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Abstract: Terrestrial carbon fluxes are crucial to the global carbon cycle. Quantification of terrestrial
carbon fluxes over the Tibetan Plateau (TP) has considerable uncertainties due to the unique ecosystem
and climate and scarce flux observations. This study evaluated our recent improvement of terrestrial
flux parameterization in the weather research and forecasting model coupled with the vegetation
photosynthesis and respiration model (WRF-VPRM) in terms of reproducing observed net ecosystem
exchange (NEE), gross ecosystem exchange (GEE), and ecosystem respiration (ER) over the TP. The
improvement of VPRM relative to the officially released version considers the impact of water stress
on terrestrial fluxes, making it superior to the officially released model due to its reductions in bias,
root mean square error (RMSE), and ratio of standard deviation (RSD) of NEE to 0.850 µmol·m−2·s−1,
0.315 µmol·m−2·s−1, and 0.001, respectively. The improved VPRM also affects GEE simulation,
increasing its RSD to 0.467 and decreasing its bias and RMSE by 1.175 and 0.324 µmol·m−2·s−1,
respectively. Furthermore, bias and RMSE for ER were lowered to −0.417 and 0.954 µmol·m−2·s−1,
with a corresponding increase in RSD by 0.6. The improved WRF-VPRM simulation indicates that
eastward winds drive the transfer of lower CO2 concentrations from the eastern to the central and
western TP and the influx of low-concentration CO2 inhibits biospheric CO2 uptake. The use of an
improved WRF-VPRM in this study helps to reduce errors, improve our understanding of the role of
carbon flux cycle over the TP, and ultimately reduce uncertainty in the carbon flux budget.

Keywords: gross primary productivity; carbon cycle; climate change; Tibetan Plateau; net ecosystem
exchange

1. Introduction

Carbon fluxes and CO2 concentrations in terrestrial ecosystems received increasing
attention due to the uncertainties caused by global warming in recent years [1]. Alterations
in terrestrial ecosystem carbon sinks and sources influence atmospheric CO2 concentra-
tions, thereby modulating the global carbon cycle. Carbon sources and sinks across diverse
vegetation types and eco-climatic zones were examined using various methods, such as
inventories [2–5], in situ observations [6–8], satellite inversions [9–11], spaceborne observa-
tions [12–14], and model simulations [15–19]. Under the conditions of long-term warming,
the carbon assimilation capacity on the Tibetan Plateau (TP) increased [20–22]. However,
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due to the release of soil carbon from permafrost degradation [23,24] and the frequent
ecosystem disruption caused by extreme events [25,26], obtaining reliable information
on changes in carbon flux is particularly important. Hence, utilizing model simulations
is imperative for the in-depth exploration of the vulnerable TP. The light use efficiency
model emerged as the primary approach for predicting carbon flux, owing to the limited
observation range of eddy covariance systems and the influence of cloud microphysics on
satellite data.

Previous studies employing physiological processes and empirical equations demon-
strated a link between CO2 fluxes and both temperature [10] and photosynthesis [27];
however, an evident degree of uncertainty that needs to be further examined persists.
Concurrently, vegetation growth also greatly influences CO2 flux. The enhanced vegetation
index (EVI), calculated using near IR (NIR) and red and blue band reflectance [28], has
lower sensitivity to soil background reflectance and residual atmospheric contamination;
therefore, it can indicate vegetation changes more effectively than the normalized difference
vegetation index [29]. Churkina et al. [30] observed that EVI is closely linked to the carbon
sink period and used it to estimate large-scale net ecosystem exchange (NEE) using remote
sensing data. The fraction of absorbed incident photosynthetically active radiation (FAPAR)
is a constant approximated by EVI and is used to estimate light use efficiency [31]. EVI was
incorporated into the temperature and greenness model [32], canopy reflectance model [33],
vegetation photosynthesis model [29], and weather research and forecasting model coupled
with the vegetation photosynthesis and respiration model (WRF-VPRM) [34,35] to simulate
carbon flux. Furthermore, EVI was shown to exhibit strong correlations with GPP and
NEE across diverse regions [36–38]. Meanwhile, since WRF-VPRM is a coupled model, it
enables the study of the impacts and responses of climate on carbon flux [39,40]. In contrast,
traditional ecological models such as ORCHIDEE [41,42] and BIOME-BGC [43,44] typically
focus solely on the influence of climate on flux, making WRF-VPRM widely applicable.

The WRF-VPRM used to stimulate CO2 fluxes was validated and analyzed using data
derived from 12 North American sites [34,35]. This process enabled parametric adjust-
ments, leading to robust results with high spatiotemporal resolution [35]. The model was
recognized for its capability to capture vertical profiles and fronts, as demonstrated by
applications in the United States [40]. Moreover, the WRF-VPRM consistently simulated
carbon flux in relation to localized climate changes observed along the European coast [34].
Moreover, the model can replicate diurnal and seasonal variations in carbon flux within
planetary boundary layers [45] and valleys [46]. Despite several studies providing infor-
mation on the carbon cycle, substantial uncertainty regarding the factors influencing this
cycle persists. Moreover, the relationship among vegetation respiration, photosynthesis,
and water stress [39,47–50] remains ambiguous.

