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Abstract: Sea surface temperature (SST) is one of the most important factors related to the ocean
and the climate. In studying the domains of eddies, fronts, and current systems, high-resolution
SST data are required. However, the passive microwave radiometer achieves a higher spatial
coverage but lower resolution, while the thermal infrared radiometer has a lower spatial coverage
but higher resolution. In this paper, in order to improve the performance of the super-resolution SST
images derived from microwave SST data, we propose a transformer-based SST reconstruction model
comprising the transformer block and the residual block, rather than purely convolutional approaches.
The outputs of the transformer model are then compared with those of the other three deep learning
super-resolution models, and the transformer model obtains lower root-mean-squared error (RMSE),
mean bias (Bias), and robust standard deviation (RSD) values than the other three models, as well as
higher entropy and definition, making it the better performing model of all those compared.

Keywords: super-resolution; transformer-based model; sea surface temperature

1. Introduction

Sea surface temperature (SST), an essential variable related to the ocean and the
climate, plays a crucial role in the heat, freshwater, and momentum flux exchange at
the ocean–atmosphere interface [1]. Changes in sea surface temperature reveal fronts
and eddies caused by subsurface heat changes, and eddies are associated with weak SST
gradients [2]. Satellite remote sensing is an effective approach to deriving SST with dense
spatial resolution on regional and global scales, making eddies, fronts, and current systems
visible in SST imagery [3].

Satellite infrared observations of SST have shown capabilities for finer sampling, with
a spatial resolution of about 1–4 km; examples include the Visible Infrared Imaging Ra-
diometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (Suomi NPP)
satellite, the advanced geosynchronous radiation imager (AGRI) onboard the Fengyun-
4A (FY-4A), and the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard
the Terra and Aqua satellites [4]. However, the SST data derived from satellite infrared
radiometers are susceptible to interference from weather factors such as clouds, resulting
in low spatial coverage. The measurements of SST from passive microwave radiometers
are able to penetrate thick cloud layers, enabling all-weather observations, but they have a
coarser spatial resolution of about 50–75 km [5]. The identification and tracking of small
SST features requires high spatial resolution and frequent revisits [6]. Reconstructing the
high-resolution sea surface temperature fields from passive microwave remote sensing SST
observations would greatly facilitate our development of a comprehensive understanding
of intricate SST features.
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Deep learning-based super-resolution image reconstruction is a novel image recon-
struction technique that could improve low-resolution images by downscaling with high
fidelity [7]. Dong et al. [8] first used the super-resolution convolutional neural network
(SRCNN) method with three convolution layers to solve the super-resolution (SR) problem,
and achieved great results. In order to enhance the speed and resolution of the model, the
fast super-resolution convolutional neural network (FSRCNN) [9] was proposed by Dong
et al., which achieved a better super-resolution quality while being tens of times faster than
previous models. Kim et al. [10] proposed the very deep SR network (VDSR) method, with
20 layers, to enhance SR performance. They found that deeper work can benefit from the
capacity of deep learning-based SR, and the residual learning framework can be useful in
solving the gradient explosion problem. A method called the deep compendium model
(DCM) was proposed by Haut et al. [11]. It is a novel SR method based on a deep efficient
model that integrates improvements on previous network designs, including residual
units, skip connections, and network-in-network (NIN), to efficiently acquire high-quality
super-resolution remote sensing data while avoiding undesirable visual artifacts.

