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Abstract: Understanding the change dynamics of land use and land cover (LULC) is critical for
efficient ecological management modification and sustainable land-use planning. This work aimed
to identify, simulate, and predict historical and future LULC changes in the Sohag Governorate,
Egypt, as an arid region. In the present study, the detection of historical LULC change dynamics
for time series 1984–2002, 2002–2013, and 2013–2022 was performed, as well as CA-Markov hybrid
model was employed to project the future LULC trends for 2030, 2040, and 2050. Four Landsat
images acquired by different sensors were used as spatial–temporal data sources for the study region,
including TM for 1984, ETM+ for 2002, and OLI for 2013 and 2022. Furthermore, a supervised
classification technique was implemented in the image classification process. All remote sensing data
was processed and modeled using IDRISI 7.02 software. Four main LULC categories were recognized
in the study region: urban areas, cultivated lands, desert lands, and water bodies. The precision of
LULC categorization analysis was high, with Kappa coefficients above 0.7 and overall accuracy above
87.5% for all classifications. The results obtained from estimating LULC change in the period from
1984 to 2022 indicated that built-up areas expanded to cover 12.5% of the study area in 2022 instead
of 5.5% in 1984. This urban sprawl occurred at the cost of reducing old farmlands in old towns and
villages and building new settlements on bare lands. Furthermore, cultivated lands increased from
45.5% of the total area in 1984 to 60.7% in 2022 due to ongoing soil reclamation projects in desert areas
outside the Nile Valley. Moreover, between 1984 and 2022, desert lands lost around half of their area,
while water bodies gained a very slight increase. According to the simulation and projection of the
future LULC trends for 2030, 2040, and 2050, similar trends to historical LULC changes were detected.
These trends are represented by decreasing desert lands and increasing urban and cultivated newly
reclaimed areas. Concerning CA-Markov model validation, Kappa indices ranged across actual and
simulated maps from 0.84 to 0.93, suggesting that this model was reasonably excellent at projecting
future LULC trends. Therefore, using the CA-Markov hybrid model as a prediction and modeling
approach for future LULC trends provides a good vision for monitoring and reducing the negative
impacts of LULC changes, supporting land use policy-makers, and developing land management.
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1. Introduction

Land degradation is a global issue caused by demographic growth, inappropriate land
management, deforestation, climate change, and others [1]. Recently, Egypt has experienced
a very complicated dynamic built-up sprawl process due to the fast population increase,
which is the key driver of urbanization and LULC changes in arid lands, converting
productive agricultural lands to urbanized areas, prompting concern among researchers [2].
Furthermore, in Egypt, growing urbanization is linked with population increases, resulting
in intense farming land use to fulfill food demand. Accordingly, some Nile Valley and
Delta fertile soils have been vulnerable to degradation and have lost their fertility and
productivity. Hence, the sustainable development of current agricultural lands with an
expansion of reclaimed soils is necessary to achieve food security, which has become the
primary concern [3]. Land reclamation programs for arable land outside the Nile Valley
have accelerated rapidly, aiming to increase farmed areas while relieving the pressure
on fertile agricultural soils [4]. Thus, for Egypt, as an arid region, the detection and
projecting of LULC changes are essential for long-term management and land-use planning
of natural resources.

Many factors influence LULC changes, including time, scale, politics, economics, and
social and cultural factors [5]. At all spatial–temporal scales, LULC changes have been
recognized as significant drivers of environmental changes [6]. Such changes, along with
other negative changes (e.g., climate change, biodiversity loss, and water, soil, and air pol-
lution), should be the top priorities for humans [7]. Therefore, studying and monitoring the
changes in LULC over time is both urgent and necessary to obtain an accurate future vision
for sustainable development. Monitoring and relieving the unfavorable consequences of
LULC dynamics while sustaining essential resource generation has, thus, become a top
emphasis for researchers and policy-makers worldwide. Land use and land cover (LULC)
describe the physical land types such as forests, wetlands, impervious surfaces, agriculture,
water types, and others, as well as how humans use these land types in a region. Fur-
thermore, LULCs are spatially dispersed due to the dynamic interactions between human
activities and natural factors of ecosystems [8–11]. Natural, social, and economic variables
all influence the complex dynamics of LULC systems. Changes in LULC availability and
distribution have a substantial influence on climate, environmental challenges, and natural
ecosystem conditions [12–14]. Furthermore, changes in global LULC are a major cause of
significant concern for future LULC trends [15–19]. Moreover, LULC changes are a critical
aspect of sustainability and management of natural resources [20–23].

In many cases, human activities have unfavorable impacts on LULC in diverse territo-
ries of the world. Human-induced LULC changes are driven mainly by the requirements of
communities for food and economic development due to the rapidly increasing population
growth globally [24–28]. These LULC shifts, however, have severe consequences for climate
change, environmental conservation, environmental pollution, soil erosion, agricultural
land production, biodiversity, and water resources [29–37]. In the investigation region, as
arid land, the main driver of LULC changes is human activities due to population increase.
This is similar to the rest of Egypt, which requires supporting economic development to
meet food and housing requirements.

Above all, understanding and identifying detailed historical and future LULC dynam-
ics knowledge over a lengthy series of periods and analyzing their patterns and processes
is critical for land development decision-makers and planners. LULC changes are rapidly
dynamic processes worldwide. Thus, it is widely recognized that LULC trends document-
ing and modeling improve knowledge of historical and future LULC patterns and their
repercussions and guide future land-use planning [27,38,39].
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Geographic information systems (GIS) and remote sensing (RS) techniques provide
helpful approaches for understanding, analyzing, and monitoring LULC over time in
landscapes [40,41]. Many investigations on LULCs have been conducted using these
tools [42–45]. Additionally, Landsat periodic imagery data for a specific area is a reliable
data source that can be utilized to forecast LULC trends in that area. GIS and RS techniques
are effective for displaying spatial modeling methods [46]. Thus, modeling, simulation,
and predicting the LULC changes using temporal–spatial data are crucial for improving
LULC planning and management. Although the complexity of developing models and
simulations is great, they are necessary to detect the LULC changes and analyze the
causes and consequences of this phenomenon [47]. Furthermore, various approaches for
determining historical and prospective LULC have been established to assist stakeholders
in economic improvement, land conservation, and land-use planning. In addition, several
models for simulating future scenarios of LULC have been created. These models deliver
appropriate approaches for detecting the spatial variability patterns in LULC. Moreover,
model validation is required for an accurate assessment of LULC prediction in a particular
area by comparing predicted and observed LULC changes [48].

