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Abstract: In modern electronic warfare, radar intelligence has become increasingly crucial when deal-
ing with complex interference environments. This paper combines radar agile frequency technology
with reinforcement learning to achieve adaptive frequency hopping for radar anti-jamming. Unlike
traditional reinforcement learning with Markov decision processes (MDPs), the interaction between
radar and jammers occurs within the partially observable Markov decision processes (POMDPs).
In this context, the partial observation information available to the agent does not strictly satisfy
the Markov property. This paper uses multiple layers of historical observation information to solve
this problem. Historical observations can be viewed as a time series, and time-sensitive networks
are employed to extract the temporal information embedded within the observations. In addition,
the reward function is optimized to facilitate the faster learning of the agent in the jammer sweep
environment. This simulation shows that the optimization of the agent state, network structure, and
reward function can effectively help the radar to resist jamming.

Keywords: frequency agile radar; radar anti-jamming; reinforcement learning; long short-term memory

1. Introduction

In electronic warfare, suppressive and deceptive jamming by the enemy can cause
severe damage to radar information, and frequency hopping is the primary approach used
to deal with interference [1]. In the past, agile frequency radars would usually employ
artificial rules for frequency hopping [2]. Since the advent of cognitive radio, the demand
for radar intelligence has been increasing [3]. With the development of modern electronic
warfare, jamming strategies have become more complex, and advanced jammers can even
infer radar transmission strategies [4–6]. Traditional hopping strategies are unable to meet
the requirements of modern information warfare. Therefore, the development of adaptive
anti-jamming intelligent radar has become imminent.

Fortunately, reinforcement learning [7] can be used as an alternative. Reinforcement
learning is a branch of machine learning that does not depend on supervised labels. Instead,
it allows intelligent agents to interact with the environment, generate data, accumulate
experience, and maximize the reward function in order to achieve the desired objectives [7].
The common reinforcement learning algorithms include Q-learning, Deep Q-Network
(DQN), Proximal Policy Optimization (PPO), Deep Deterministic Policy Gradient (DDPG),
and Soft Actor–Critic (SAC) [8–12].

Preliminary research has been conducted on radar anti-jamming based on reinforce-
ment learning. In one study, the DQN was used to predict the positions of interference
beams in the next time slot, allowing the radar to proactively select beam positions in
order to counteract jamming [13]. Another study utilized the Dueling Double Deep
Q-Network (D3QN) algorithm to design optimal anti-jamming waveform strategies for
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airborne radar [14]. In [15], a proposed energy-saving power control scheme based on
reinforcement learning was introduced to detect deceptive interference in an array Multiple-
Input Multiple-Output (MIMO) radar. In the spatial domain, the variations in the signal-
to-interference-plus-noise ratio (SINR) can reflect the relationship between the beam and
interference angles. However, in the time domain, the SINR does not exhibit such changes.
The authors in [16,17] proposed the idea of designing reward functions based on signal
power, ultimately achieving intelligent frequency hopping and efficient energy utilization
using the adaptive frequency hopping (QFH) strategy. In [18], the authors redesigned the
DQN network layers, replacing the Feed-Forward Neural (FFN) network with long short-
term memory (LSTM), resulting in significant improvements in adaptive frequency hopping
for radar anti-jamming. Reference [19] demonstrated that, when the radar’s frequency
space is very large, using the DQN to select the frequency hopping actions outperformed
the Q-learning algorithm. In the fight against intelligent jammers, the researchers in [20,21]
employed the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) and Neural
Fictitious Self-Play (NFSP) algorithms, respectively, and they proved to be quite effective.

The above studies did not fully recognize the unique characteristics of radar anti-
jamming. The process of radar versus jammer involves a partially observable Markov
decision process (POMDP), where the current observation of the agent does not include all
of the historical state information. Although they mentioned the POMDP in their papers,
the design of the radar agents remains limited to Markovian reinforcement learning. In a
Markov decision process (MDP), after the interaction between the agent and the environ-
ment, the input state of the agent can be a single frame of data, such as distance, an angle, or
images that reflect the relationship between the agent and the obstacles. However, in radar
frequency hopping against jammers, the radar agent only has access to the radar data, while
the jammer is unknown. The radar makes decisions solely based on the previous obser-
vation, meaning that radar anti-jamming is a partially observable problem [22], requiring
historical observations to assist in the decision-making process. Although [21] recognized
this issue, they overlooked the information hidden in the temporal dimension of multiple
frame observations. Similar to the impact of words when translating one language to
another, in a radar observation sequence, differences in factors such as the carrier frequency
value and order, anti-interference results, and the relative position of each carrier frequency
may reflect different interference strategies. However, the FFN network does not have
memory and cannot capture this mutual relationship.

In this study, we recognized the uniqueness of radar frequency hopping anti-jamming
and aimed to address the partially observable nature of the problem by incorporating histor-
ical observations. Considering that the temporal correlations within historical observations
cannot be effectively captured by the FFNs, we drew inspiration from the literature [23]
and introduced time-sensitive networks within deep reinforcement learning to exploit the
temporal dimension information. In subsequent experiments, we observed that agents
using time-sensitive networks show good anti-interference capabilities. The LSTM-based
agent exhibits the minimum number of frequency hopping times. Therefore, in this paper,
we choose LSTM as the Q-network for deep reinforcement learning. Although LSTM has
been used in a previous study [18], its purpose was primarily to enhance the performance
through increased network complexity, rather than leverage time sensitivity characteristics.
In addition, the method of combining LSTM with historical sequences is mentioned in the
literature [24], however, the focus of this previous paper is different to ours. In [24], the
researchers constructed the process of radar fighting jammers as an MDP. In this process,
the jammer is not unknown to the radar, and when they set the historical sequence, the
radar observations are all of the jammer’s actions. In addition, the literature [24] does not
analyze the impact of the length of a historical sequence on the results. In this paper, we
construct the jammer–radar confrontation process as a POMDP. The jammer is unknown
to the radar. The observation data in the observation sequence are based on the radar
and do not directly contain jammer information. Regarding networks, the authors in [24]
merely verified that LSTM has advantages over the Convolutional Neural Network (CNN)
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and FFN when processing historical sequences; however, they did not use another time-
sensitive network to analyze whether these advantages are general characteristics related
to time sensitivity rather than the unique capabilities of LSTM.