Deep learning-based super-resolution image reconstruction has been explored in the
field of SST and has shown outstanding achievements. In some approaches, the Level 4
SST data are downscaled by interpolating them into low-resolution (LR) SST images, and
subsequently upscaling the LR SST images to SR SST images via the deep learning method,
which shows that deep learning methods can be used to deal with SST SR problems. For
example, Aurelien et al. [12] downscaled the Operational Sea Surface Temperature and
Ice Analysis (OSTIA) SST data into LR SST images via bicubic interpolation, and they
then chose the SRCNN model to upscale the LR SST images into SR SST images. Khoo
et al. [13] proposed the Spectral Normalization–Enhanced Super Resolution Generative
Adversarial Network (SN-ESRGAN) to upscale LR SST images into SR SST images. The
LR SST images were downscaled from the OSTIA SST data by nearest interpolation. By
validating the low-resolution data from the South China Sea, this method can achieve a
higher and more realistic resolution than other methods. In other approaches, infrared
SST data are selected as high-resolution (HR) data and microwave SST data are selected
as LR data to train deep learning methods. Lloyd et al. [14] adopted the VDSR method
to upscale the 1 km resolution brightness temperature data from the Sentinel 3 satellite
into 200 m resolution SST data, and the target SST data came from the Landsat 8 satellite.
Tomoki et al. [15] used the 125 km-resolution ERA20C SST data as the LR SST data and the
25 km resolution OISST SST data as the HR SST data to train the residual in residual dense
block (RRDB) net, and the results exhibited a high quality. Bo et al. [5] proposed the oceanic
data reconstruction (ODRE) network and trained it with 3-day-averaged 0.25◦ × 0.25◦ grid
advanced microwave scanning radiometer 2 (AMSR2) SST data and daily 4 km Lever-3
mapped MODIS Terra SST data. The article demonstrates the excellent performance of the
ODRE model compared to the FDSR, DRRN, SRCNN, and VDSR models.

The studies mentioned above primarily used CNN as the main network. It is worth
noting, however, that the transformer-based model, which incorporates the attention
mechanism, has gained significant attention in computer vision applications and has
achieved remarkable outcomes. The transformer model has been sought to apply to
computer vision tasks, rather than convolutional approaches alone [16,17]. The focus of
this paper is on improving the performance of super-resolution SST images derived from
microwave SST data. We propose a transformer-based SST reconstruction model, which
can upscale the microwave SST data 12.5 times.

The summary is organized as follows: The experimental data are introduced in
Section 2.1. The overall framework of the proposed transformer model is presented in
Section 2.2.1 and the other three SR models are introduced in Section 2.2.2. Besides, a brief
introduction is given to the loss function and implementation details in Section 2.2.3. The
results are represented in Section 3 and are discussed in Section 4. The conclusion is given
in Section 5.
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2. Materials and Methods
2.1. Training Data

The VIIRS_L3S_LEO_PM SST dataset comprises the 0.02◦ gridded L3S sub-skin SST
data produced by the National Oceanic and Atmospheric Administration, Center for Satel-
lite Applications and Research (NOAA STAR) [18]. The data were sourced from the VIIRS
onboard the Joint Polar Satellite System (JPSS) satellites; specifically, the Suomi NPP and
NOAA20 (N20) satellites. The dataset covers the period from February 2012 to the present,
and is reported in two files per 24-hour interval, daytime and nighttime, approximately at
the local equator crossing times around 01:30/13:30. The data were provided in NetCDF4
format. The data were downloaded from https://search.earthdata.nasa.gov (accessed on
18 September 2023). The SST image yielded by the VIIRS_L3S_LEO_PM SST dataset on 1
January 2022 is shown in Figure 1.
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Figure 1. The SST image of VIIRS on 1 January 2022.

The AMSR2_L3U SST dataset comprises the 0.25◦ gridded L3U sub-skin SST data
produced by Remote Sensing Systems (REMSS). The data were sourced from the advanced
microwave scanning radiometer 2 (AMSR2) sensor onboard the Global Change Observation
Mission–Water (GCOM-W) satellite developed by the Japan Aerospace Exploration Agency
(JAXA). The dataset covers the period from 2 July 2012 to the present day. The local equator
crossing times are at approximately 01:30 and 13:30. The data are provided in NetCDF4
format. The data were downloaded from the website https://data.remss.com/amsr2
/ocean/L3/ (accessed on 18 September 2023). The SST image yielded by the AMSR2_L3U
SST dataset on 1 January 2022 is shown in Figure 2.

https://search.earthdata.nasa.gov
https://data.remss.com/amsr2/ocean/L3/
https://data.remss.com/amsr2/ocean/L3/
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Figure 2. The SST image of AMSR2 on 1 January 2022.