The combined Cellular Automata (CA) and Markov Chain model (CA-Markov Model)
is one widespread model used with high accuracy for analyzing LULU dynamics [27,36,49].
Furthermore, the CA-Markov model’s robustness provides an opportune manner for
modeling LULC change dynamics spatially and temporally in complex landscapes [50–52].
The flexibility of the CA-Markov hybrid model to combine spatial and remote sensing data,
as well as biophysical and socio-economic data, promotes a more extensive, detailed, and
accurate projection of LULC change transitions [53]. Several studies have employed this
model successfully in LULC prediction, e.g., [36,54–58]. CA-Markov hybrid model, which
was employed in the present investigation, is an effective and widely used model among
several models by researchers to detect, predict, monitor, and simulate spatiotemporal
change in LULC [59–62].

The most significant stage in the CA-Markov model is the rules of transition, which de-
pend on the training data [63]. Furthermore, the applied model is affected by neighborhood
class and cell size, which are also considered in obtaining optimum simulation or prediction
outcomes [13]. CA-Markov hybrid model can effectively incorporate remotely sensed data
and GIS. This model can convert the results into spatially explicit results necessary for
LULC development [64]. For simulating and predicting land-use changes, several modeling
approaches are used [65]. Some of them are applied based on the statistical matching ap-
proach of the spatio-temporal data using the main variables of prediction. The others utilize
algorithms specifically designed to assess human–environment interactions [66]. However,
the Markov model is the earliest statistical model that can be generated with minimal
input data [67,68]. In the current study, assessing and analyzing historical LULC change
patterns from 1984 to 2022 and simulating and predicting future LULC trends of 2030, 2040,
and 2050 in the study area using the CA-Markov model is beneficial for implementing
sustainable land management [69]. Furthermore, there is a scarcity of research on detecting
LULC and forecasting future scenarios in LULC in arid lands such as the study region.
Therefore, the main goal of this work was to detect, analyze, and evaluate the historical
change dynamics in LULC from 1984 to 2022 and to simulate and predict LULC trends for
2030, 2040, and 2050 using CA-Markov spatial modeling.

2. Materials and Methods
2.1. Study Area

In the current study, Sohag Governorate represents the arid land study area. Sohag
Governorate is located in Upper Egypt and encompasses a portion of the Nile Valley
beside the eastern and western desert belts. It has an area of around 11,120 km2 and a
population of 5.45 million in 2021. The Nile River runs for about 125 km through the Sohag
Governorate. The study region is situated at latitudes of 26◦07′ and 26◦57′N, as well as
longitudes of 32◦14′ and 31◦20′E, and it is bounded on the south by Qena Governorate and
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on the north by Assiut Governorate (Figure 1). Climatically, the research region is located
in North Africa’s arid region, which is characterized by hot summers and mild winters
with extremely low to nil rainfall. The monthly averages of temperatures, evaporation, and
rainfall data for the study region are depicted in Figure 2. Temperature varies from 15.5 ◦C
to 36.5 ◦C, and the relative humidity ranges between 35% and 61%. Following Soil Survey
Staff [70], Hyperthermic is the soil temperature regime, and Toric is the moisture regime. The
study area includes four LULC categories: urban areas; cultivated lands; deserts; and water
bodies, as shown in Table 1.
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Table 1. Types of LULC in the study site.

LULC Description

Water bodies The Nile River, canals, drainage patterns, and wastewater treatment plants.

Desert lands Bare lands, sand sheets, and rocky lands in the eastern and western parts outside the Nile Valley.

Cultivated lands Old cultivated lands in the Nile Valley and newly reclaimed lands outside the Nile Valley.

Urban areas Residential, commercial, industrial, and road constructions in cities and rural areas.

2.2. Data Acquisition

Remotely sensed and spatial data are trustworthy data for detecting and comprehend-
ing the dynamic causes of LULC in any terrain [71]. The primary remotely sensed and
ancillary data utilized in this work were four multispectral images of Landsat. These images
were acquired by the thematic mapper (TM), the enhanced thematic mapper (ETM+), and
the operational land imager (OLI) sensors for the years 1984, 2002, 2013, and 2022, respec-
tively. Each of the four images used was created by mosaicking three adjacent captured
images to cover the investigation region. The four images’ geo-coded cloud-free digital
data were obtained from the Landsat archive of the United States Geological Survey (USGS)
(https://earthexplorer.usgs.gov, accessed on 5 January 2022). The principal specifications
of the images used are shown in Table 2. The study site boundary was subsetted using
topographic maps at 1:50,000 scales obtained from the Egyptian Survey Authority (ESA)
as a reference. For creating the digital elevation model (DEM), Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) data were used after radiometric
and geometric corrections, as described in Table 3. Figure 3 displays the created DEM.

Table 2. The principal specifications of the used Landsat satellite images.

Satellite Image Year of Acquisition Path/Row Resolution (m) Image Type

Landsat 5 (TM) 1984

175/42, 176/42 and 176/41 15–30 Level-1
Landsat 7 (ETM+) 2002
Landsat 8 (OLI) 2013
Landsat 9 (OLI) 2022

TM = thematic mapper. ETM+ = enhanced thematic mapper. OLI = operational land imager.