The influence of water stress on gross ecosystem exchange (GEE) and ecosystem
respiration (ER) is notably stronger than the impact of temperature in alpine meadows [50].
Additionally, water stress can induce a shift from carbon sinks to weak carbon sources,
as observed in Europe [15]. Lee et al. [48] highlighted the effect of water stress on carbon
cycling in pine forests in semi-arid regions, using WRF-VPRM, which optimized water
stress. Although the effects of temperature, photosynthesis, EVI, and water stress on
carbon flux were extensively studied across diverse ecosystems [51–55], the relationship
between carbon flux and CO2 concentration in the unique TP ecosystem requires further
comprehensive investigation.

Owing to its high elevation and harsh natural environmental conditions, the TP has
few observation sites, particularly carbon flux observation sites [52]. Satellite remote
sensing products are critical for studying local changes in carbon fluxes; however, these
products exhibit substantial biases in the TP due to high elevation and extensive cloud
coverage [56]. Therefore, the WRF-VPRM faces significant challenges in simulating carbon
fluxes at high altitudes and in unique natural environments.

This study reconstructs realistic carbon fluxes and surface CO2 concentrations over the
TP using WRF-VPRM by considering water stress, followed by an evaluation and analysis
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of the results. This quantification of CO2 concentration and flux changes at individual sites
across the TP paves the way for comprehensive investigations into the mutual interactions
between carbon flux and regional climate over the TP. The remainder of the manuscript is
organized as follows: Section 2 introduces the data used, the study site, and the WRF-VPRM.
Section 3 evaluates and analyzes daily growing season diurnal variations, and cumulative
changes in surface carbon flux in major TP ecosystems. The changes in CO2 concentrations
caused by advection, which are reflected by changes in carbon fluxes, typically presumed
to be vertical, were then investigated. Section 4 discusses the main factors contributing
to improving the WRF-VPRM and the existing limitations. Finally, the conclusions are
presented in Section 5.

2. Methods
2.1. In Situ and Satellite Observations

The TP (average elevation: 4000 m) covers approximately 2,500,000 km2 of Southwest
China. In this study, data sourced from in situ observations at six sites (Maqu, Yakou,
Dashalong, Arou, Nam Co, and Mt.Waliguan) on the TP [57–59] were used to validate
the proposed WRF-VPRM (Table 1). Observations covering several micrometeorological
variables in conjunction with eddy covariance measurements were conducted at these sites,
as described by Shang et al. [60] and Liu et al. [58]. Additionally, in this study, leveraged
CO2 concentration data were retrieved from the Waliguan Atmospheric Background Station
as part of the World Data Centre for Greenhouse Gases project. CO2 flux data from
Nam Co [61] were also utilized to evaluate the efficacy of the WRF-VPRM in accurately
simulating carbon fluxes.

Table 1. Geographic characteristics of the sites.

Name Site Altitude (m) Substrate

Maqu 33.8975◦N,
102.1619◦E 3423 Kobresia tibetica and K. humilis

Yakou 38.0142◦N,
100.2421◦E 4148 Alpine grassland

Dashalong 38.8399◦N, 98.9406◦E 3739 Swampy alpine meadows

Arou 38.0473◦N,
100.4643◦E 3033 Alpine grassland

Nam CO 30.7667◦N, 90.95◦E 4730 K. pygmaea and alpine steppe

Mt. Waliguan 36.28◦N, 100.9◦E 3810 Arid and semi-arid grasslands,
tundra, and deserts

Given the inherent sensitivity of eddy covariance towers to measuring carbon flux
and the potential for environmental disturbances, a rigorous data processing approach
was employed for observations, as outlined by Shang et al. [60]. Raw flux data logged at
10 Hz from the eddy covariance instrumentation were processed using EddyPro software
(LI-COR Biosciences, Lincoln, NE, USA) and subjected to meticulous quality control. The
data were classified into growing and non-growing season subsets, based on temperature
thresholds of 5 ◦C [62,63], while ensuring maximal retention of changes in data. Subsequent
data filtration procedures were implemented to eliminate data entries that exceeded the
average observation range for any of the three variables (sensible and latent heat and
carbon flux), corresponded to the carbon flux observations during rainfall, were assigned
quality grades above 1, and represented instances of low wind speeds at night. To fill
data gaps, a combination of nonlinear regression, the lookup table method, and mean
diurnal variation was applied, with the window size varying from 7 to 30 days based on
site-specific data conditions. Specifically, following linear interpolation of available data
points around missing time intervals, a 2-day window before and after the missing time
point was selected for averaging. Subsequently, the lookup table method was applied
to address data gaps exceeding 30 days, using temperature, radiation, and carbon flux
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availability as criteria for segmenting the missing periods for environmental comparisons.
Finally, nonlinear interpolation was employed to address gaps lasting up to 10 consecutive
days. The optimal window size, initially set at 7 days, was adjusted to up to 30 days
based on data quality. According to the method described by Nieberding et al. [61], drift
correction of the surface CO2 concentration due to the systematic deviation of the flux tower
was performed. To prevent short-term data anomalies, this method adopts the change in
the median and uses the multi-period trigonometric function to reconstruct the background
value for drift correction.

Additionally, the EVI product, as part of the MOD09a1 Collection 6 from the Moderate
Resolution Imaging Spectroradiometer (MODIS) satellite, was utilized. The EVI data offer
a spatial resolution of 500 m and are updated on an 8-day temporal scale [64].