We summarize the main contributions of this paper as follows:

1. The process of radar frequency hopping against the jammer is constructed as a
POMDP, and the partially observable problem is solved by using a radar history
observation sequence.

2. It has been proven that the time-sensitive network has more advantages than the FFN
in terms of extracting information from the radar observation sequence.

3. Optimizing the reward design of the agent helps the reinforcement learning model
with LSTM to achieve faster convergence. In a POMDP, the agent relies on historical
observations, and each layer of actions and rewards in the observation sequence will
impact the agent’s decision. Therefore, the agent’s reward after taking action should
not be independent (i.e., the reward design in the MDP is only related to the action of
this round), but should rather reflect the connection between the decisions. Therefore,
we optimized the reward function to speed up the learning speed of the agent to resist
the jammer in sweep mode.

4. Extensive experiments were carried out to prove the method.

The remainder of this paper is organized as follows: Section 2 introduces the system
model of the radar and the jammer; Section 3 presents the interaction model between
the radar agent and the jammer; Section 4 provides the simulation results; and Section 5
presents the conclusions.

2. System Model

This paper studies the radar anti-interference problem of pulse-to-pulse frequency
hopping. The interference is generated by the jamming device through a frequency-
sweeping strategy, which is widely employed as an active attack technique [25]. Next, we
will introduce the model of the radar and the jamming device.

2.1. The Signal Model of the Radar

Assuming that the radar transmits N pulses in one coherent processing interval (CPI),
and each pulse has a constant pulse repetition interval (PRI), the radar can change the
transmitting carrier frequency during the pulses. The mathematical expression for the i-th
pulse can be presented as follows:

si(t) = u(t) exp(j2π fmt) (1)

where i ∈ {0, 1, . . . , N − 1}, which represents the i-th pulse in each CPI, N represents
the total number of pulses transmitted by the radar in each CPI, and u(t) represents the
envelope function. In addition, fm ∈ { f0, f1, . . . , fL−1}, which represents the m-th frequency
in the frequency space, and L represents the length of the frequency space. ∆ f = fm − fm−1,
which represents that the adjacent carrier frequencies have a fixed step size [26]. The
radar has the flexibility to choose any frequency in the frequency space to be the carrier
frequency [27,28].

2.2. The Model of the Jammer

Here, the jammer employs a frequency-sweeping strategy to attack the radar. In the
environment of the confrontation of the radar and the jammer, we assume that the radar
operating bandwidth is large, and that the jammer’s detection capability and the instanta-
neous frequency bandwidth are restricted. In order to traverse the radar carrier frequency
space as quickly as possible, the jammer uses discrete, random, and fast instantaneous
frequency measurement technology [29]. We assume that the confrontation scenario is
radar sea detection, where the radar detection pulse exceeds 10 µs [30]. The jammer uses
the instantaneous frequency measurement with the phase comparison method, and the
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frequency measurement time of each frequency point is less than 100 ns [29]. It can be seen
that the detection of a measurement time made up of 20 frequency points is less than 2 µs
for the jammer. To simplify, we assume that the jammer could acquire a lot of frequency
point information simultaneously within a PRI. In addition, regarding the problem of the
interference and radar carrier frequency space being the same, we follow the literature [17]
and assume that the enemy uses an electronic intelligence [31] system to obtain all of the
available carrier frequencies of the radar. Overall, we assume that the jammer and the
radar operate in the same frequency space, the jamming and radar pulses are synchronized
in time, and the jammer is able to detect multiple radar frequencies within one PRI. The
working process of the jammer is as follows: Firstly, it scans the frequency space of the
radar using the M-sequence method [32], and the Mint carrier frequencies are detected at
each PRI. If a radar signal is detected, the jammer immediately emits jamming signals at
that frequency in the same PRI, and it will detect the same Mint frequencies at the next
PRI. After detecting all of the carrier frequencies, the jammer starts a new turn of detection.
If the jammer does not find a radar signal, it will scan the frequencies in the frequency
space randomly and select Mtran frequencies, which emit strong suppression jamming
signals. When all of the carrier frequencies are scanned, this starts a new turn of emission.
From the perspective of the jammer, the frequency space can be divided into the detected
carrier frequency space, the currently detecting carrier frequency space, and the upcoming
detecting carrier frequency space. The additional random emission function enables the
jammer to have the capability to attack both the detected and the undetected frequencies.
The strong suppression jamming not only affects the launch frequencies of the jammer, but
also suppresses the adjacent frequencies. For instance, when Mtran = 1, and the jamming
signal is at frequency fj, the radar operating at frequencies fj−1, fj, and fj+1 will be affected.
In the frequency scanning mode, the jammer is helpless against the target radar in the
scanned carrier frequency space, however, strong suppression can compensate for this
limitation. Here, we assume that the jammer has strong detection and rapid response
capabilities. As long as the Mint frequencies are detected, including the radar working
frequency, the jammer can immediately obtain all of the signal parameters of the radar
and release interference. In fact, the maximum number of frequencies that the jammer can
interfere with in each PRI is Mint + 3×Mtran.