Table 3. The specifications of the ASTER utilized.

Sensor Spectral Range Bands Resolution (m) Swath Width (km) Quantization Level (Bits)

ASTER VNIR, SWIR, and TIR 14 15–90 60 8–12
VNIR = visible and near-infrared. SWIR = short-wave infrared. TIR = thermal infrared.

https://earthexplorer.usgs.gov
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2.3. Pre-Processing of Remote Sensing Data

Pre-processing remotely sensed data is required to reduce noise, prepare the data,
and increase its suitability for further analysis. As previously stated, three images were
employed to cover the study area, totaling twelve images covering the investigated time
series from 1984 to 2022. Using the ENVI platform, all Landsat images underwent pre-
processing, including layer stacking, geometric correction, mosaicking, and band extraction.
First, the multi-temporal Landsat images were imported into the ENVI platform, and
all spectral bands were layer-stacked. Concerning the geometric correction process, the
entire datasets employed were resampled and projected to the World Geodetic System
1984 (WGS84) into the Universal Transverse Mercator (UTM), with a root mean square
error (RMSE) of less than 0.5 pixels [43,72]. For all images of interest, a standard geographic
coordinate system was used throughout the geometric rectification process. Furthermore,
choosing ground control points (GCPs) is critical for geometric rectification. The digital
data for 1984 were registered using 50 GCPs that were easily identifiable on both satellite
images and on the ground (map-to-image registration). In addition, the first polynomial
order and nearest neighborhood resampling approaches were used to set the pixel size
at 30 m for image registration. The remaining images were rectified (image-to-image
registration) using the corrected image of 1984 as a reference, following the same resampling
method. Furthermore, the nearest neighborhood algorithm was applied over images for
the resampling process without changing the original brightness magnitudes of pixels.
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Before image classification, the temporal images must be radiometrically adjusted to
normalize brightness variations induced by changing atmospheric conditions. Radiometric
normalization was performed on the images using pseudo-invariant features (PIFs), which
are spatially well-defined, spectrally stable, and radiometrically stable features. The image
with the highest dynamic brightness value range, i.e., 2013, was chosen as a reference or
base image for radiometric correction of other images from 1984, 2002, and 2022.

2.4. Image Classification and Accuracy Assessment

The main targeted LULC categories in the study site were built-up areas, cultivated
lands (old farmlands and newly reclaimed farmlands), deserts, and water bodies. In terms
of image classification, each image was classified individually before extracting primary
LULC maps. Furthermore, image classification was performed employing supervised
classification. For image classification, a decision tree classifier (DTC) approach was applied
to integrate different remote sensing-derived indices. The DTC is defined as a machine-
learning-based analysis technique comprising several classes of modeling algorithms using
a tree structure, in which each node shows a test on attributes; the branch represents the
test results, and the leaf node shows the target classes. In addition, the DTC is a multistage
classifier that can be applied to a single image or a stack of images. It comprises a series of
binary decisions to place pixels into classes. Each decision divides the pixels of the image
into two categories based on the expression. Furthermore, the DTC is a hierarchical model
composed of decision rules that recursively split independent variables into homogeneous
zones. Therefore, we used it to determine the correct category for each pixel, with certain
classes being separated during each step in the simplest manner possible (Figure 4). The
DCT has been widely used for land cover classification, particularly with remote sensing
technology approaches, and is often used to integrate multi-source data. In practice, the
DTC concept is often translated using classification rules. Three stages are used to build
the classification rules, including the following: (1) generating and perfecting knowledge
and rules from experts; (2) extracting variables and rules using cognitive methods; and
(3) automatically generating rules from observed data. As a result, the LULC in the study
area is categorized into four LULC categories: urban areas; cultivated land; deserts; and
water bodies, as defined in Table 1. The Normalized Difference Vegetation Index (NDVI),
Modified Normalized Difference Water Index (MNDWI), Normalized Difference Built-Up
Index (NDBI), and Dry Bare Soil Index (DBSI) were among the indices utilized. These
indices were chosen according to the diverse land uses in the study area and were employed
to improve the precision of the image classification process. The expressions of all indices
utilized are shown in Table 4.
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Table 4. The applied indices expressions.

The Index Expression Reference

NDVI (NIR − R)/(NIR + R) [73]
MNDWI (G − SWIR)/(G + SWIR) [74]

NDBI (SWIR − NIR)/(SWIR + NIR) [75]
DBSI [(SWIR)/(SWIR + G)] − [(NIR − R)/(NIR + R)] [76]

NIR = near-infrared. SWIR = short-wave infrared. R = red. G = green.

Accuracy evaluation processes decide the reliability of the spatial information gener-
ated from remote sensing images for accurate image classification [77,78]. Remotely sensed
spatial information is both reliable and accurate when used in integration with ground
control points that serve as a reference [79]. The preliminary geomorphologic units of the
Sohag Governorate area were identified and verified through field observations after visual
interpretation of satellite Landsat images. In this work, the accuracy of images from 1984,
2002, 2013, and 2022 was assessed using the visual interpretation of Landsat images [80]. A
semi-detailed survey was completed in 2022 to obtain more detailed spatial information
about the soil patterns, landforms, and landscape characteristics as ground truth data
throughout the investigated area. Moreover, various statistical methods of the error matrix
can be used for accuracy assessment [81]. Therefore, the accuracy of each categorized image
was determined and evaluated by calculating the producer’s accuracy, user’s accuracy,
overall accuracy, and Kappa coefficient values, as described in Equations (1)–(4) [79,82,83].
Furthermore, due to the nature of GIS and its integration with remote sensing (RS), the
combination of GIS, RS data, and the Markov model was supported [53,84]. Therefore, the-
matic maps of different LULC for studied periods were created using ArcGIS 10.8 software.