2.2. Description of the WRF-VPRM

VPRM calculates terrestrial CO2 flux at each time step and transmits it to the WRF
meteorological field to simulate CO2 concentrations [34,35,40,45,65]. In this study, the
initial and boundary conditions of CO2 concentrations were obtained from CarbonTracker
(https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/, (accessed on 17 September 2019)).
The National Center for Environmental Prediction provided the initial and boundary con-
ditions for meteorological variables [66]. EVI was obtained from MODIS, and a 0.1◦ × 0.1◦

anthropogenic emission inventory was supplied by the Open-source Data Inventory for
Anthropogenic CO2. The resulting model output included 48 vertical layers and exhibited
a horizontal resolution of 20 km. EVI decreased from east to west, with the Maqu site
located in the high EVI area and the Nam Co and Dashalong sites located on the edge of the
high-value area (Figure 1a). Compared with its original version, the modified WRF-VPRM
primarily improved the simulation accuracy by incorporating the effects of EVI and water
stress in ER and GEE calculations. Moreover, the WRF-VPRM revealed changes in ecosys-
tem CO2 fluxes by simulating the following functions containing specific vegetation-related
parameters [35,39]:

NEE = ER + GEE, (1)

ER = α·EVI + A + B·T + C·T2 (2)

ER = γ1 + γ2·T (3)

GEE = β·Wscale·Tscale·Pscale·FAPARPAV ·PAR·
(

1 + PAR·PAR0
−1
)−1

(4)

A = γ1 + k1·Wscale (5)

B = γ2 + k2·Wscale (6)

C = γ3 + k3·Wscale (7)

where NEE is the net ecosystem exchange, ER is the sum of autotrophic and heterotrophic
respiration, and GEE represents vegetation productivity (Equations (1), (2), and (4)). α,
β, γ (γ1, γ2, and γ3), and k (k1, k2, and k3) are parameters pertaining to the specific
vegetation types (Equations (5)–(7)). The effects of Wscale, Tscale, and Pscale on GEE (Equation
(4)) represent the changes in temperature stress (Equation (12)), water stress (Equations
(8) and (9)), and phenology (Equation (11)), respectively. FAPARPAV is the fraction of
photosynthetically active radiation that can be approximately replaced by EVI, whereas
PAR0 is the half-saturation value (Equation (4)). The original ER function contains only the
primary linear term for temperature (Equation (3)). An improved terrestrial respiration
parameterization in the VPRM was developed by incorporating EVI, water stress scaling
factor, and quadratic dependence on surface air temperature (Equation (2)).

Wscale(GEE) = 1 − (LSWImax − LSWI)·(1 + LSWImax)
−1 (8)

Wscale(RE) = 1 − (LSWImax − LSWI)·(LSWImax − LSWImin)
−1 (9)

https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/
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LSWI = 1 − 2·ρSWIR·(ρNIR + ρSWIR)
−1 (10)

Pscale = (1 + LSWI)·2−1 (11)

Tscale = 1 −
(
T − Topt

)2·
[(

T − Topt
)2 − (T − Tmin)·(T − Tmax)

]−1
(12)

The original WRF-VPRM algorithm uniformly applied water stress to both the GEE
and ER (Equation (8)). The modified WRF-VPRM distinguished the effects of water stress
on photosynthesis and respiration (Equations (8) and (9)), following the methodology of
Hu et al. [39]. The land surface water index (LSWI) is computed as a normalized value
for NIR and short-wave radiation and indicates phenological patterns [29] (Equation (10)).
The spatial distribution of the LSWI was similar to that of EVI (Figure 1b). The Topt, Tmax,
and Tmin values of different vegetation types represented the optimum, maximum, and
minimum temperatures (Equation (12)) for photosynthesis, respectively, from previous
studies [35,39].

Tnew = Ta·Tscale − Tcrit(Tscale − 1) (13)

The temperature was adjusted to respond as much as possible to low-temperature con-
ditions (Equation (13)) in cases where vegetation did not survive, but respiration persisted;
additionally, low temperatures at night without respiration were considered “pseudo-
death” when the air temperature (Ta) was below the threshold (Tcrit). The parameters in
the original model were obtained from Li et al. [18] and those in the improved model were
obtained from Hu et al. [39].
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2.3. Analytical Method

To quantify the difference between the WRF-VPRM simulations and observations, four
statistical features were used at each site: bias, root mean square error (RMSE), correlation
coefficient (r), and the ratio of standard deviation (RSD). These were calculated as follows:

bias =
1
N

N

∑
i=1

(Mi − Oi) (14)

RMSE =

(
1

N − 1

N

∑
i=1

(Mi − Oi)
2

)1
2

(15)

r =

1
N ∑N

i=1
(

Mi − M
)(

Oi − O
)

√
1
N ∑N

i=1
(

Mi − M
)2
√

1
N ∑N

i=1
(
Oi − O

)2
(16)

RSD =

∣∣∣∣∣

√
1

N − 1 ∑N
i=1
(

Mi − M
)2 −

√
1

N − 1 ∑N
i=1
(
Oi − O

)2
∣∣∣∣∣

√
1

N − 1 ∑N
i=1
(
Oi − O

)2
(17)

where Mi and Oi are the simulated and observed values, respectively, M and O are the
averages of the simulated and observed values, respectively, and N is the number of days
for comparison.