From the radar’s perspective, the jammer’s characteristics remain unknown. An
example of the radar and jammer countermeasures is shown in Figure 1. At the first PRI,
the radar was transmitted on the carrier frequency f 6, while the jamming system detected
frequencies f 4 and f 7. The jammer did not intercept the radar’s frequency, so it randomly
selected frequency f 2, on which there were strong suppression jamming signals. The
strong suppression jamming also affected the neighboring frequencies f 1 and f 3. Therefore,
the jamming system could interfere with frequencies f 4, f 7, f 1, f 2, and f 3, but not with
the radar’s working carrier frequency f 6. As a result, the radar successfully resisted the
interference. At the second PRI, the jammer changed its detection frequencies to f 5 and
f 6, which included the radar’s working frequency. Here, we assume that the jammer
immediately generates interference after discovering the radar signal within the same PRI.
Without considering a time delay, we believe that the radar has been interfered with. At
the third PRI, because the radar experienced interference in the previous PRI, it changed
its transmitting carrier frequency to f 4. The jammer successfully detected the radar’s
frequency at the second PRI and then continued to detect frequencies f 5 and f 6 but did
not find the radar signal at the third PRI. Consequently, the jammer system emitted strong
suppression jamming at frequency f 3, affecting frequencies f 2, f 3, and f 4, which led to the
radar being jammed once again. At the fourth PRI, the radar hopped to frequency f 7, and
the jammer changed its detection frequencies to f 3 and f 8. Then, the suppression jamming
impacted frequencies f 1, f 2, and f 3, which did not include the radar’s working frequency
f 7. Consequently, the radar successfully resisted the interference.
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Figure 1. An example of jammer and radar countermeasures, where L = 8, Mint = 2, and Mtran = 1. The
small blue triangle represents the working carrier frequency of the radar, the yellow block represents
the detection frequency of the jammer, the small red circle represents the center frequency of the
strong suppression interference generated by the jammer, and the pink block represents the frequency
affected by the suppression interference.

3. Interaction Model

The challenge we face when implementing radar adaptive anti-interference is that
the radar cannot directly observe the status information of the jammer. The radar only
knows whether the current frequency is being interfered with, which means that radar
anti-interference is a partially observable problem, and the process of the radar interacting
with the jammer is a partially observable Markov decision process, abbreviated as POMDP.
Fortunately, we can address this issue by utilizing the historical observation information
sequence of the radar. In this section, we first explain the unique nature of the radar’s
confrontation with the jammer. Then, a radar anti-jamming model based on reinforcement
learning is proposed. Finally, we employ an improved Double-DQN algorithm [33] to solve
the radar’s adaptive frequency hopping problem.

3.1. Special Features of Radar Anti-Jamming

The essence of reinforcement learning is interactive learning, which allows the agent to
interact with the external environment. The agent perceives the external environment and
selects its actions, accordingly, responds to the environment, observes the consequences of
its actions, adjusts its action selection mechanism based on the observed outcomes, and
ultimately strives to achieve optimal responses to the external environment. An example
of the interaction between the radar and the jamming environment is shown in Figure 2.
This shows the interaction process between the intelligent agent and the environment.
The interaction between the intelligent agents and the environment is also applicable to
the process of radar and interference countermeasures. At time t, the radar acts at based
on the current state st and reward rt, affecting the environment and transferring it to the
next state st+1, resulting in obtaining the corresponding reward rt+1. The mathematical
foundation of reinforcement learning is MDPs, which can be described using the following
key elements [7]:

• A set of states S. Let st represent the state of the agent at time t.
• A set of actions A. Let at represent the action made by the agent at time t.
• State transition probability:

P(st+1|s1, . . . , st, at) = P(st+1|st, at). (2)

• Immediate reward function:
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Rt+1 = R(st+1|st, at). (3)

At time t, the agent predicts the state transition probability based on the historical
state sequence (s1, . . . , st) and takes the action at. At the same time, it also obtains the
reward feedback Rt. Due to the Markov properties [7], state st implies that it contains all
of the information from s1 to st−1, and the agent can obtain the state transition probability
P(st+1|st, at) of st+1 to rely on the st and at. In practical scenarios, the interference envi-
ronment is unknown to the radar, and the radar is not able to directly perceive the truth
state value. Instead, it only has access to the observed value ot from a radar perspective.
However, the observed value ot only provides partial information about the actual state
value of the radar. Consequently, the ot does not strictly satisfy the Markov property. It does
not contain all of the information of the previous observations, indicating that the radar
anti-jamming process is a POMDP. It is not sufficient to simply use the ot as a substitute
for st to predict the state transition probabilities. To address this problem, a sequence of
historical observation information (o1, . . . , ot) can be utilized to help the agent to better
understand its state and make decisions. In this paper, we set that each layer of radar
observation data includes the radar’s carrier frequency, the action, and the reward. We
combine consecutive layers of observations into matrices in order to approximate the state
of the radar. Since the DQN uses an offline reinforcement learning method, we can store the
multi-layer observation matrix directly in the replay buffer to assist the agent in training
the network.

In Figure 3, using the example of Chinese chess, the differences between the MDP and
POMDP models are illustrated under the reinforcement learning framework. In the MDP
model, the red agent can observe the position of any chess piece on the board, allowing it
to have full knowledge of the agent’s state. The current state of the chessboard is due to the
interaction between both of the players and contains all of the historical state information.
Therefore, the red agent can play chess solely based on the current state of the chessboard.
On the other hand, in the POMDP model, the red agent can only observe the positions of
their pieces. They lack information about the opponent’s pieces unless they attack. To make
informed decisions, the red agent can rely on the sequence of historical observations to
infer the possible positions of their opponent’s pieces and then determine their next move.
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3.2. Parameter Design for Reinforcement Learning

In the following section, we will introduce the state, actions, and reward design details
of the POMDP model.

• States: During the process of radar anti-interference, the radar perceives the envi-
ronment by receiving echo signals and utilizes historical observations to infer the
true state, enabling it to make appropriate anti-interference decisions. To address
this partially observable problem, we define the input state of the intelligent agent
as follows:

st =


ot−1
ot−2

...
ot−k

 =


ft−1
ft−2

...
ft−k

at−1
at−2

...
at−k

rt
rt−1

...
rt−k+1

 (4)

where ft−k and at−k represent the carrier frequency and the action of the radar at time
t − k, respectively, and rt−k+1 represents the corresponding reward. Note that ft and at
differ in time by one PRI, and ft represents the radar carrier frequency at time t, which is
the frequency hopping target selected by the agent at time t − 1. at represents the carrier
frequency index chosen by the agent at time t, and the radar will use the carrier frequency
corresponding to at to transmit the LFM signal at time t + 1.