Ap = pii/P+i (1)

Au = pii/Pi+ (2)

AO =
∑m

i=1 pii

n
× 100 (3)

k =
n∑m

i=1 pii −∑c
i=1 pi+p+i

n2 −∑m
i=1 pi+p+i

(4)

where Ap is the accuracy of the producer; Au is the accuracy user; Ao is the overall accuracy;
K is the kappa coefficient; pii is the percentage of zones of categorized and reference
categories, and P+i = Pi+ = ∑m

i=1 pii is the percentage of zones of categorized categories and
ground truth categories.

2.5. LULC Change Analysis Using CA-Markov Modeling

CA-Markov hybrid model was employed to simulate future LULC trends in this
study. Using transition probability, the CA-Markov hybrid model, as a separate random
process, forecasts the next scenario of LULC and all future scenarios depending on the
current situation [85]. Furthermore, the CA-Markov analysis technique is a simple sta-
tistical tool that employs a transition probability matrix depending on the influences of
the neighborhoods via a spatially influenced algorithm [86,87]. The CA-Markov hybrid
model has been extensively and increasingly utilized in LULC prediction in recent years
because of its ability to fit the complicated spatial nature [47,88–91]. However, the matrix
of transition probability of each LULC class may be accurate, but the spatial distribution of
the occurrences is unknown [46]. This is because the Markov chain model has a deficiency
in projecting the spatial assignment and distribution of LULC categories [92]. Therefore,
to fill this gap, the CA-Markov hybrid model was developed to enhance the precision of
the change detection of different land-use categories by providing spatial dimension via
cellular automata (CA) filter to the used model [93,94].
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The cellular automaton (CA) model assumes that a grid cell’s states are determined
by the changes (dynamics) of the cell itself and its neighbors’ grid cells [95,96]. Thus, a
hybrid Markov–Cellular Automata model can be applied to detect the spatial and temporal
changes in the Sohag Governorate’s different land uses with a dynamic degree of estimation
by setting a dataset of land uses at a specific time, then projecting the changing probabilities
of these data for a future time [43,90]. Change detection in LULC changes, on the other
hand, is accomplished by predicting changes in satellite image pixels from one land-use
category at a time (t1) into the other at a time (t2). Equations (5)–(7) express the employed
models [97].

Pij =

P11 P12 . . . P1n
P21 P22 . . . P2n
Pn1 Pn2 . . . Pnn

 (5)

0 ≤ Pij < 1 and
n

∑
j=1

Pij = 1, i, j = 1, 2, . . . , n (6)

St+1 = Pij × St (7)

where Pij is the transitional probability matrix of changing from a specific land use studied
(n) to another, and its value ranges from 0 to 1; St is the current land-use status at time
t, and St+1 is the next land-use state at time t + 1. To obtain both the transition and
probability matrix of LULC types, CA-Markov Chain analysis was performed using IDRISI
7.02 software for the 1984–2002, 2002–2013, and 2013–2022 time series.

2.6. Future LULC Prediction for 2030, 2040, and 2050

Markov Chain model, when combined with Cellular Automata, offers an excellent
chance to forecast and simulates the spatial–temporal LULC changes. Furthermore, this
integrated approach is also effective in modeling and forecasting the complex LULC
categories [50,52,98]. Therefore, the CA-Markov hybrid model with two variables was
employed in the process of LULC simulation and prediction. The two variables used are
the discrete variable in time and space and the local variable, which they usually allocate to
interactions [99]. Grid sizes, cell neighborhoods, cell spaces, time phases, and transition
rules are the core components of the CA-Markov hybrid model [100,101]. Cells are objects in
any dimensional space that are adjacent or close to one another. Each cell can only be in one
of the states that define the system’s attributes at a time. The state of any cell is determined
by the states of other cells in its neighborhood, defined as the immediately adjacent set of
cells that are “next” to the cell in question. Finally, transition rules drive changes in the state
of each cell as a function of what exists or is happening in the cell’s vicinity. Employing the
inter-period change–transition probability matrix, the CA-Markov hybrid model integrates
the idea of projecting the next time state depending on the previous period states [102,103].
Furthermore, this model can determine neighbors, and the greater the weight factor, the
closer the distance between cells and their neighbors [43,90]. Therefore, the weight factor
and transition probability can forecast the states of neighbor grid cells [44]. The land-use
changes were calculated using Equation (8).

Si =
LU(i, t2) − LUAi

LU(i, t1)
× 1

t2 − t1
× 100% (8)

where Si is land-use change; LU(i,t1) is land-use change at an earlier period; LU(i,t2) is
land-use changed area at a later period, and LUAi is the area with no change.

Future LULC trends for future dates studied were projected based on the historical pat-
terns (from 1984 to 2022) in the study area. CA-Markov was employed in IDRISI 7.02 software
to forecast the future LULC trends in 2030, 2040, and 2050. In the present study, LULC
images of the Sohag Governorate area over two-time series in 1984 as earlier land-use (t1)
and 2022 as later land-use (t2) were utilized, as described by Hyandye and Martz [50]. A
standard contiguity filter (5 × 5 pixels) was applied to the images to identify the neighbor-
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hood cells of each land-use class. To achieve a good influence, each cell was surrounded
by a matrix scope of 5 × 5 cells. This spatial filter occurs near an existing category and
rules out changes in land use randomly [104]. Furthermore, the pixels close to the existent
LULC class are more suitable than those far away [105]. In the current study, neighboring
pixels were utilized to generate spatially neighboring weights to project LULC categories
for 2030, 2040, and 2050. The contiguity filter used for LULC change analysis is shown
below (Equation (9)).