3. Results
3.1. Seasonal Variations in CO2 Fluxes and Hourly Variations in NEE and CO2 Concentrations

Initially, the annual variations in NEE, GEE and ER were evaluated across four sites,
i.e., Maqu, Dashalong, Arou, and Nam Co (Figures 2–4). At Maqu, a negative daily mean
NEE was observed from mid-April to late October (Figure 2a). The daily mean NEE peaked
(−4.715 µmol·m−2·s−1) in early August. The relative deviation of the maximum NEE,
calculated using the improved WRF-VPRM during the growing season at Maqu, reduced
substantially by 53.87% in 2016 and 35.1% in 2017 (Figure 2a) compared with that calculated
using the original model. The growing and non-growing seasons were delineated based
on a threshold of soil temperatures exceeding 5 ◦C for five consecutive days. The Maqu
site, having the longest growing season in this study, had growing seasons from 28 April to
28 October 2016, and from 2 April to 14 November 2017. At the Yakou, Dashalong, and
Arou sites, the growing seasons for 2016 began on 2 July, 20 May, and 29 May, ending on
28 August, 29 September, and 25 October, respectively. In 2017, these sites commenced
their seasons on 28 May, 20 May, and 25 April, concluding on 4 October, 5 October, and
21 October, respectively. During the non-growing season, observed NEE varied between
0 and 1.710 µmol·m−2·s−1, which was attributed to soil respiration. A NEE value of 0 signi-
fies no carbon flux exchange in the ecosystem during the non-growing season or indicates
that GEE and ER are in equilibrium during the growing season. The improved model
exhibited clear fluctuations during this phase, whereas the original model maintained a
constant value of 0 µmol·m−2·s−1 (Figure 2a). Contrastingly, the maximum NEE at Yakou
occurred in mid-July (Figure 2b). The WRF-VPRM effectively represented the upsurge
in NEE during the early growing season of 2017 and accurately captured the beginning
of the growing season in 2016 (Figure 2b). These findings demonstrate the proficiency of
the model in capturing the dynamic changes and distinct stages of the growing season
(gray shading in the figures). Similarly, the observation signals at Dashalong and Arou
during the peak growing season (mid-July) and at the end of the growing season (late
August) were captured by the WRF-VPRM (Figure 2c,d). Before improvements, the 2-year
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average bias at the Maqu site was −0.995 µmol·m−2·s−1; after incorporating moisture
stress, it shifted to 0.419 µmol·m−2·s−1, while that at the Yakou site decreased from −0.899
to −0.243 µmol·m−2·s−1 and that at the Dashalong and Arou sites changed from −1.268
and −0.271 µmol·m−2·s−1 to 0.556 and 0.349 µmol·m−2·s−1, respectively.
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Accurately estimating GEE is crucial for understanding the photosynthetic capacity of
various vegetation types. The original WRF-VPRM overestimated GEE at each site, leading
to an underestimation of the NEE of the respective site (Figure 3a–d). The maximum bias
for Maqu, Yakou, Dashanglong, and Arou in the 2 years reached 2.732, 1.026, −0.475, and
4.539 µmol·m−2·s−1, respectively. During the non-growing season, both the simulated and
observed GEE values were zero, which was attributable to vegetation mortality. At Maqu
and Arou, where grasslands characterized the underlying surface, the maximum GEE value
in summer was approximately −10 µmol·m−2·s−1, which was similar to the photosynthetic
capacity observed in the forests in Wuying [18]. Furthermore, GEE evidently increased at
Yakou toward the end of July 2017, after which it failed to return to the original GEE levels.
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This variation clearly indicated the fragility and sensitivity of the vegetation at Yakou
(Figure 3b). A similar trend was observed at Dashalong in late August 2016, indicating a
decline in vegetation (Figure 3c). At Dashalong, the RMSE of the improved WRF-VPRM
changed from 0.779 and 0.918 µmol·m−2·s−1 to 1.608 and 1.791 µmol·m−2·s−1 because the
underlying substrate was marsh grassland with sufficient moisture (Figure 3c). At sites
with less moisture, such as Arou, RMSE decreased from 4.839 and 3.172 µmol·m−2·s−1 to
3.486 and 2.280 µmol·m−2·s−1 (Figure 3d).
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According to the observations, ER was greater than 0 µmol·m−2·s−1 at each site through-
out the year, but in the original WRF-VPRM, it consistently remained at 0 µmol·m−2·s−1

during the non-growing season (Figure 4a–d). Nonetheless, accuracy was limited by the
ER function of the model (Equation (2)), which solely considered vegetation respiration.
During the growing season, the simulation dynamics (gray shading) improved, owing to
stronger vegetation respiration. The improved model accurately marked the beginning and
end of the growing season. For ER, compared with the observations, the modified model
results show that the bias at the Maqu site ranged from −3.591 to −0.670 µmol·m−2·s−1

and from −3.520 to −0.741 µmol·m−2·s−1 in 2016 and 2017, respectively. For sites with
similar underlying substrates, i.e., Yakou and Arou, the bias in 2016 changed from −1.385
and −3.946 µmol·m−2·s−1 to −0.017 and −1.387 µmol·m−2·s−1, respectively, and in 2017,
from −1.119 and −3.5 µmol·m−2·s−1 to 0.31 and −1.143 µmol·m−2·s−1. Even with ample
moisture at the Dashalong site, ER improved in 2016 and 2017, changing from −1.135 and
−0.771 µmol·m−2·s−1 to 0.126 and 0.182 µmol·m−2·s−1, respectively (Figure 4a–d). ER at
each site increased significantly in May and June, peaking in July or August and coinciding
with maximal vegetation growth. The peak ER values for Maqu, Yakou, Dashalong, and
Arou were 7.179, 2.203, 2.166, and 6.622 µmol·m−2·s−1, respectively (Figure 4a–d). The
improvement in ER can be attributed to the inclusion of water stress in the new scheme
(Equations (2) and (9)) and indicated that the TP was sensitive to water stress.