The left and right patches in Figure 3 are truncated from the SST images at the
same locations as the AMSR2 and VIIRS, respectively. Figures 1 and 2 clearly show that
the passive microwave radiometer represented by the AMSR2 achieves a higher spatial
coverage, while the thermal infrared radiometer represented by the VIIRS has a lower
spatial coverage. Nevertheless, as shown in Figure 3, the SST image retrieved from the
AMSR2 has a lower resolution, while the SST image retrieved from the VIIRS has a higher
resolution. Therefore, by adopting the super-resolution method, the resolution of the
AMSR2 SST data can be improved, yielding a higher spatial coverage.
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Figure 3. The patches of (a) VIIRS and (b) AMSR2 on 1 January 2022.

Considering the SST for the VIIRS and AMSR2 differ in depth, the value of the VIIRS
SST and the AMSR2 SST at daytime is different from that at nighttime because of the strong
diurnal warming effect. Therefore, in order to improve the accuracy of results, the nighttime
data and daytime data should be taken to train the models, respectively. In this paper,
we only discuss the model trained by the nighttime data. There are two years of global
nighttime data, 2021 and 2022 SST, used for the training dataset in this study. The global
nighttime SST data from January 2023 were used for validation. The AMSR2 and VIIRS data
taken on the same day can be interpreted as a low-resolution and high-resolution image pair.
The training image pairs were split into 12-by-12 patches in AMSR2 and 150-by-150 patches
in VIIRS, and the patches with missing data were excluded. After filtering out missing data,
there are 258,738 full patches, which were completely employed as training data in this
experiment. Likewise, after filtering out missing data, there are 9469 full patches, which
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were completely employed as testing data in this experiment. All the training patches and
testing images were normalized to the interval [0, 1] before training.

2.2. Methods

Transformer-based models have been widely adopted in the field of computer vision.
However, transformer-based deep learning SR models are rarely applied to the SST field
at present. Therefore, a transformer-based model is proposed to reconstruct the high-
resolution SST fields from passive microwave remote sensing SST observations. In order
to verify the accuracy and quality of the outputs of the transformer-based model, three
CNN-based SR models are used to compare the statistics of SST difference between the
outputs and the VIIRS SST data. The detailed framework of the proposed model is shown
as follows.

2.2.1. The Proposed Model

The overall framework of the transformer model is shown in Figure 4. The reason for
choosing two groups of ResNet blocks, linear layers, and transformer encoders in parallel
is that the DCM has achieved good results using jump connections [11], so we also used
jump connections in the design of the proposed model.
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Figure 4. Flowchart of the proposed model.

Given an LR patch, one convolution is utilized to transform the pixel space input from
the AMSR2_L3U SST dataset to feature space.

fin = conv(xLR) (1)

here, conv denotes a convolutional operation and xLR represents the LR patch, while fin
represents the output tensor of the convolution.

Two residual blocks are borrowed from Res-Net [19] and play a crucial role in image
deep learning by aiding in gradient vanishing and exploding. With the introduction of skip
connections, these blocks allow for the seamless flow of gradients, mitigating the issues
of gradient instability. Furthermore, the residual blocks enhance the fitting capacity of
the network by effectively learning residual information, thereby capturing the difference
between the input and output features. Therefore, residual blocks not only improve the
ability of the model to fit complex patterns, but also accelerate convergence during training.
As shown in Figure 5, residual blocks 1 and residual blocks 2 can be constructed by stacking
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multiple residual blocks, enabling the expression of intricate features and enhancing overall
model performance. The convolutions and rectified linear units (ReLUs) are included in
the residual blocks, which are defined as

x1 = Res1(fin) (2)

x2 = Res2(x1) (3)

where Res1 and Res2 represent the first and second residual blocks, and x1 and x2 denote
the outputs of the first residual block and the second residual block, respectively.
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After feature extraction in the feature space, two linear layers can be used to project
the input tensor into a higher-dimensional space, thereby enhancing the expressive power
of the model. The weights and biases in the linear layer are model parameters that need to
be learned through the backpropagation algorithm. By utilizing training data and a loss
function, the model can automatically adjust the parameters in the linear layer, enabling the
model to fit the training data better and achieve greater generalization. The linear layers
are defined as

l1 = Linear1(x1) (4)

l2 = Linear2(x2) (5)

where Linear1 and Linear2 represent the first and second linear layers, and l1 and l2 denote
the outputs of the first linear layer and the second linear layer, respectively.