Contiguityfilter 5× 5 =


0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0

 (9)

The methodology of analyzing, simulating, and projecting LULCs employing the
CA-Markov hybrid model is summarized into four main steps, which are as follows:

1. The Markov chain model was used to compute transition probabilities matrices for
1984, 2002, 2013, and 2022;

2. The computed transition matrices were used to generate a set of conditional probabil-
ity data for the different land uses from 1984 to 2022;

3. The transition probabilities matrices of 1984–2002, 2002–2013, and 2013–2022 for each
LULC category, as well as conditional probability data and LULC, classified maps
of 2013 and 2020, were integrated using the CA-Markov spatial operator in IDRISI
7.02 software, which is based on Markov chain analysis and multi-criteria evaluation
(MCE), to simulate the LULC maps of 2030, 2040, and 2050;

4. Predicted LULC maps for future dates were produced by overlapping the results
obtained in the previous steps.

2.7. CA-Markov Model Validation

According to Eastman [106], the utility of any predictive change model is dependent
on the outcome of the validation process. The CA-Markov model outputs had to be
validated before modeling the future LULC trends for 2030, 2040, and 2050. Therefore,
the CA-Markov model was validated using the validation module in IDRISI 7.02 software
to compare the degree of agreement between the predicted and the classified maps. The
validation process was performed by comparing the LULC predicted results (projected
maps) for 2013 and 2022 to their corresponding observed datasets (classified maps), which
were used as LULC reference data. Furthermore, Kappa coefficients were calculated and
utilized to evaluate the performance precision of the applied model in the LULC projection
maps. The current study applied the statistic Kappa indices, including the Kappa for no
information (Kno), Kappa for location (Klocation), Kappa for location strata (Klocation strata),
and Kappa standard (Kstandard) [51,104]. Kappa statistical indicator can distinguish between
quantity errors and location errors between two qualitative maps [52,107] and is computed
employing Equation (10) [108].

Kappa =
P0−PC
1− PC

(10)

where P0 is the portion of cells correctly classified, and PC is the hypothetical probability of
opportunity agreement between the actual LULC of 2013 and 2022 maps (Landsat images
classification) and the projected LULC of 2013 and 2022 maps.

The employment of Kappa indices in the computation determines the overall accom-
plishment rate and provides insight into the true causes of the strength or weakness of the
outcomes. The Kappa values were categorized according to Aliani et al. [93], as illustrated
in Table 5. Furthermore, Figure 5 demonstrates the methodology for LULC analysis and
LULC projection employing the CA-Markov hybrid model.
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Table 5. Kappa coefficient values and agreement degrees.

Kappa Coefficient Value Agreement Degree

<0.2 Weak
0.21–0.4 Acceptable
0.41–0.6 Moderate
0.61–0.8 Good
0.81–1.0 Very good
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3. Results and Discussion
3.1. Accuracy Assessment of the LULC Classification

The obtained results showed that the overall accuracy and kappa statistics of all differ-
ent land-use types in the Sohag Governorate area were acceptable for the different periods
studied in 1984, 2002, 2013, and 2022 (Table 6). In the current study, the classification
accuracy met the criterion that there must have been at least 80% accuracy for the sensor
data [109]. The overall accuracy of the LULC classification ranged from 87.5% to 95.5%
(Table 6). According to Anderson et al. [82], these percentages represent high accuracy; thus,
the LULC maps can be utilized with reliability for LULC change dynamics analysis and
forecasting. Furthermore, the kappa coefficient values indicated that the strength of agree-
ment ranged from good to very good according to criteria adopted by Aliani et al. [93], as
the Kappa coefficient values ranged from 0.71 to 0.95 (Table 6). Furthermore, Kappa values
were described as a considerable agreement to near perfect agreement [98]. The assessment
of overall accuracy and Kappa coefficient (Table 6) demonstrated the high capacity of the
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decision tree classifier (DTC) approach in integrating with different remote sensing-derived
indices in producing multi-temporal LULC maps. Thus, this technique’s findings are sup-
posed to be compatible and reliable for modeling future LULC scenarios [27,110–112]. As a
consequence, the categorized images are valid for examining and forecasting the changing
dynamics of LULCs in the study area [50].

Table 6. Accuracy assessment of classified images for 1984, 2002, 2013, and 2022.

LULC Class

Landsat TM 1984 Landsat ETM+ 2002 Landsat ETM+ 2013 Landsat OLI 2022

PA UA PA UA PA UA PA UA

(%)

Water bodies 97.1 100.0 99.4 98.9 98.7 96.3 82.2 97.4
Desert lands 99.7 91.1 97.8 99.2 96.4 92.5 88.6 45.9

Cultivated lands 72.2 91.2 91.7 86.4 86.1 95.5 94.6 92.3
Urban Areas 82.5 68.6 96.9 57.3 96.7 71.8 95.8 40.4

Overall accuracy 91.0 95.5 92.1 87.5
Kappa coefficient 0.71 0.94 0.84 0.79

PA = producer accuracy. UA = user accuracy.

3.2. The LULC Classification

According to the results of the maximum likelihood algorithm of Landsat images
supervised classification, there were four LULC categories recognized in the study region:
urban areas (residential, commercial, industrial, and road constructions); cultivated lands
(old cultivated lands, and newly reclaimed lands); deserts (bare lands, sand sheets, and
rocky land); and water bodies (the Nile River, canals, drainage patterns, and wastewater
treatment plants). These findings are in line with earlier studies [113–121], which found
the same LULC categories in other areas of Egypt, such as the Northwestern Coast, Nile
Delta, and others. Table 7 displays the measurable data of the four LULC categories over
the different time nodes. Furthermore, Figure 6 illustrates the spatial distribution of LULC
types (classified maps) derived from satellite images of the Sohag Governorate area for the
examined dates of 1984, 2002, 2013, and 2022. On the created maps, the different LULC
categories were tagged with different colors.