• Actions: Actions reflect the agent’s decision-making process. In a CPI, the radar can
hop frequencies on any PRI pulse to evade interference. We state that the agent can
choose one of the L frequencies in the carrier frequency space as their hopping object.

at = f j ∈ F = { f1, . . . , fL} (5)

Under this definition, the action space of the radar and the jammer is equal to the
carrier frequency space F.

• Reward Function: Rewards are used to evaluate the value of the radar agent’s deci-
sions, and the feedback can guide the agent in their learning in the future. Considering
the characteristics of the sweep mode, we define the reward function as follows:

rt = rst + rat (6)

with

rst =

{
−β0 − nkeep,

β1 × nkeep + β2 × nanti,
jammed

otherwise
(7)
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and

rat =

{
−c,
0,

hop
otherwise

(8)

where nanti represents the number of successive times the radar has not been jammed; nkeep
represents the number of successive times the radar has used the current carrier frequency;
and β0, β1, β2, and c are the hyperparameters. The interference judgment method is similar
to the one outlined in the literature [17]. If the carrier frequency of the radar and the jammer
collide, we judge that the radar has been interfered with.

The reward function consists of the following two parts: rst, which represents the
reward for entering state st, where a positive reward is given when there is no interference,
and a penalty is given when interference occurs; and rat, which represents the reward for
taking action at, where a penalty is given only when frequency hopping occurs. β0 is a
relatively large parameter compared to β1, β2, and c. It is important to ensure that the
agent is punished more heavily when interference occurs so that the agent can focus on
learning how to avoid such interference in the future. To help the radar to learn information
more quickly from historical observations, we introduce the variables nanti and nkeep in the
definition of the reward function rst. When the radar is disturbed, a higher value of nkeep
results in a greater penalty for the agent. In the case of interference from the sweeping
mode of the jammer, if the radar remains on the same frequency for a longer duration, the
likelihood of interference increases. Therefore, the radar agent needs to take on a higher
risk; consequently, the agent will receive a larger penalty. In the case of successful radar
anti-jamming, we incorporate rewards associated with nanti and nkeep. In the segments in
which the radar is not jammed, a higher value of nanti indicates more times when anti-
jamming was successful, and a higher value of nkeep implies a lower number of frequencies
used. This means that the better the decision-making ability of the radar agent, the better
the reward they receive should be.

3.3. Deep Reinforcement Learning

Given the impracticality of using a table to record large action and state spaces, the
DQN addresses the limitation of Q-learning by adopting the idea of function approximation.
This utilizes the powerful representation capabilities of neural networks to calculate the
value for each input state. With the assistance of modules like experience replay and a target
network, the network parameters are updated to train the agent. The rules for Q-learning
are as follows [8]:

Q(st, at)← Q(st, at) + α

[
rt+1 + γ max

a∈A
Q(st+1, at+1)−Q(st, at)

]
(9)

Q-learning utilizes the temporal difference (TD) learning target rt+1 +γmaxQ(st+1, at+1)
to update Q(st, at). The objective of this is to make the Q(st, at) approach the TD learn-
ing target. Therefore, the loss function of the Q-network in DQN can be constructed as
follows [9]:

ω∗ = argmin
ω

1
2N

N

∑
i=1

[
Qω

(
si

t, ai
t

)
−
(

ri
t+1 + γ max

at+1
Qω−(s

i
t+1, at+1)

)]2
(10)

The learning objective, which is computed by the target network, can be expressed in
the following form:

max
at+1

Qω−(st+1, at+1)→ Qω−

(
st+1, argmax

at+1
Qω(st+1, at+1)

)
(11)

where max Qω−(st+1, at+1) is decomposed into two parts, as follows: one part involves

selecting the optimal action a∗ = argmaxQω(st+1, at+1) for the next state st+1, and the
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second part then calculates the value of this action Qω−(st+1, a∗). The Double DQN
algorithm utilizes two independent neural networks to estimate these two parts. One
network is used to select the action with the highest value based on its output, while
the other network is used to calculate the value of the action [33]. Using two separate
networks effectively addresses the issue of overestimation in Q-value estimation by the
neural networks.

In deep reinforcement learning, the traditional Q-network is typically constructed as a
multi-layer perceptron (MLP) consisting of multiple fully connected layers. This structure
is not sensitive to the temporal dimension and is suitable for scenarios where time series
information is not crucial, just as in the MDP. However, in the case of radar anti-jamming,
we cannot ignore the historical information. Fortunately, we have LSTM as a classic neural
network model that is sensitive to time sequences [34]. LSTM consists of forget gates,
memory gates, and output gates. The forget gates selectively forget the past information
based on the previous time step’s output and the current input, allowing LSTM to maintain
important information in its long-term memory. The memory gates extract the relevant
information from the current time step, while the output gates compute the information to
output at the current time step. In Double-DQN, we only replace the first fully connected
layer (FC) in the Q-network with LSTM to make it sensitive to the time series.

The Q-network with an LSTM structure is depicted in Figure 4. The input consists of
a 3× 3 matrix formed by the agent’s historical observations. Then, it is processed by the
LSTM network to extract the relevant information, where the input size of LSTM is 3, the
output size is 16, and the number of layers is 1. The 3× 16 relevant information will be
flattened to 1× 48 hidden information, and the fully connected layers are used to select the
optimal action and compute the value. Subsequent experiments have demonstrated that
LSTM, and other time-sensitive networks, such as a Recurrent Neural Network (RNN) [35]
and Gate Recurrent Unit (GRU) [36], can achieve excellent performance in tackling the
partially observable problem.
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Figure 4. Q-network with LSTM structure. Color was used to distinguish different observation layers.
The radar’s historical observation matrix is used as the input, which is processed through a single
LSTM layer to extract information. Then, it is flattened and fed into an FC layer.