Improved estimations of carbon sink capacity were reflected by the better bias and
RMSE values of NEE (Tables 2–4). The NEE, GEE, and ER r-values of the improved WRF-
VPRM at the four sites were 0.563, 0.771, and 0.924, respectively, whereas the original
WRF-VPRM had r-values of 0.559, 0.739, and 0.787, respectively. The RSD values varied
among the four sites; however, the overall RSD improved to 0.443. For NEE, the RSD
at the Maqu site changed from 0.85 and 0.662 in successive years to 0.406 and 0.398.
In 2017, the NEE RSD for the Yakou and Arou sites changed from 0.107 and 0.16 to
0.099 and 0.057, respectively. For GEE in 2016, the RSD at the Maqu and Yakou sites
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changed from 0.009 to 0.004 and 0.276 to 0.011, respectively. The Arou site experienced
RSD changes over 2 years, changing from 0.562 and 0.205 to 0.401 and 0.037. ER had the
most significant RSD variations in carbon flux, with Maqu transitioning from 0.917 and
0.916 over 2 years to 0.083 and 0.067, while Arou changed from 0.904 and 0.895 to 0.332
and 0.146 (Table 3). The performance of the improved WRF-VPRM in simulating ER was
significantly enhanced, especially the r-value, which increased from 0.852 to 0.960 (Table 4),
underscoring the importance of water stress in the TP. This performance enhancement
and range of correlation values, along with other statistical parameters, highlighted the
improvements brought about by the improved WRF-VPRM. Other statistical parameters
are described comprehensively in Tables 2–4.

Table 2. Original and improved statistical results of WRF-VPRM-simulated net ecosystem ex-
change (NEE).

NEE Model
Maqu Yakou Dashalong Arou

2016 2017 2016 2017 2016 2017 2016 2017

bias
(µmol·m−2·s−1)

Original −1 −0.991 −0.305 −1.492 −1.272 −1.263 −0.123 −0.418
Improved 0.398 0.439 0.012 −0.498 −0.522 −0.59 0.335 0.364

RMSE
(µmol·m−2·s−1)

Original 1.989 1.813 1.484 2.106 1.58 1.474 1.461 1.501
Improved 1.686 1.532 1.546 1.358 1.048 1.015 1.338 1.363

r Original 0.721 0.62 0.533 0.429 0.278 0.711 0.584 0.594
Improved 0.646 0.572 0.472 0.494 0.394 0.602 0.673 0.65

RSD
Original 0.85 0.662 0.26 0.107 0.74 0.817 0.085 0.16

Improved 0.406 0.398 0.26 0.099 1.293 0.89 0.146 0.057

Table 3. Original and improved statistical results of WRF-VPRM-simulated gross ecosystem ex-
changes (GEE).

GEE Model
Maqu Yakou Dashalong Arou

2016 2017 2016 2017 2016 2017 2016 2017

bias
(µmol·m−2·s−1)

Original 2.732 2.707 1.026 −0.365 −0.134 −0.475 4.539 2.893
Improved 0.944 1.169 −0.013 −1.177 −1.046 −1.271 3.064 1.849

RMSE
(µmol·m−2·s−1)

Original 2.991 2.972 1.775 1.463 0.779 0.918 4.838 3.172
Improved 1.772 1.927 1.444 2.004 1.608 1.791 3.486 2.28

r Original 0.88 0.827 0.633 0.558 0.663 0.757 0.776 0.822
Improved 0.893 0.848 0.715 0.613 0.708 0.748 0.82 0.842

RSD
Original 0.009 0.032 0.276 0.102 0.606 0.783 0.562 0.205

Improved 0.004 0.053 0.011 0.434 1.233 1.562 0.401 0.037

Table 4. Original and improved statistical results of WRF-VPRM-simulated ecosystem respiration (ER).

RE Model
Maqu Yakou Dashalong Arou

2016 2017 2016 2017 2016 2017 2016 2017

bias
(µmol·m−2·s−1)

Original −3.591 −3.52 −1.385 −1.119 −1.135 −0.771 −3.946 −3.5
Improved −0.67 −0.741 −0.017 0.31 0.126 0.182 −1.387 −1.143

RMSE
(µmol·m−2·s−1)

Original 3.897 3.775 1.389 1.122 1.211 0.775 4.149 3.629
Improved 0.881 0.906 0.812 0.956 0.474 0.805 1.567 1.234

r Original 0.814 0.765 0.947 0.922 0.597 0.693 0.784 0.776
Improved 0.956 0.953 0.876 0.852 0.912 0.887 0.96 0.953