The LULC class percentages of the total study area for 1984, 2002, 2013, and 2022
showed that deserts and cultivated lands were consistently the most extensive, followed
by built-up and water bodies, which were far less extensive (Table 7). Similarly, previous
investigations have reported that the LULC classes in the investigated areas of Egypt
are dominated by deserts and cultivated regions [113,116,117,119]. Thus, in arid land
regions, these LULC categories are dominant. Furthermore, throughout the 38 years
from 1984 to 2022, the area of each LULC category in the Sohag Governorate changed
significantly. According to the current study, cultivated lands and desert areas have been
predominant from 1984 until 2022. According to Table 7, deserts and cultivated land
constituted the majority of LULCs in the study region, accounting for 1398.9 km2 (46.8%)
and 1361.0 km2 (45.5%) of the total area in 1984, respectively, and 703.8 km2 (23.6%) and
1814.5 km2 (60.7%) in 2022 (Figure 6). Moreover, urban and water bodies represented the
lowest proportion of LULCs, as shown in Table 7. Also, urban areas more than doubled
from 165 km2 (5.5%) in 1984 to 369 km2 (12.3%) in 2022 (Table 7).
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Table 7. LULC classification for 1984, 2002, 2013, and 2022.

Land Use

1984 2002 2013 2022

Area

km2 % km2 % km2 % km2 %

Water body 64.2 2.2 60.6 2.0 68.6 2.3 101.8 3.4
Desert lands 1398.9 46.8 1181.8 39.5 861.3 28.8 703.8 23.6

Cultivated lands 1361.0 45.5 1514.0 50.7 1754.7 58.7 1814.5 60.7
Urban 165.0 5.5 232.8 7.8 304.5 10.2 369.0 12.3
Total 2989.1 100.0 2989.1 100.0 2989.1 100.0 2989.1 100.0
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3.3. LULC Change Dynamics

The results indicated that the built-up areas had a net gain of 67.74 km2

between 1984 and 2002 due to the construction of new housing as the population increased
(Figure 7). Similarly, cultivated lands have gained 152.99 km2. Furthermore, during this
period (1984–2002), many desert land areas were subjected to reclamation processes. As a
result, cultivated lands increased while desert lands decreased. This is obvious in Figure 7,
which showed a decrease in desert lands with a loss of 217.13 km2. Concerning water
bodies, some islands in the study area had vanished completely, while new islands had
appeared in other locations. Furthermore, depositional processes cause the formation of
new floodplains on the river’s convex sides, as well as new islands and sand bars. As a
result, between 1984 and 2002, the Nile River lost 3.6 km2.
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During the time series from 2002 to 2013, water bodies in the study area increased by
8.04 km2 (Figure 8). This could be attributed to the construction of numerous wastewater
treatment plants. These treatment units are located on the outskirts of desert areas outside
the Nile Valley. Furthermore, this treated wastewater is destined to irrigate crops, forest
trees, decorative plants, and landscapes of greenbelts and is not intended for food. Moreover,
soil reclamation activities increased dramatically during this period, consequently increasing
cultivated lands by 240.73 km2. Therefore, the desert lands had a net loss of 320.5 km2 in the
same period (2002–2013). Additionally, during this period, a substantial increase in built-up
settlements occurred at the cost of the most productive land in the investigation area (Figure 8).
According to Figure 8, there was a high sprawl rate of built-up areas on cultivated lands, which
is one of the main problems that threaten the limited fertile lands in the Sohag Governorate.
During this period (2002–2013), urban settlements expanded by 71.73 km2. Figure 8 depicts
the changes in LULC categories in the study area from 2002 to 2013.
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During the third investigated period (2013–2022), water bodies in the study area
increased by 33.21 km2, as shown in Figure 9. At this period, the population of the Sohag
Governorate was estimated to be around 5,193,052, accounting for 5.2 percent of the total
population of Egypt. This could result in increased water consumption and, as a result,
increased wastewater pumped to treatment plants. Both soil reclamation activities and
urbanization increased during this period but to a lesser extent than in previous periods.
The cultivated lands and urban areas recorded an increase of 59.73 km2 and 64.52 km2,
respectively. In addition, the desert lands experienced a net loss of 157.47 km2 (Figure 9).
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Overall, the findings of this study revealed a continuous increase in urban sprawl
and expansion of newly reclaimed cultivated lands, with a reduction in desert areas over
the time series analyzed. These findings are in agreement with previous studies, which
reported similar LULC change trends [113–121].

3.4. Markov Chain Model Analysis

The data displaying the decreases and increases in transition probabilities over time
series from 1984 to 2022 are shown in Tables 8–10. The gains were acquired by subtracting
the persistence from the entire column for each group, while the losses were received
by deducting the persistence from the whole row [122]. For instance, the probability of
remaining built-up areas as built-up areas from 1984 to 2002 is 69.75%, while the future
change possibility of cultivated lands to urban areas is 20.36%, and so on for the rest of the
LULC types. Desert lands and water bodies had high probabilities of 76.33 and 76.49%,
respectively, as they did in 2002.
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Table 8. Transition probability matrix derived from LULC-classified categories in Sohag Governorate
from 1984 to 2002.

Probability of Changing from 1984 to 2002 Subtotals

Water Bodies Desert Lands Cultivated Lands Urban Areas Total Loss

Water bodies 0.7649 0.0005 0.1626 0.072 1 0.2351
Desert lands 0.0009 0.7633 0.2277 0.0081 1 0.2367

Cultivated lands 0.0043 0.0079 0.7842 0.2036 1 0.2158
Urban Areas 0.0356 0.2528 0.0141 0.6975 1 0.3025

Total 0.8057 1.0245 1.1886 0.9812 4
Gain 0.0408 0.2612 0.4044 0.2837

Table 9. Transition probability matrix derived from LULC-classified categories in Sohag Governorate
from 2002 to 2013.