In fact, this time-sensitive ability originates from a distinctive network structure, in
which the output of the current network not only depends on the current input, but also
on the network output at the previous moment. We take the radar observation sequence
as the input, and each layer of the observations corresponds to a time step. We expand
these networks in the time dimension to form network units corresponding to the cells in
Figure 4. In the figure, the green input and the previous yellow cell output affect the green
cell output. For the RNN, the previous cell output is weighted and fused with the current
information to form the cell output. The LSTM network is more sophisticated, including
forgetting gates, memory gates, and output gates. The forgetting gate realizes the fusion of
the previous cell output and the input of the moment. The memory gate focuses on the
input information of the current cell. The output gate integrates the forgetting gate, the
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memory gate, and the current information to form the output. The GRU simplifies the
gating structure of LSTM and combines the memory gate and the forgetting gate into one.

3.4. The Process between the Radar and Jammer

In the previous sections, we designed the working modes of the radar and the jammer
and selected the Double-DQN algorithm to solve the radar anti-interference problem. We
optimized the states, reward function, and network. Next, we will present the multi-round
interaction process between the radar agent and the jammer, as shown in Algorithm 1.

Algorithm 1: The Process between the Radar and Jammer.

INITIALIZE. H: replay-buffer; ω: network-parameters
INITIALIZE. ω−: copy of ω; N−: target update cycle
INITIALIZE. Operating parameters of radars and jammers.
for each CPI do

Initialize the radar observation matrix as the initial state of the agent
for each pulse do

Choose according to the greedy algorithm
The jammer emits jamming in sweep mode
According to st and at, obtain st+1, rt+1
Store transition (st, at, rt+1, st+1) in H
st ← st+1

end for
Sample minibatch data from H randomly
Obtain amax = (st+1; ω) = argmaxat+1 Q(st+1, at+1; ω)
Calculate TD learning target yj

Update network parameters with
∥∥∥yj −Q(s, a; ω)

∥∥∥2

Update the greedy parameters
Replace target parameters ω− ← ω every N− steps

end for

4. Results

In this section, we present the simulation results in order to validate the performance
of the improved reinforcement learning model. The simulation results cover the adaptive
frequency hopping anti-interference performance, the impact of the time-sensitive network
models, the effectiveness of the reward design, and the influence of the layers of historical
observations. The network structure design, the hyperparameters of the Double-DQN,
and the radar and jammer parameters are summarized in Table 1, Table 2, and Table 3,
respectively. The greedy parameter ε in Table 1 rapidly decreased from 0.1 to 0 during
the iterations. If the ε remains unchanged, the training results will irreversibly deteriorate
after a certain number of iterations. The following simulation results were obtained by
averaging over 500 Monte Carlo realizations [37].

Table 1. Design of Q-network structure.

Layer Input Size Output Size

LSTM 3× 3 3× 16
Flatten 3× 16 1× 48

FC 1× 48 1× 100
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Table 2. Hyperparameters of Double-DQN.

Parameter Value

Episodes 500
Number of pulses in a CPI 64

Discount rate 0.98
Learning rate 0.001

ε-greedy increment 0.1
Target update 10

Buffer size 2048
Minimal size 512

Batch size 64

Table 3. Parameters of the radar and the jammer.

Parameter Value

Number of frequencies L 100
Hopping cost c 1

Mtran 2
Mint 20

Historical observation layers 3
β0 5
β1 0.2
β2 0.1

4.1. The Performance of Radar Adaptive Frequency Hopping

First, we will validate the effectiveness of introducing the LSTM network and the multi-
layer historical observations to improve the radar anti-interference capability. Figure 5
displays the curve of PNI (i.e., the successful anti-interference ratio within a CPI), which
directly reflects the radar anti-interference performance. Figure 6 represents the frequency
hopping times within a CPI. In Figures 5 and 6, the ‘LSTM + History’ represents our
proposed approach, which introduces historical observation information and an LSTM
network. In the figure, as in the training, the PNI of the ‘LSTM + History’ gradually increases
and eventually stabilizes. It shows a high success ratio of 0.92 for anti-interference, with
42 frequency jumps. ‘Random’ represents the radar without using reinforcement learning,
and the working frequency was randomly selected. Due to the lack of learning capability,
this curve remains relatively stable in multiple repeated experiments. The PNI remains
at about 0.76, and the frequency hopping times remain at about 64. When comparing
‘Random’, it is evident that our proposed model significantly improves the anti-interference
capability. The PNI is increased by 0.16, and the frequency hopping times are reduced by 20.
This indicates that our model achieves a better anti-interference performance with fewer
frequency hops.

‘MLP + History’ is represented using two FC layers to extract the historical observation
information. After stabilization, the PNI is 0.73, and the number of frequency hops is 53.
Comparing the ‘LSTM + History’, the PNI decreases by 0.19, and the number of frequency
hops increases by 11. Because MLP networks only extract information from an overall
perspective and cannot capture the information between the individual layers of the
observations, this means that the MLP is not sensitive to the time dimension information.
On the other hand, LSTM can exploit the hidden information when dealing with the time
series. Based on these results, we can see the advantages of LSTM in handling multi-layer
historical observations.



Remote Sens. 2023, 15, 5467 12 of 20

Remote Sens. 2023, 15, x FOR PEER REVIEW  12  of  21 
 

 

reinforcement  learning, and  the working  frequency was randomly selected. Due  to  the 

lack of learning capability, this curve remains relatively stable in multiple repeated exper-

iments. The PNI remains at about 0.76, and the frequency hopping times remain at about 

64. When comparing  ‘Random’,  it  is evident that our proposed model significantly im-

proves  the anti-interference capability. The PNI  is  increased by 0.16, and  the  frequency 

hopping  times are reduced by 20. This  indicates  that our model achieves a better anti-

interference performance with fewer frequency hops. 