Following the idea of Alexey et al. [16], the standard transformer here receives
a one-dimensional sequence of token embeddings as the input. To handle the three-
dimensional (3-D) features of patches, we should reshape the patches l ∈ RH×W×C into
sequences of flattened two-dimensional (2-D) vectors lpi

∈ RPH×PW×C, i = {1, . . . , N},
where (H, W, C) represents the height, the width, and the number of channels of the fea-
tures, (PH × PW ×C) represents the height, the width, and the number of channels of the
vectors, and N = (HW/PHPW) is the number of vectors, and also denotes the length of the
input sequence. The input vector size is typically fixed to D dimensions, and we need to
use a trainable linear projection to map lpi

to D dimensions. The formula for reshaping the
patches is defined as

lk =
[
l(k)p0

, l(k)p1
, . . . , l(k)pN

]
, k = 1, 2 (6)

yk =
[
l(k)p0

S, l(k)p1
S, . . . , l(k)pN

S
]
, k = 1, 2 (7)

where S is the matrix of the linear projection.
Following the original design of Vaswani et al. [20], the multi-headed self-attention

(MSA) module enhances the modeling capacity of the transformer encoder by learning
different attention focuses from distinct subspaces through the application of the attention
mechanism on different linear projection spaces. This enables the model to capture diverse
aspects of the input sequence, thereby improving its representational power and gener-
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alization performance. The combination process that takes place in the multi-input MSA
module can be formulated as

Atten = softmax

(
QKT
√

dk

)
(8)

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO

where headi = Atten
(

QWQ
i , KWK

i

)
VWV

i
(9)

where dk is the dimensions of the features and head denotes the heads of the MSA module.
The WO, WQ

i , WK
i and WV

i are parameter matrices and Q, K, and V are the variables decided
by the index of related components.

The transformer encoder 1 and decoder are set as examples to provide a clear descrip-
tion about the process of the transformer block, which are carefully shown in Figure 6. And
the transformer encoder 2 in the proposed model has the same structure as the encoder 1.
The transformer encoder contains a MSA module and a multilayer perceptron (MLP)
network. The layer normalization (LN) [21], which helps mitigate the issue of internal
covariate shift during the training process and stabilizes the learning procedure of the
model, is set before the MSA module and the MLP module. The MLP module has two
linear layers as well as a gaussian error linear unit (GELU) [22], which enables the model to
learn and represent complex features, thus improving its ability to generalize and make
accurate predictions. The overall formula of the encoder can be represented as

y′k = MSA(LN(yk)) + yk, k = 1, 2 (10)

zk = MLP
(
LN
(
y′k
))

+ y′k, k = 1, 2 (11)

where zk is the output of the transformer encoder, with the same dimension as yk.
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Figure 6. Illustration of the transformer encoder 1 and decoder.

In addition to the MSA module and MLP network, the transformer decoder also
includes a specific MSA module with cross-attention. By calculating attention weights,
this module can simultaneously handle the features input by the decoder and connect
them with the output derived from encoder 1. This mechanism allows the decoder to
fully utilize the contextual information, resulting in the generation of an output sequence
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corresponding more accurately to the input sequence. It serves as the core component of
the decoder. The output of the decoder can be obtained using the following equation

z′2 = MSA(LN(z2)) + z2 (12)

z′′2 = MSA
(
LN
(
z′2
)
, LN(z1)

)
+ z′2 (13)

z0 = MLP
(
LN
(
z′′2
))

+ z′′2 (14)

where z0 is the output of the decoder. Then, we reshape the sequences of the flattened
2-D vectors z0 back into patches and use the linear layer to project the higher-dimensional
space back to the tensor. After that, we can receive the output q0.