Probability of Changing from 2002 to 2013 Subtotals

Water Bodies Desert Lands Cultivated Lands Urban Areas Total Loss

Water bodies 0.8135 0.0016 0.172 0.0129 1 0.1865
Desert lands 0.001 0.7423 0.2467 0.01 1 0.2577

Cultivated lands 0.0146 0.0523 0.8071 0.126 1 0.1929
Urban Areas 0.0145 0.0125 0.5095 0.4635 1 0.5365

Total 0.8436 0.8087 1.7353 0.6124 4
Gain 0.0301 0.0664 0.9282 0.1489

Table 10. Transition probability matrix derived from LULC-classified categories in Sohag Governorate
from 2013 to 2022.

Probability of Changing from 2013 to 2022 Subtotals

Water Bodies Desert Lands Cultivated Lands Urban Areas Total Loss

Water bodies 0.8237 0.0030 0.1642 0.0092 1 0.1763
Desert lands 0.0052 0.5909 0.2003 0.2036 1 0.4091

Cultivated lands 0.0362 0.0181 0.7820 0.1638 1 0.218
Urban Areas 0.0306 0.0289 0.4610 0.4796 1 0.5205

Total 0.8957 0.6409 1.6075 0.8559 4
Gain 0.072 0.05 0.8255 0.3764

For further understanding of the dynamic changes in LULC types in the Sohag Gov-
ernorate, the annual change in these types was calculated for the three studied periods
(1984–2002, 2002–2013, and 2013–2022), as shown in Table 11. According to the data in
Table 11, cultivated lands increased annually by 8.5 km2, 21.88 km2, and 6.64 km2 for the
three studied periods, respectively. The greatest annual increase in cultivated land was
recorded in the second period (2002–2013), during which increasing desert land reclamation
activities were noticed. Furthermore, over the three time periods, the desert lands shrank by
12.06 km2, 29.14 km2, and 17.50 km2 per year, respectively (Table 11). Moreover, the urban
zones expanded at an annual rate of 3.76 km2, 6.52 km2, and 7.17 km2 for the three studied
periods, respectively. Water bodies decreased by 0.2 km2 per year from 1984 to 2002, then
increased by 0.73 km2 in the second period, and the highest increase (3.69 km2) occurred
between 2013 and 2022 due to the construction and startup of wastewater treatment units
in the study area (Table 11).
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Table 11. Annual changes in LULC classes of Sohag Governorate.

Land Use
Annual Change km2

1984–2002 2002–2013 2013–2022

Water bodies −0.20 0.73 3.69
Desert lands −12.06 −29.14 −17.50

Cultivated lands 8.50 21.88 6.64
Urban Areas 3.76 6.52 7.17

The results of the LULC class changes for different LULCs in the Sohag Governorate
over the studied periods are displayed in Table 12. Furthermore, Figure 10 demonstrates
the temporal distribution of LULC class changes in the Sohag Governorate in square
kilometers over the years studied. The findings indicate that urban areas increased during
the studied periods, and there was also a noticeable reduction in desert lands. The increase
in urbanized areas can be attributed to population growth. The growth in urban areas
(urbanization), which is associated with population increases, infrastructure development,
and growing domestic product, is one of the primary drivers of LULC changes [24,123–127].
Moreover, cultivated lands, water bodies, and urban areas increased during the studied
periods (Figure 10).

Table 12. Temporal distribution in km2 of LULC distribution.

Land Use

1984 2002 Change from
1984 to 2002 2013 Change from

2002 to 2013 2022 Change from
2013 to 2022

Areas

km2 % km2 % km2 km2 % km2 km2 % km2

WB 64.2 2.2 60.6 2.0 −3.6 68.6 2.3 8.04 101.8 3.4 33.21
DL 1398.9 46.8 1181.8 39.5 −217.13 861.3 28.8 −320.5 703.8 23.6 −157.47
CL 1361.0 45.5 1514.0 50.7 152.99 1754.7 58.7 240.73 1814.5 60.7 59.73

Urban 165.0 5.5 232.8 7.8 67.74 304.5 10.2 71.73 369.0 12.3 64.52
Total 2989.1 100.0 2989.1 100.0 2989.1 100.0 2989.1 100.0

WB = water bodies. DL = desert lands. CL = cultivated lands.

Figure 10. Temporal distribution of LULC change distribution in 1984, 2002, 2013, and 2022 (km2).

3.5. CA-Markov Model Validation for Predicting Future LULC Scenarios

The Kappa coefficients for the quantity and location of correct cells were derived based
on a comparison of the projected and classified LULC maps at a resolution of 30 m × 30 m
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for model validation employing the IDRISI program. According to k-indicator statistics for
the LULCs in 2013, the Kstandard, Kno, Klocation, and Klocation-strata were 0.8703, 0.9142, 0.9336,
and 0.9336, respectively, as shown in Table 13. Similarly, for 2022, k-indicator statistics
revealed that the Kstandard, Kno, Klocation, and Klocation-strata were 0.8402, 0.8942, 0.9012, and
0.9012, respectively (Table 13). These findings demonstrated high agreement between the
predicted and observed LULC maps for 2013 and 2022. This revealed that there were minor
quantification and location errors between the projected and actual maps [104,128–130].
Therefore, employing the CA-Markov model can precisely specify the quantity and location
of the LULC changes [100,118,128,131]. Furthermore, based on the satisfactory agreement
between the predicted and observed LULC maps, the data in Table 13 and Figure 11
established that the accuracy appraisal of categorized data for 2013 and 2022 is satisfactory
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3.6. Prediction of the Future LULC Scenarios

CA-Markov hybrid model was used to simulate and project future LULC trends
for 2030, 2040, and 2050. The future scenarios of LULC classes for 2030, 2040, and 2050
are illustrated in Figure 12 as thematic maps of the predicted LULC spatial distributions.
Furthermore, Table 14 displays the percentages and the areas in km2 of the predicted LULC
categories for 2030, 2040, and 2050. During all of the predicted periods, there would be
increases in water bodies, cultivated lands, and urban areas. Desert lands, on the other
hand, would decline in the study area during the same periods.
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Table 14. The future predicted changes in areas of LULC classes in km2.