RSD
Original 0.917 0.916 0.377 0.39 0.744 0.235 0.904 0.895

Improved 0.083 0.067 2.126 2.767 0.579 4.079 0.332 0.146

Hourly scale simulations are essential for comprehensively analyzing carbon emis-
sions and sequestration, as they are more sensitive to environmental disturbances than
diurnal cycles. Accordingly, the NEE results were validated during the active growing
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season (days 180–185) in 2016 and 2017. Broadly, the original model generated nearly
zero simulation values at night, which was improved by the improved model, whose
effectiveness varied among the different sites. Considering the capacity of the improved
model to capture hourly dynamic fluctuations, the manifestation of double peaks of NEE
at Maqu and Arou became apparent. NEE remained positive during the night, gradually
declined from 6:00 (UTC+8), reached its maximum at noon (UTC+8), and subsequently,
increased progressively. The model rendered slightly lower nighttime NEE estimates
than the observed data for Maqu and Arou (Figure 5a,b,g,h). The nighttime ER was ap-
proximately 4.312 and 4.153 µmol·m−2·s−1 at Maqu and Arou, respectively. During the
night, the model competently captured the ER signal, which was approximately 1.462 and
1.138 µmol·m−2·s−1 at Yakou and Dashalong, respectively (Figure 5c–f). The r-value at the
Maqu, Yakou, Dashalong, and Arou sites changed from 0.958, 0.096, 0.83, and 0.561 to 0.968,
−0.109, 0.751, and 0.041, respectively, in 2016. In 2017, it changed from 0.989, 0.811, 0.788,
and 0.996 to 0.0.983, 0.697, 0.467, and 0.993, respectively. Crucially, the ability of the model
to capture the timing of diurnal NEE variations underscored the suitability of WRF-VPRM
for hourly carbon flux analyses.
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Figure 5. Diurnal variations in net ecosystem exchange (NEE) from days 180 to 185 of 2016 (left)
and 2017 (right) at the peak of the growing season at (a,b) Maqu, (c,d) Yakou, (e,f) Dashalong, and
(g,h) Arou. Horizontal lines indicate that photosynthesis and interactions are in balance at night.

Furthermore, the validation of CO2 concentration emerged as a key focus area. The
WRF-VPRM simulation of the CO2 concentration responded to carbon flux variations.
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Given the evident underestimation of ER in the original WRF-VPRM, the CO2 concentration
curve was valley-shaped during the annual growing season. This situation was improved
significantly by applying the modified WRF-VPRM, which aligned with the observations.
The surface CO2 concentration r-value at the Waliguan site ranged from 0.864 to 0.806
and 0.443 to 0.268 at the Nam Co site, −0.355 to −0.096 at the Maqu site, 0.206 to 0.232
at the Dashalong site, 0.356 to 0.381 at the Yakou site, and from 0.103 to 0.181 at the
Arou site. Waliguan is a global background station in China that represents general
changes in CO2 concentrations in the absence of human activities. CO2 concentrations
in Waliguan increased from January to mid-May owing to elevated winter emissions,
then decreased with the onset of the growing season, and eventually started to increase
again after reaching a minimum in August (Figure 6a). The model results for Nam Co,
which is situated at the center of the TP, overestimated the site observations by 4.598 ppm
(Figure 6b). This discrepancy was due to inaccurate EVI observations at Nam Co, leading to
a misinterpretation of the location as a carbon source rather than a carbon sink. Although
the observed data at Maqu, Dashalong, Yakou, and Arou exhibited fluctuations, the overall
trend remained consistent with the simulation results (Figure 6c–f). Figure 6 shows the
average CO2 concentrations at each site in 2016 and 2017. The mean simulated CO2
concentrations at all sites, except Dashalong, increased in the improved model, suggesting
that increased respiration can influence CO2 concentration changes simulated by the model.
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3.2. Daily Variations in CO2 Fluxes during the Growing Season

Springtime observations revealed vigorous vegetation growth at Maqu and Arou, as
reflected by the negative mid-day NEE values (Figure 7a,d), whereas ER dominated at
Yakou (Figure 7b). Dashalong displayed no evident diurnal fluctuations, but an interannual
increase in carbon emissions suggested heightened ER (Figure 7c). In summer, which
marks the peak growing season, maximum NEE values of −13 µmol·m−2·s−1 at Maqu
were observed, with nighttime stabilization at approximately 4 µmol·m−2·s−1 (Figure 7a).
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The NEE at Arou was consistent with that at Maqu. The observation results reached
a maximum of −14 µmol·m−2·s−1 at Arou, but the model slightly underestimated it
(Figure 7d). Moreover, the carbon sink capacity at Yakou in summer was approximately
half of that at Maqu (Figure 7b), and Dashalong showed relatively weaker carbon sink
capacity than that of the other sites (Figure 7c). The NEE diurnal cycle in autumn was
approximately 1 h later than that in summer. Yakou and Dashalong were completely
transformed into carbon sources, indicating that the underlying surface played a key
role in vegetation growth (Figure 7b,c). In the Maqu and Arou grasslands, although the
fluctuations in NEE decreased, it remained negative during the day (Figure 7a,d). As the
present study focused on changes in the growing season, diurnal changes in winter were
not discussed.
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3.3. Cumulative CO2 Fluxes