In the up-sample layer, a function of the PyTorch [23] deep learning framework is
employed to perform the up-sample operation. Its main purpose is to increase the size
of the input tensor to the target size, thereby altering the spatial resolution of the data to
meet the requirements. In this paper, the bicubic method is utilized for the up-sampling
operation. The up-sample layer can be represented as

u0 = upsample
(
q0
)

(15)

h = upsample(xLR) (16)

where u0 is the output of the up-sample layer derived from the front layers, and the h is
directly up-sampled from the low-resolution patches.

Lastly, one convolution is utilized to transform the feature space into the SST pixel
space. It can be represented as

fout = conv(u0) (17)

where fout represents the output tensor of convolution.
Finally, after one convolutional layer is applied, the super-resolution HR patch xSR is

obtained by adding the residual and fout. The final result can be expressed as follows:

xSR = h + fout (18)

2.2.2. Other SR Models

In order to compare the quality of the outputs of the transformer model, three famous
deep learning-based SR models, including the FSRCNN, DCM, and VDSR models, are
used to generate high-quality super-resolution outputs, which can be compared with the
outputs of the transformer model in different comparisons.

As shown in Figure 7, the DCM model [11] consists of two parts, including the
feature extractor part and the reconstruction part. In the feature extractor part, there are
12 convolution layers, which can be used to extract the corresponding feature maps. The
parametric rectified linear unit (PReLU) functions [24] are set after every convolution layer,
which enables us to deal with the decaying ReLU effect and the vanishing gradient problem.
In the reconstruction part, an up-sample layer is used to increase the size of the input tensor
to the target size. Then, the two branches with the convolution layer and the PReLU
function are set to reduce the depth of the input volume. Lastly, the SR patch is the sum
of the outputs of the previous layers and of the up-sample layer derived directly from the
low-resolution patch.
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Figure 7. Flowchart of the DCM model.

As shown in Figure 8, the FSRCNN model [9] is typically used in the area of super-
resolution imagery. It consists of patch extraction, representation, non-linear mapping, an
up-sample layer, and reconstruction. Firstly, a convolution and PReLU function is set in the
patch extraction and representation regions. There are five convolution layers and PReLU
functions in the non-linear mapping stage. In the up-sample layer, the up-sample function
of PyTorch [23] is also used in this model to increase the input size to the target size. At
last, a convolution layer without a PReLU function is used for the reconstruction.
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Figure 8. Flowchart of the FSRCNN model.

As shown in Figure 9, the architecture of the VDSR model primarily comprises patch
extraction, non-linear mapping, and reconstruction [10]. Twenty convolution layers are
used in this model, except for in the last part, which is followed by batch normalization
(BN) and the ReLU. An up-sample layer is set before the last convolution. Similar to the
other models, the SR patch is the sum of the outputs of the previous layers and of the
up-sample layer taken directly from the low-resolution patch.
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Figure 9. Flowchart of the VDSR model.

2.2.3. Loss Function and Implementation Details

The loss function of all four models is composed of the mean squared error (MSE).
Given a low-resolution patch xLR and the corresponding high-resolution reference patch
xHR, the loss function can be attained via

L(θ) =
1
N

N

∑
i=1

(
Gθ

(
x(i)LR

)
− x(i)HR

)2
(19)

where Gθ refers to the models with parameters θ, Gθ

(
x(i)LR

)
is the aforementioned x(i)SR, and

N is the number of training patches.
In the optimization, we used the Adaptive Moment Estimation (Adam) optimizer [25]

to train four models, where β1 = 0.9, β2 = 0.99, and ε = 10−8. The initial learning rate was
set to 3× 10−4, and the mini-batch size was set to 5. When the loss of a patch is less than
10−5, the training is stopped. These methods were implemented in PyTorch [23], and all
experiments were run on an NVIDIA GeForce RTX 3090 graphics card.

3. Results

In this section, numerous measures are used to verify the quality of the transformer
model. At first, the scatterplots are presented to show the minimax errors of all four models
directly, and the proportion of errors are calculated to clarify the distribution of errors.
Then, the statistics of SST difference between the outputs of the VDSR, DCM, FSRCNN
and transformer models and the VIIRS SST data are computed to illustrate the accuracy
of all four models. At last, the SST images outputted by all four models are displayed to
compare the quality of all four models.