Land Use

Projected
2030

Change from
2022 to 2030

Projected
2040

Change from
2030 to 2040

Projected
2050

Change from
2040 to 2050

Areas
km2 % km2 km2 % km2 km2 % km2

WB 164.44 5.50 62.64 194.1 6.49 29.66 200.8 6.72 6.7
DL 459.71 15.38 −244.09 312.4 10.45 −147.31 245.4 8.21 −67
CL 1746.63 58.43 −67.87 1808.3 60.50 61.67 1851.5 61.94 43.2

Urban 618.35 20.69 249.35 674.3 22.56 55.95 691.4 23.13 17.1
Total 2989.13 100 - 2989.1 100 - 2989.1 100 -

WB = water bodies. DL = desert lands. CL = cultivated lands.

The modeling results showed that built-up areas would increase significantly com-
pared to their zones in the past and present, expanding from 165 km2 (5.5%) in 1984 to
369 km2 (12.3%) in 2022 to 618 km2 (20.7%) in 2030 and 691 km2 (23.1%) in 2050, as shown
in Table 14. This predicted increase in urban areas might be related to the existing ex-
pansion in the built-up areas due to population growth [27,49,124,125,135]. Furthermore,
cultivated lands would decrease slightly in 2030 by 67.9 km2 and then increase slightly to
reach 1851 km2 (61.9%) in 2050 (Table 14). The predicted expansion in cultivated lands may
be associated with the expansion of newly reclaimed soils due to ongoing land reclamation
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projects on arable lands. Moreover, desert land would continue to decline considerably
from 703.8 km2 (23.6%) in 2022 to 459.7 km2 (15.4%), 312.4 km2 (10.5%), and 245.4 km2

(8.2%) in 2030, 2040, and 2050, respectively, as displayed in Table 14. Desert lands would
be reduced due to urban sprawl and cultivated land expansion outside the Nile Valley
through the reclamation of arable land in desert areas. Also, according to modeling results,
the water bodies would increase slightly and gradually to reach 6.7% of the entire area of
the study region in 2050.

Results of the simulation indicated that future scenarios represented by urban expan-
sion growing, cultivated lands and water bodies increasing, and desert lands declining
followed the past and current trends of LULC in the study region. This may be because the
CA-Markov approach does not contain the variables that could influence or prevent the
event of LULC changes. Thus, the resultant LULC trend updates in the coming years are
expected to be linear. Projected maps can be identical to LULCs in 2030, 2040, and 2050 if
the rate of the current changes is the same. However, because the current study was limited
in its use of LULC change drivers and future LULC trends are unsure, additional factors
should be considered to enrich our knowledge of LULC change trends [136]. Therefore,
future research studies are required to assess the accuracy of these predicted scenarios and
identify the variables that cause the LULC changes. Furthermore, this study’s findings
indicate that the Egyptian government should focus on LULC changes, specifically urban
sprawl on old fertile farmlands, to ensure sustainable development in the study area.

Sustained farming should use resources in such a manner that they can renew their
productivity potential while minimizing detrimental effects on ecosystems [137]. In this
regard, FAO [4] has indicated that rapid population growth is causing increased land
degradation to meet food demands. Overall, the current study provided a future vision of
LULC trends that would be beneficial in land use management and offered a comprehensive
understanding of ecosystem functions for establishing land use sustainability [138].

4. Conclusions

The current study was carried out to assess the performance of the CA-Markov hybrid
model in predicting and modeling future LULC trends in arid regions using conventional
remote sensing data. Therefore, this study focused on detecting and analyzing LULC
change in the Sohag Governorate region over the different periods examined (1984, 2002,
2013, and 2022), as well as projecting and modeling future LULC trends for 2030, 2040, and
2050. The findings of the current study provided evidence that the CA-Markov hybrid
model is an effective model for predicting and modeling the future LULC trends for 2030,
2040, and 2050 in the Sohag Governorate as an arid region using conventional remotely
sensed data. Furthermore, results proved that the cellular automata filter was critical for
improving the spatial distribution of various LULC classes in the study area. Concerning
the accuracy assessment of the used model, an accuracy of greater than 70% was obtained
in all stages. According to this study, CA-Markov modeling has delivered promisingly
precise and reliable outcomes.

Moreover, the increased population and industrial and commercial activities in the
Sohag Governorate are causing considerable urban sprawl. Although the newly reclaimed
agricultural lands with moderate agricultural production potential are increasing, their
productivity is insufficient to maintain sustainable food security, as the old farming lands
with high production potential are dwindling. This investigation has shown that changing
land use and land cover is a pervasive, rapid, and significant trend in Sohag Governorate.
The results revealed that cultivated lands, built-up areas, and water bodies expanded from
1984 to 2022 at the expense of decreasing deserts. Furthermore, the most considerable
increase in the area of cultivated lands and built-up occurred between 2002 and 2013, while
the most significant decline in desert lands happened over the same period. The predicted
2030, 2040, and 2050 LULC results also presented that the trend from historical to future
LULC change will be extended to be ongoing in the future.
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Furthermore, this work exhibited the flexibility of integrating remote sensing, GIS,
and CA-Markov modeling that can be utilized as an effective technique for mapping and
tracking the LULC changes. Moreover, the change detection and prediction modeling of
future LULC trends achieved in this work has some limitations. These limitations stem
from the adoption of the CA-Markov approach, which does not contain the variables or
factors that could influence or hinder the event of the LULC change in the study area.
Therefore, future research studies are required to assess the accuracy of these expected
scenarios and identify the variables that cause the LULC changes. Furthermore, future
research is needed to evaluate the performance of the CA-Markov hybrid model with
diverse land use classes in various arid regions. The Egyptian government should work
hard to prevent the loss of productive old lands due to urban sprawl and to reclaim more
unused arable land.
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