‘MLP + History’ is represented using two FC layers to extract the historical observa-

tion information. After stabilization, the PNI is 0.73, and the number of frequency hops is 

53. Comparing  the  ‘LSTM + History’,  the PNI decreases by 0.19, and  the number of  fre-

quency hops  increases by 11. Because MLP networks only extract  information  from an 

overall perspective and cannot capture the information between the individual layers of 

the observations,  this means  that  the MLP  is not sensitive  to  the  time dimension  infor-

mation. On the other hand, LSTM can exploit the hidden information when dealing with 

the time series. Based on these results, we can see the advantages of LSTM in handling 

multi-layer historical observations. 

‘LSTM’ represents the agent using a single layer of observations as an input to the 

LSTM network. After stabilization, the PNI is 0.847, and the frequency hopping times re-

main at about 47. Compared with ‘LSTM + History’, the PNI decreases by 0.073, and the 

hopping times increase by 5. The results show that LSTM undergoes a certain degree of 

decline regarding anti-interference performance and convergence speed without the help 

of the historical information. 

‘MLP’ represents the agent that uses only a single-layer observation as the input, and 

the Q-network structure consists of two FC layers, which is a common approach used in 

previous studies [16,17,19]. After stabilization, the PNI is 0.6, and the number of frequency 

hops is 44. When comparing ‘MLP + History’, by removing the three layers of historical 

observations, the PNI decreases by 0.13. The multiple layers of historical observations im-

prove the radar anti-interference to some extent. However, due to the limitations of the 

MLP structure, these results are still not good. 

 

Figure 5. The impact of network and historical observation information on PNI. Figure 5. The impact of network and historical observation information on PNI.

Remote Sens. 2023, 15, x FOR PEER REVIEW  13  of  21 
 

 

 

Figure 6. The impact of network and historical observation information on frequency hopping times 

within a CPI. 

Through the above analysis, we can conclude that, in a POMDP, introducing multiple 

layers of historical observations can improve the anti-jamming performance. When com-

bined with LSTM to extract time dimension information, the radar can more accurately 

learn the work of the jammer, resulting in a significant improvement in anti-interference. 

4.2. The Effects of a Time‐Sensitive Network 

In the previous section, we verified the excellent performance achieved by combining 

LSTM with historical observations. Next, we will show that this effect is not due to the 

size of the model, but rather the time sensitivity of the network. 

When translating from one language to another, the order of the words significantly 

impacts the meaning of a sentence. Therefore, Natural Language Processing (NLP) must 

consider the sequential order of the words and uncover the information hidden within the 

temporal sequence [38]. This similarity between NLP and our problem suggests that we 

can leverage the other classic models used in NLP, such as the RNN and GRU, to evaluate 

the ability of time-sensitive networks to solve POMDPs. 

The RNN  is one of the most classic models  in NLP. It introduces the idea that the 

current output of a network depends on the current input and the previous hidden layer 

output so that the network can be sensitive to time order [35]. The disadvantage of the 

RNN is that it struggles to remember the content at the beginning of a sequence when it 

is very  long. However, memory  loss  is not a concern, due  to  the short observation se-

quences of the agent. The GRU is a simplification of LSTM. It combines the forgetting and 

input gates into an update gate and merges the unit and hidden state. Therefore, the GRU 

can  simultaneously perform  the  operations  of  forgetting  and  selectively  remembering 

[36]. 

As shown in Figures 7 and 8, we also selected two other classic networks, the RNN 

and the GRU, to validate the superiority of time-sensitive networks in handling POMDPs. 

The model parameters of these networks are consistent with LSTM. We also increased the 

hidden layers of the MLP in Figure 5 and observed the impact of simply increasing the 

model size. The MLP in Figure 5 increases from two fully connected layers to four layers, 

making it MLP4. The curves ‘GRU + History’ and ‘RNN + History’ represent the GRU and 

RNN network models, respectively. Through continuous learning, these two models were 

also able to achieve a PNI of 0.92, demonstrating significant improvement compared to the 

MLP model. In terms of the frequency hopping number shown in Figure 8, LSTM outper-

formed the GRU and the RNN. On the other hand, ‘MLP4 + History’ represents a four-

layer FC network, with a maximum PNI of only 0.6, which  results  in no  improvement 

Figure 6. The impact of network and historical observation information on frequency hopping times
within a CPI.

‘LSTM’ represents the agent using a single layer of observations as an input to the
LSTM network. After stabilization, the PNI is 0.847, and the frequency hopping times
remain at about 47. Compared with ‘LSTM + History’, the PNI decreases by 0.073, and the
hopping times increase by 5. The results show that LSTM undergoes a certain degree of
decline regarding anti-interference performance and convergence speed without the help
of the historical information.

‘MLP’ represents the agent that uses only a single-layer observation as the input, and
the Q-network structure consists of two FC layers, which is a common approach used in
previous studies [16,17,19]. After stabilization, the PNI is 0.6, and the number of frequency
hops is 44. When comparing ‘MLP + History’, by removing the three layers of historical
observations, the PNI decreases by 0.13. The multiple layers of historical observations
improve the radar anti-interference to some extent. However, due to the limitations of the
MLP structure, these results are still not good.

Through the above analysis, we can conclude that, in a POMDP, introducing multiple
layers of historical observations can improve the anti-jamming performance. When com-
bined with LSTM to extract time dimension information, the radar can more accurately
learn the work of the jammer, resulting in a significant improvement in anti-interference.
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4.2. The Effects of a Time-Sensitive Network

In the previous section, we verified the excellent performance achieved by combining
LSTM with historical observations. Next, we will show that this effect is not due to the size
of the model, but rather the time sensitivity of the network.