To intuitively compare the stability of the results of all four models, we plotted the
scatterplots of all the outputs from January 2023 and calculated the proportion of the error
distribution. Figure 10 shows that the scatterplots of the output results of the transformer
and DCM models are good, and most of the points are concentrated on the 1:1 straight line.
However, compared with the outputs of the transformer and DCM models, the outputs
of the VDSR and FSRCNN models show certain points with large differences, reaching as
high as 5 ◦C. According to the distributions of the errors, the transformer model yielded a
higher percentage of SST difference within the range of 0.1, 0.2, 0.5, and 1 ◦C compared
with the other three models. Conclusively, the transformer model demonstrates distinct
characteristics of better overall stability.
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Figure 10. Density scatterplots of the VIIRS SST and the super-resolution SST values yielded using
the (a) transformer, (b) DCM, (c) FSCNN, and (d) VDSR models, where the line is the 1:1 line. The
number is shown in logarithmic form.

To evaluate the accuracy of the super-resolution SST obtained from the four models,
the root mean square error (RMSE), mean bias (Bias), and robust standard deviation (RSD)
between the outputs and VIIRS SST were calculated. As shown in Table 1, the bilinear and
cubic interpolation showed a higher bias, RSD, and RMS compared to the deep learning
models. Overall, the accuracy of the super-resolution SST values obtained from the deep
learning model is slightly higher than that of the bilinear and cubic interpolation. In the
comparison of four deep learning models, the transformer model showed the smallest bias
and RMS, with values of 0.1 ◦C and 0.48 ◦C, respectively. The bias of the VDSR model is
relatively high compared to the other three models, with the value of 0.15 ◦C. Comparing
the RSD values of the models helps to exclude some extreme values from interfering with
the error analysis, and so it is conducive to deriving a better understanding of the overall
error of the data; here, the VDSR model and the transformer model showed the smallest
values and thus the better results. Overall, the accuracy of the super-resolution SST values
obtained from the transformer model is slightly higher than that of the other three models.
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Table 1. Statistics of SST difference between the outputs of the VDSR, DCM, FSRCNN, and trans-
former models and VIIRS SST data. The number in boldface indicates the best performance.

Model Mean Bias (◦C) RSD (◦C) RMS (◦C) N

Transformer 0.10 0.35 0.48 213,052,500
DCM 0.12 0.37 0.50 213,052,500

FSRCNN 0.13 0.36 0.49 213,052,500
VDSR 0.15 0.35 0.49 213,052,500

Bilinear 0.21 0.43 0.55 213,052,500
Cubic 0.18 0.41 0.53 213,052,500

Furthermore, the entropy and definition were employed to assess the quality of the
SST images. The definition was measured by the gradient method, and a higher gradient
magnitude indicates more pronounced edges or contour changes in the image [26]. Entropy
is an important metric for measuring the richness of information [27]. As shown in Table 2,
all models showed similar entropy values, while those of the transformer model and
FSRCNN were higher compared to the other two deep learning models. And the entropy of
the cubic is the highest. The definition of results of the transformer model are much better
than those of the other three models, with a larger value of 75.46. The DCM and FSRCNN
showed similar gradients, around 57. Compared with the traditional interpolation method,
of bilinear and cubic, the deep learning model performs better in improving the image
resolution. Moreover, the definition of the AMSR2 and VIIRS SST images are 3.99 and
128.08. All models can significantly improve the definition of the AMSR2 SST images, but
there is still a gap with the definition of those of VIIRS. Overall, the SST image quality was
improved through the deep learning models.

Table 2. Entropy and definition of the SST outputs of the VDSR, DCM, FSRCNN, transformer models
and AMSR2 SST and VIIRS SST.

