related to the same spatial
coverage provided RI and DRI values of distance about two times greater than the GNSS
RTK and total station comparison. Considering the problems related to the ground–water
estimation in these areas, the deterioration of the results was still limited and acceptable
for many applications, when the survey was performed in good weather conditions that
provided significant radiometric changes of the optical images. On the other hand, the
aerial images acquired in bad weather conditions were characterized by poor radiometric
changes that provided unacceptable estimation of the coastline (Table 2).

The polyline obtained from the thermal orthophoto provided better results (Table 3).
In the overlapped area the RI index was reduced from 2.9 m (GNSS RTK and restitution
by visual inspection on the optical orthophoto) to 1.29 m (GNSS RT and restitution by
visual inspection on the thermal orthophoto), due to the better radiometric separation of
the ground–water boundary on thermal images (Figure 5). The automatic extraction of the
real-time coastline slightly improves the results obtained with the optical orthophoto, but
with clear advantages of the automatic approach when wide areas must be analyzed.

Considering the promising results of the supervised classification, in future develop-
ments the automatic real-time coastline extraction from thermal images will be analyzed
more in detail by also using suitable indices developed for multispectral satellite images
and adapted to RGB thermal images.

Multi-temporal comparisons of the 0-level contour line in the 2018–2022 period pro-
vided general erosion in Boccasette and accretion in Barricata. However, while the cal-
culated erosion in Boccasette was very limited (the average retreat of the coastline was
about 0.5 m), in Barricata the accretion was more evident (the average advancement of
the coastline was about 4.7 m). The modifications in the analyzed period could be due
to several factors such as the dynamics of the nearshore, the morphology of the lagoon
behind the two studied beaches, the effects of the storm surges that occurred in the two
areas, etc. However, these values are also strongly influenced by both the accuracies of the
3D models and seasonal changes (the ALS LiDAR survey was performed in April 2018 and
the photogrammetric SfM surveys were performed in January and February 2022).

5.2. Comparison with Previous Research Works

The results of this work were compared with some others research studies conducted
in a similar coastal environment with analogue aims.

Lee et al. [51] performed accuracy and efficiency tests using a total station and a
GPS RTK for the measurements of spot points and continuous walking data by means
of a backpack system at the Gosapo macro-tidal sand beach (Republic of Korea). They
found accuracies of the data in the order of a few centimeters, in agreement with the
results obtained in this work regarding the comparison between total station and the GNSS
RTK data.

On the other hand, the accuracies of the coastlines obtained from optic and thermal or-
thophoto were also compared with those estimated by using multispectral satellite images.

Marchel and Specht [52] extracted the coastline at the public beach in Gdynia (Poland)
using a DJI Matrice 300 RTK UAV. They generated the Digital Surface Model (DSM) and
the orthophotomosaic of the studied area from which the ground–water separation was
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extracted. In addition, the authors marked out the coastline course using high-resolution
Pléiades Neo satellite imagery (resolution 0.5 m) and Hexagon Europe satellite images
(resolution 0.3 m). They calculated the accuracy of the obtained coastlines using a reference
polyline measured with a GNSS RTK receiver. The results provided differences of less than 1
m between the UAV and GNSS RTK coastlines. However, this value, which is slightly better
than the one obtained in this work, is strongly influenced by the radiometric characteristics
of the optic images, depending mostly on the weather conditions and, consequently, the
quality of visual inspection.

El Kafrawy et al. [53] compared and evaluated six coastline extraction methods applied
to a Landsat8 2015 image related to the Ras El-Hekma (Egypt) coastal zone. They used the
reference 2015 coastline extracted from high-resolution imagery of Pléiades B1 (resolution
0.50 m). The results of the comparisons provided by the authors showed 90% of shifting
distances in 1 pixel (30 m), highlighting a close correlation between accuracy and pixel size
of the satellite images.

Alcaras et al. [50] extracted the coastline of a coastal area close to the delta of the
Nestos River, in the Northern Aegean Sea (Easter Macedonia and Thrace, Greece) from very
high-resolution (VHR) Pléiades imagery. They extracted the coastline using the Normalized
Difference Water Index (NDWI) obtained and processed from both initial images and pan-
sharpened images. The authors compared the extracted polyline with the reference one,
manually achieved from the panchromatic image. Results of the comparisons provided RI
and DRI values comparable with those obtained in this study.

In these last works, the automatic extraction of the coastline was facilitated by the
use of multiband satellite images and limited by the ground pixel size [23,50]. On the
other hand, with low-cost thermal cameras on drones, the advantage was the acquisition of
images with higher resolution, allowing the authors to obtain good results in the automatic
coastline extraction—even with only three bands.

6. Conclusions

In this work the detection of the real-time coastline in the flat areas of Boccasette and
Barricata beaches (PRD, northern Italy) was investigated. Performances of the GNSS RTK
technique, total station topographic instrument, and the photogrammetric SfM approach,
using both optical and thermal images acquired with a low-cost drone, were analyzed.

According to the comparisons, the best performances in the detection of the real-time
coastline in terms of costs, accuracies, and spatial coverage were obtained using the GNSS
RTK technique. Nevertheless, drone-based survey by means of optical and thermal cameras
allows for the following: (i) the production of the 3D model of the study area using the
optical images, with the extraction of the 0-level contour line, useful in the multi-temporal
comparisons; (ii) the real-time coastline detection using automatic procedures based on
supervised classification of the thermal images. However, the drone-based survey cannot
cover the length of the GNSS RTK measurements in the same working time.

Finally, the ground truth real-time coastline obtained from images using visual inspec-
tion or the automatic approach can provide significant errors. This work demonstrated
the advantages of the ground-based GNSS RTK survey of the real-time coastline as a
reliable ground truth. It can be used as a high-accuracy reference to evaluate the perfor-
mances of polylines extracted from optical and/or thermal images and acquired from
different platforms.
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