When translating from one language to another, the order of the words significantly
impacts the meaning of a sentence. Therefore, Natural Language Processing (NLP) must
consider the sequential order of the words and uncover the information hidden within the
temporal sequence [38]. This similarity between NLP and our problem suggests that we
can leverage the other classic models used in NLP, such as the RNN and GRU, to evaluate
the ability of time-sensitive networks to solve POMDPs.

The RNN is one of the most classic models in NLP. It introduces the idea that the
current output of a network depends on the current input and the previous hidden layer
output so that the network can be sensitive to time order [35]. The disadvantage of the
RNN is that it struggles to remember the content at the beginning of a sequence when it is
very long. However, memory loss is not a concern, due to the short observation sequences
of the agent. The GRU is a simplification of LSTM. It combines the forgetting and input
gates into an update gate and merges the unit and hidden state. Therefore, the GRU can
simultaneously perform the operations of forgetting and selectively remembering [36].

As shown in Figures 7 and 8, we also selected two other classic networks, the RNN
and the GRU, to validate the superiority of time-sensitive networks in handling POMDPs.
The model parameters of these networks are consistent with LSTM. We also increased the
hidden layers of the MLP in Figure 5 and observed the impact of simply increasing the
model size. The MLP in Figure 5 increases from two fully connected layers to four layers,
making it MLP4. The curves ‘GRU + History’ and ‘RNN + History’ represent the GRU
and RNN network models, respectively. Through continuous learning, these two models
were also able to achieve a PNI of 0.92, demonstrating significant improvement compared
to the MLP model. In terms of the frequency hopping number shown in Figure 8, LSTM
outperformed the GRU and the RNN. On the other hand, ‘MLP4 + History’ represents a
four-layer FC network, with a maximum PNI of only 0.6, which results in no improvement
compared to the performance of the two-layer FC structure shown in Figure 5. From the
perspective of the model parameters, the MLP4 structure exceeds the LSTM, GRU, and
RNN networks, but this does not bring about performance improvements. Based on the
experimental results shown in Figures 5 and 7, we believe that the key to helping the
agent to counteract interference is the extraction of temporal information from historical
observations rather than the size of the network.
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4.3. The Effects of Reward

Although the LSTM model achieved good results, it had a slow convergence speed. To
help the radar to counter the interference from the jammer more quickly, we introduced the
concept of ‘successive times’ in the reward function design. Specifically, we incorporated
the idea of successive nanti times without interference and successive nkeep times on the
same carrier frequency. In this section, we will verify the improvement in the learning
speed with the optimized reward design.

We visually demonstrate the effect of improving the convergence speed in pictures.
We conducted a series of validations using the LSTM model. As shown in Figure 9, the
curve labeled ‘reward’ represents the reward design proposed in this paper, while the
curve labeled ‘no’ represents the case where the intelligent agent uses a fixed reward. It is
evident that the reward design in this paper leads to faster convergence. At 74 iterations,
the difference in PNI between the two approaches is as high as 0.14. With a fixed reward
design, it took 281 iterations for the radar agent to reach a PNI of 0.92. However, when we
incorporated the concept of ‘successive times’ in the reward formulation, the number of
iterations decreased to 185, reducing it by 96 iterations. This indicates that using ‘successive
times’ in the reward design leads to an improvement in the convergence speed, and, when
we only introduced nanti and nkeep in the observations (i.e., the ‘observation’ label), the
number of iterations increased to 383, adding 107 iterations. This indirectly indicates
that the LSTM network can extract information from the historical observations, and
the redundant information slows down the network analysis. When we incorporated
‘successive times’ in both the reward design and the observations (i.e., the ‘reward +
observation’ label), the iterations reduced to 240, and the convergence speed of the agent
also improved. This suggests that, in terms of accelerating the convergence speed of the
agent in this paper, the reward design is more important.

As the jammer operates in a frequency-sweeping mode, the longer the radar stays
on the same frequency, the more susceptible it is to interference. At the same time, the
radar uses fewer frequencies to obtain a higher PNI, which means that better anti-jamming
decisions are made and the received reward is better. This reward design stimulates the
agent to learn the jammer’s behaviors, ultimately achieving a balance between the risks and
the rewards. Although the optimized design did not improve the radar’s anti-interference
performance, it did accelerate the learning speed of the intelligent agent.
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4.4. The Influence of the Number of Observation Layers

In the previous chapters, we used a three-layer history observation as the state of
the intelligent agent to assist the radar in making adaptive decisions and achieving good
results. Next, based on LSTM, we examine the impact of the different layers of historical
observations on the state of the intelligent agent.

As shown in Figure 10, the PNI reaches 0.905 when using nine layers of historical
observations. The PNI is the lowest, at 0.847, when using only one layer of observation.
When the number of layers of historical observations is less than three, the performance
is poor, due to the lack of temporal information. Notably, due to the introduction of the
time dimension, the improvement in the performance is most significant when the number
of layers of historical observations increases from one to two. The peak performance is
0.922 when there are three layers of historical observations. However, increased layers of
historical observations do not always lead to a better performance. When using excessive
layers, the temporal dimension may span multiple scan cycles of the jammer. For example,
in the case of Mint = 20, Mtrans = 2, and L = 100, the interference source can disrupt all of
the frequencies within 4–5 PRI. In this paper, the jammer adopts a frequency-sweep mode
for detection. In each frequency-sweep cycle, due to the differences in the agent actions
during the training, the jammer’s detection time for some carrier frequencies, the timing of
performing strong suppression interference, and the frequency-sweep cycle time will be
different. In addition, the jamming environment is unknown to the radar, and the radar
can only infer the jammer’s strategy from its observation data. The data at different sweep
periods contain slightly different jamming strategies, which increases the complexity of
the radar learning from the observation sequence and may even be misleading. Therefore,
the observations from other scan cycles could not provide information for the current
prediction and may have a negative impact. Therefore, using five or more layers of
historical observations results in a noticeable drop in performance.
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Figure 10. Influence of different historical observation layers on radar performance.