Transformer DCM FSRCNN VDSR AMSR2 VIIRS Bilinear Cubic

Entropy 4.20 4.19 4.19 4.18 4.12 4.24 4.18 4.22
Definition 75.46 57.69 57.40 50.10 3.99 128.08 48.85 52.80

In order to demonstrate the spatial pattern of the results, we randomly selected the
output from three regions. The super-resolution SST patches from the four models, as well
as the AMSR2 SST and VIIRS SST patches, are displayed in Figure 11a. The reconstructions
of the transformer and FSRCNN models in the northeastern area of the low-SST region are
better than those of the other two models. The SST image generated by the transformer
model is better than those of the other three models in the southern low-SST zone. In
Figure 11b, the SST image output from the transformer model retains the details of the fronts
a little more effectively than the other three models. The fronts of the other three models
are either broken or notably weakened, resulting in deviations from actual conditions. In
Figure 11c, we can see that the VDSR and DCM models have been over-smoothed, resulting
in losses of detail. The SST images outputted by the transformer and FSRCNN models
reflect the low-temperature region in the middle of the image, indicating that the quality of
their reconstruction is high in this patch.
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January 2023.

4. Discussion

The transformer model achieves the lower bias, RSD, and RMS values, while obtain-
ing higher values of entropy and definition, suggesting that the transformer block and
the residual block benefit in SST reconstruction. Additionally, it effectively generates the
distributions of absent temperature values in low-resolution data. These findings suggest
that the transformer block and residual block included in the transformer-based model are
useful for reducing pixel-by-pixel inaccuracies in the super-resolution sea surface temper-
ature data. The accuracy of the DCM model is lower than that of the transformer model
and higher than that of the VDSR model. This is because the DCM model features skip
connections and NIN, allowing the model to acquire a better understanding of the relation
between low-resolution SST data and high-resolution SST data. As a result, the DCM model
is capable of generating more accurate outputs than the FSRCNN and VDSR models.

To further investigate the accuracy of the transformer model, we have drawn patches
from the outputs of the transformer model, the AMSR2 SST, and the VIIRS SST, and we have
also plotted the corresponding SST histograms of the outputs of the transformer models,
and of the VIIRS SST and SSIM images. The patches of three days are arbitrarily chosen as
examples. The patches of 10 January 2023 are shown in Figure 12a–e. The comparison of
the AMSR2 SST, VIIRS SST, and SR SST images shows that the transformer model removes
the artificial low-temperature region in the southeastern part of the AMSR2 SST image,
and at the same time enhances the real high-temperature region in the southwest part of
the SST image, making the result more consistent with that of the VIIRS. The histogram of
the output SST also shows that its distribution is basically consistent with the distribution
shown in the VIIRS SST. At the same time, the SSIM images also show a high degree of
similarity, with the SSIM values of most regions being above 0.98, and only a small number
of regions having lower SSIM values; however, these latter are still above 0.9, which reflects
the excellent performance of the transformer model. The patches of 20 January 2023 are
shown in Figure 12f–l. The reconstruction of the low-temperature region in the northeastern
area of the output of the transformer model is perfect, and the low-temperature region in
the middle of the image also matches closely to the trend of VIIRS, which indicates the
good performance of the transformer model. Meanwhile, we can see that the distribution
of the output SST is similar to that of the VIIRS SST, and we can also see from the SSIM
image that the overall SSIM value is still above 0.95, indicating similar results to those
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of VIIRS. The patches of 9 January 2023 are shown in Figure 12m–o. We can see that the
transformer model is corrected in the high-temperature area in the southeastern region
compared with the AMSR2 SST, yielding a result that is close to that of the VIIRS SST
image. Meanwhile, in the low-temperature region that can be seen in the northwestern
region, the trend of the output SST is closer to that of the VIIRS SST, which indicates that
the reconstruction is more effective. Additionally, in the SST distribution histogram, there
are slight differences amongst the highest values, but on the whole, the SST distribution
of the output results is consistent with that of the VIIRS SST. In the SSIM image, all the
distributions are basically above 0.94, which indicates the high quality of the output images.
The output of the transformer model gained fine features in comparison to that of the
AMSR2 SST image, while it remains close to the VIIRS SST image. The histogram of the
distribution of SST closely matches the VIIRS SST histogram, and the difference in the SSIM
value between the VIIRS SST and the output SST is large, indicating that the transformer
model achieves better results in SST super-resolution.