Figure 8 presents the cumulative fluxes of NEE, GEE, and ER over two consecutive
years. Cumulative NEE increased from January to April or May owing to elevated ER
caused by a steady temperature increase. Subsequently, the cumulative NEE started
declining during the growing season at each site, and started increasing again after the
growing season. When NEE was utilized for ecosystem source–sink analysis, different
outcomes emerged across regions, with Maqu and Arou representing carbon sinks, and
Yakou and Dashalong representing weak carbon sources. On comparing the cumulative
carbon flux between the improved and original models based on previous results, we
found an increase in cumulative carbon flux of 166.78, 197.8, 70.39, and 162.19% in 2016,
and 186.92, 122.08, 68.64, and 195.59% in 2017, and ER improved by 63.55, 60.5, 85.3, and
41.52% in 2016, and 61.53, 78.86, 78.76, and 45.95% in 2017 at Maqu, Yakou, Dashalong, and
Arou, respectively. Furthermore, the results of the improved model and observations were
compared. The observational results suggest higher vegetation growth at Maqu and Arou
than at Yakou and Dashalong. Cumulative GEE at the Maqu, Yakou, Dashalong, and Arou
sites reached −376.932, −152.916, −57.942, and −321.633 gC·m−2, respectively, in 2016
and −362.237, −89.126, −53.248, and −296.239 gC·m−2, respectively, in 2017 (Figure 8a–d),
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while ER reached 315.517, 175.338, 103.722, and 327.017 gC·m−2, respectively, in 2016,
and 315.5 gC·m−2, 138.531 gC·m−2, 109.835 µmol·m−2·s−1, and 262.647 µmol·m−2·s−1,
respectively, in 2017 (Figure 8a–d). Overall, the NEE, GEE, and ER were stronger in 2016
than in 2017 at all sites, indicating degraded carbon sink capacity that could be extremely
detrimental to sustainable development.
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3.4. Irregular Variations in CO2 Concentrations

Anomalies in CO2 concentrations were calculated by deducting both background
value and TP average variations from the local concentrations. Given the relatively minor
fluctuations in CO2 concentrations, four geographically distant sites were selected for the
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analysis. The 2-year average anomalies at Maqu, Waliguan, Dashalong, and Nam Co
increased by 0.205, 2.196, 2.107, and 1.034 ppm, respectively, reflecting fast-rising CO2
concentrations over the TP.

Local anomalies were observed when the curves from different stations showed
contrasting trends. Conversely, global anomalies were observed when the trends were
aligned. The analysis focused on CO2 concentration anomalies in 2016, with local anomalies
identified at 4:00 (UTC) daily from days 153 to 172 and global anomalies identified at 6 h
intervals from 4:00 (UTC) on day 199 to 22:00 on day 203 (Figure 9). Local CO2 concentration
anomalies resulted primarily from horizontal transport. On day 153, the CO2 concentrations
at all four sites were closely aligned, with an average value of 407.230 ppm. Compared
with the CO2 concentration on day 153, the northwesterly winds dispersed the CO2 at
Maqu, resulting in a CO2 concentration decrease of 1.795 ppm, and the deep southeasterly
winds at the Nam Co site also decreased CO2 concentration by 0.626 ppm (Figure 10).
Subsequent shifts in wind direction influenced the CO2 concentrations at Maqu and Nam
Co from days 165 to 168, and on day 168, the CO2 concentration at Maqu and Nam Co
decreased by 6.744 and 2.308 ppm, respectively, compared with that on day 153 (Figure 10).
As the wind intensified and expanded, the difference in CO2 concentrations between the
two sites reached 15 ppm. Despite this concentration being relatively lower than that of
the background value, this change was consistent with the changes in NEE (Figure 2),
demonstrating that prior uncoupled models assuming constant CO2 concentrations could
not capture such a phenomenon and highlighting the importance of CO2 concentration
simulation for precise NEE prediction.
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indicate local and overall anomalies, respectively.

Global anomalies often reflect a range of changes encompassing daily variations. The
daily driving force of surface CO2 concentrations usually comprises background values,
biospheric CO2, ocean absorption, and anthropogenic emissions. Anthropogenic emissions
and biosphere absorption are often responsible for anomalies [68–72]. Starting from day
199, the eastern TP exhibited lower CO2 concentrations compared with the relatively high
concentrations in the central and western regions (Figure 11). When the easterly and
westerly winds intersected in the eastern region, CO2 concentrations remained relatively
low. Over time, the CO2 concentration anomaly increased significantly, driven by reduced
biological absorption on the TP (Figure 12). A peak in CO2 concentrations was observed
on day 201. This amplitude change was also evident in the observations and simulations
shown in Figure 2, illustrating that advection-induced changes in CO2 concentrations and
subsequent NEE variations are critical to dynamic changes. Figure 11 reveals persistently
high CO2 concentrations in regions with strong westerly winds, whereas southeasterly
winds generated a band of low CO2 concentrations over the TP, as exemplified on day
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203. From the eastern part of the TP, surface CO2 concentrations remained at 398 ppm
at 4:00 UTC on day 199 and decreased to 388 ppm on day 200 due to the easterly winds.
From day 201, the high-value area of approximately 404 ppm in the central and western
regions shifted to the east with the westerly wind, reducing to 389 ppm in the eastern part
on day 203. At the same time, high CO2 concentrations (408 ppm) in the Midwest were
observed from 16:00 to 22:00 UTC on days 199 to 200, owing to the convergence of easterly
and westerly winds.
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wind speeds.

The northwestern region of the TP demonstrated relatively low biospheric CO2
(Figure 12), a phenomenon closely linked to the regional vegetation status and water
content. Diurnal fluctuations in vegetation photosynthesis were also observed in the 5-day
cycle. Most biological absorption is related to vegetation, and CO2 concentration fluctua-
tions exhibited minimal sensitivity to wind direction and speed. However, because of the
ecosystem diversity of the TP, biological uptake did not exhibit a consistent southeast-to-
northwest decrease, but was indeed lower in the mid-northwest region (Figure 12). The
eastern TP biospheric CO2 concentrations reached 5 ppm for five consecutive days, while
the western region exhibited a weak emission of 1 ppm, and the central region had a high
emission area of 4 ppm due to drought. Simultaneously, the emissions in the Qaidam Basin
consistently remained at 3–4.5 ppm unless strong southeasterly winds were incident. The
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overall biospheric CO2 was between −5 and 5 ppm, with the main driver of this change
being the inability of photosynthesis to occur at night.

Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 24 
 

 

central region had a high emission area of 4 ppm due to drought. Simultaneously, the 
emissions in the Qaidam Basin consistently remained at 3–4.5 ppm unless strong south-
easterly winds were incident. The overall biospheric CO2 was between −5 and 5 ppm, 
with the main driver of this change being the inability of photosynthesis to occur at 
night. 

 
Figure 12. Biospheric CO2 concentrations varied in the simulation by the improved WRF-VPRM 
from 4:00 (UTC) every 6 h on days 199–203 of 2016 at the four observation sites with 8 m·s⁻1 wind 
speeds. 

4. Discussion 
Although ER increased with the water stress adjustment, GEE and NEE also 

demonstrated changes in different magnitudes, indicating the interdependence of respi-

Figure 12. Biospheric CO2 concentrations varied in the simulation by the improved WRF-VPRM from
4:00 (UTC) every 6 h on days 199–203 of 2016 at the four observation sites with 8 m·s−1 wind speeds.

4. Discussion

Although ER increased with the water stress adjustment, GEE and NEE also demon-
strated changes in different magnitudes, indicating the interdependence of respiration
and photosynthesis. The WRF-VPRM employed in this study using satellite data [34]
presented a physical mechanism superior to that of traditional statistical models [35] and
offered higher interpretability and output resolution [18]. Light use efficiency models
often simulate correlations to 0.8 [73,74]. Further, NEE, GEE, ER, and CO2 concentrations
were analyzed, and the improvements in carbon flux were determined using statistical
variables (bias, RMSE, r-value, and RSD), thus suggesting that considering water stress
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enhances the simulation accuracy of carbon flux on the TP, particularly for ER, which may
be due to the semi-arid or sub-humid ecological conditions in the study area, leading to
a sensitive carbon flux response to water stress. Water stress, a key factor in vegetation
physiological processes, influences not only respiration and photosynthesis, but also root
development, rhizome transport, and stomatal closure [75]. Hence, water stress should
be considered when simulating CO2 flux and CO2 concentration changes on the TP. After
incorporating water stress, the simulation experiments exhibited improved accuracy for
respiration, expressing not only year-round changes, but also providing a more precise
depiction of the intraday cycle. Moreover, respiratory feedback enhanced the simulation
results of photosynthesis. Similar results were observed in other studies, where sensitivity
of vegetation to water stress was proven by the high correlation between photosynthesis
and respiration in semi-humid areas [18,39]. Simultaneously, due to the influence of EVI,
the modeled NEE at the Nam Co site remained greater than 0 µmol·m−2·s−1, indicating
that the site was a carbon source, while the observed NEE showed that it was a carbon sink
(Figure 13a). The EVIs observed by the satellite at Maqu and Nam Co differed six-fold,
while the observed NEE differed by only a factor of two (Figure 13b). This discrepancy
may stem from the insufficient spatial resolution of the simulation to accurately reflect the
real situation owing to the complex underlying surface types on the TP, such as alpine
grasslands, subalpine meadows, swamp grasslands, and alpine meadows. Hence, due to
these complexities, further investigations are warranted.
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The improved model distinctly demonstrated daily and annual changes in CO2 fluxes
under high spatiotemporal resolution simulations, providing valuable interpretations.
Moreover, the fully coupled WRF-VPRM efficiently simulated the CO2 concentration
response to carbon fluxes, accurately showing that local variations in concentration are
influenced by advection. Although the model simulation results are promising, the EVI-
based model could only represent the combined effects of vegetation, water stress, and
temperature stress. Hence, to better understand the dynamic changes in vegetation on
the TP, further research is essential to enhance the parameterization schemes in the model.
Further studies with more western site observations are required to validate the modeling
results for the TP and optimize the simulation effects of different vegetation substrates and
climate-sensitive areas in the model.

5. Conclusions

This study analyzed the application of WRF-VPRM for simulating carbon fluxes and
CO2 concentrations in the TP under water stress and examined the carbon flux charac-
teristics through in situ observations. Relative to the original model, the bias demon-
strated a transition from −0.086, 1.615, and −2.371 µmol·m−2·s−1 to −0.008, 0.439, and
−0.418 µmol·m−2·s−1, while RMSE values shifted from 1.676, 2.364, and 2.493µmol·m−2·s−1

to 1.361, 2.039, and 0.754 µmol·m−2·s−1, at the four sites over 2 years on the TP. The r and
RSD of NEE changed from 0.559 to 0.563 and 0.46 to 0.444, GEE changed from 0.739 to
0.773 and 0.322 to 0.467, and ER changed from 0.787 to 0.915 and 0.672 to 1.272, respectively.
Moreover, the CO2 concentration of the improved model simulations better reproduced
summer fluctuations across different regions over the TP and responded to NEE changes.
Local CO2 concentration anomalies were influenced by wind speed and direction, whereas
the overall anomalies were controlled by biological uptake. Despite the varying degrees
by which the simulation results were enhanced across different sites on the TP, the final
outcomes were satisfactory. The study highlights the importance of highly interpretable
light use models in capturing the responses of vegetation to changes in individual factors
on the TP. Using satellite data for simulation, this study incorporated and expanded in-
formation for larger-scale simulations, providing more reliable estimates for studying the
interaction between CO2 concentration and flux over the TP, and has potential significance
for advancing future research.
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