4.5. Comparison of Method

In studies [16,17,39,40], the researchers typically used the total SINR within a CPI (or
detection probability related to the total SINR) as the evaluation metric for the radar’s
anti-jamming performance. Specifically, they integrated the echo pulses that remained free
from interference during the CPI, performed a coherent integration with the same carrier
frequency, and then conducted an incoherent integration on the various coherent results.
Therefore, the total SINR in a CPI is related to the number of hops and the PNI.

These methods generally improve the anti-jamming performance compared to select-
ing the frequency randomly. Comparing the random method, the reinforcement learning
approach employing an MLP-based Q-network can significantly reduce the radar hopping
frequency times, while the PNI increases little but obtains a high total SINR. This is because
the gain from the incoherent integration is less than that from the coherent integration [41].
With the number of successful anti-interferences held constant, reducing the hopping fre-
quency times results in a higher proportion of coherent components, thereby producing a
higher total SINR. Therefore, in the results of this paper, we directly presented the PNI and
hopping frequency times as two key metrics that could clearly show the radar anti-jamming
performance brought about by reinforcement learning.

Figure 11 presents the total SINR of the above methods within one CPI. For ease
of calculation and analysis, we assume that the SINR of the radar echo within one PRI
is a fixed value when the radar successfully counters interference. After collecting the
echo data of a CPI, the radar makes statistics on the anti-interference status of each PRI. If
the radar can achieve anti-interference successfully, we record the PRI carrier frequency
and SINR value, otherwise, we discard the data. After completing the CPI statistics, we
perform coherent integration on the data with the same carrier frequency and then perform
incoherent integration on the coherent results of each carrier frequency to obtain the total
SINR of a CPI [17]. We assume that the recorded results of the two CPIs are [f 1, f 1, f 2]
and [f 1, f 2, f 3], respectively. Since the coherence is greater than the incoherence gain, the
frequency hopping strategy [f 1, f 1, f 2] will be greater than another strategy [f 1, f 2, f 3] in
terms of the total SINR value when we fix the SINR value of each PRI. It is foreseeable
that, although the random frequency hopping method may have a higher PNI, it also
uses more types of carrier frequencies, which results in a smaller proportion of coherent
integration with a CPI (even if only performing non-coherent integration). Therefore, we
may obtain a lower total SINR when we use the random method. The labels in Figure 11a,b
correspond to those in Figures 5 and 7. The reinforcement learning methods shown in
Figure 11a,b can achieve convergence. In Figure 11a, the total SINR value after convergence
for each curve is as follows: ‘LSTM + History’ is 33, ‘MLP + History’ is 23, ‘MLP’ is 20,
and ‘Random’ is 8. Under the total SINR metric for one CPI, we conclude that, while
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‘MLP + History’ and ‘MLP’ methods are inferior to the ‘LSTM + History’ method, they each
achieve significant improvements of 15 and 12, respectively, compared to the ‘Random’
method. Additionally, they exhibit faster convergence, typically achieving convergence
within around ten episodes. In fact, as shown in Figure 5, the ‘MLP + History’ and ‘MLP’
methods do not yield improvements in the PNI relative to ‘Random’. Combining this with
Figure 6, where the ‘Random’ radar mode maintains hopping frequencies, we can see
that the increase in the total SINR is due to reinforcement learning based on the MLP
networks, which reduces the radar frequency hopping times, thereby increasing the weight
of the coherent integration in a CPI, resulting in a larger total SINR. The results shown in
Figure 11b further validate our analysis. Despite the fact that, in Figure 7, the PNI results
using the LSTM, GRU, and RNN networks are similar, in Figure 8, the LSTM + History
mode has the fewest frequency hops and consequently achieves the highest total SINR.
Despite the higher frequency hopping times that come with the GRU and RNN methods,
their substantial improvements in successfully countering interference compared to the
MLP4 network result in a higher total SINR value.
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In [16,17], even though the carrier frequency space was extensive, the action space of
the agent included only the following two choices: ‘h’, denoting the radar frequency hop-
ping action and randomly choosing the carrier frequency from the carrier frequency space,
and ‘s’, indicating that the radar would stay on the current carrier frequency. Although
these studies introduced the idea of reinforcement learning, they still randomly selected
the frequency hopping target. In contrast, the action space for the radar agent in this paper
is identical to the carrier frequency space, resulting in a more intelligent selection of the
carrier frequency.

Furthermore, researchers have also tried to enhance the Q-network in deep reinforce-
ment learning. In [36], they replaced the MLP of a Q-network with a CNN. However, the
CNN is not a time-sensitive network; moreover, it floats the probability curve, and its range
is even as high as 0.5. In contrast, the Q-network in this paper uses time-sensitive networks
and has a more stable effect. After the probability curve converges, the floating range does
not exceed 0.02.

5. Conclusions

In this paper, we used reinforcement learning to solve the problem of adaptive fre-
quency hopping for radar anti-jamming in an unknown environment. We analyzed the
process of the radar’s interaction with the jammer and modeled it as a POMDP. In the
POMDP model, the radar could only access partial observation information. To address this
problem, we introduced multi-layer historical observations and time-sensitive networks.
We observed that the convergence speed of the agent was slow when using fixed rewards
for each step. To overcome this issue, we optimized the reward function by considering
the interdependence of the radar’s decisions, which sped up the learning process. The
simulation results demonstrate the rationality of optimizing the intelligent agent’s state
representation, network architecture, and reward function. Although the experiments in
this paper were conducted in a simplified environment, we believe that it is a successful
attempt to solve the partially observable problems and help the radar to adaptively coun-
teract the jammer in the POMDP model. In addition, the reward function used in this paper
has limitations, because its design relies on the sweep mode of the jammer. The reward
function may need to be redesigned when the jammer adopts a different jamming strategy.
However, more importantly, we should consider the impact of historical decisions on the
reward of this round when redesigning the reward function in the POMDP.
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