As revealed by Figure 12, the output of the transformer model yields a similar temper-
ature distribution to that seen in the high-resolution SST data and yields a higher accuracy
and perceptual quality. In order to assess the contribution of the individual structures of
the model, we designed three ablation experiments. Whether two groups of ResNet blocks,
linear layers, and transformer encoders or not are included in the transformer model in
parallel is the first thing we think about. The result of this experiment indicates that the
accuracy of the super-resolution SST values obtained from the transformer model with two
groups is higher than that obtained from the transformer model with one group in ablation
studies. Therefore, it makes sense that there are two groups of ResNet blocks, linear layers,
and transformer encoders in parallel in the structure of the transformer. Secondly, we
designed an ablation study regarding the transformer blocks, the result of which showed
that when comparing results before removing the transformer blocks, the model without
transformer blocks achieves higher bias, RSD, and RMS values, while obtaining lower
values of entropy and definition, suggesting that the transformer block learns various
attentional focuses from different subspaces, enhancing the modeling capability of the
transformer encoder. Lastly, we added an ablation study regarding the residual blocks.
The result of the experiment is that when comparing results before removing the residual
blocks, the model without residual blocks achieves higher bias, RSD, and RMS values,
while obtaining lower values of entropy and definition, suggesting that the residual blocks
address the issue of vanishing and exploding gradients by implementing jump connections,
which facilitate a smooth gradient flow. Residual blocks are also capable of efficiently
learning residual information and capturing distinctions between input and output prop-
erties, resulting in an improved network fitting capability and faster convergence rates
during training. Incorporating multiple residual blocks to the learn complex features of
SST data enhances the overall performance of the model. Nevertheless, in certain regions,
a contrast arises between the output of the proposed model and the high-resolution SST
data. This discrepancy is primarily found in the near-shore area, and is caused by the
error of microwave SST data. As the models used in this study were trained using global
SST data, it is possible that a single model may not provide better results for every sea.
Furthermore, as in prior research, we can infer that models designed for a specific region
tend to perform better than globally trained models, which underscores the importance of
regional specialization.
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Figure 12. Exemplary SST patches for AMSR2 SST, VIIRS SST, and the super-resolution SSTs of
transformer model, histograms of SST between super-resolution SST and VIIRS SST, and SSIM
between super-resolution SST and VIIRS SST on (a–e) 10 January 2023, (f–j) 20 January 2023, (k–o) 9
January 2023. In the histograms, the pink bars represent the frequency of VIIRS SST values, while
the green bars represent the frequency of SR SST values. In the SSIM image, the lighter the color, the
greater the similarity.



Remote Sens. 2023, 15, 5376 17 of 18

5. Conclusions

It is widely acknowledged that high-resolution SST has a crucial role in the research of
the domains of eddies, fronts, and current systems. The SST data from satellite infrared
radiometers has a finer sampling but acquires a lower spatial coverage, resulting from the
clouds. Nevertheless, satellite measurements of SST from passive microwave radiome-
ters have demonstrated the capability of allowing all-weather observations but have a
coarser spatial resolution. Therefore, in order to understand the intricate SST features, the
transformer-based SR model proposed in this paper offers a flexible and efficient way to
extract the high-resolution sea surface temperature fields from passive microwave remote
sensing SST observations. The proposed model comprises the transformer block and the
residual block, rather than purely convolutional approaches. The transformer block learns
various attentional focuses from different subspaces, enhancing the modeling capability of
the transformer encoder. And the residual blocks are capable of efficiently learning residual
information and capturing distinctions between input and output properties, resulting
in an improved network fitting capability and faster convergence rates during training.
Because of the transformer block and the residual block, this transformer-based model
obtains lower RMSE, Bias, and RSD values than the other three models, as well as a higher
entropy and definition, making it the better-performing model of all compared. The results
of this study demonstrate that this transformer-based model represents a viable means to
produce SR SST data from LR microwave SST data, the outcomes of which align relatively
with the SST values derived from the target dataset, indicating that advanced deep learning
methods are suitable not only for the image field, but also for the SST field.
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