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Abstract: Change detection in high resolution (HR) remote sensing images faces more challenges
than in low resolution images because of the variations of land features, which prompts this research
on faster and more accurate change detection methods. We propose a pixel-level semantic change
detection method to solve the fine-grained semantic change detection for HR remote sensing image
pairs, which takes one lightweight semantic segmentation network (LightNet), using the parameter-
sharing SiameseNet, as the architecture to carry out pixel-level semantic segmentations for the
dual-temporal image pairs and achieve pixel-level change detection based directly on semantic
comparison. LightNet consists of four long–short branches, each including lightweight dilated
residual blocks and an information enhancement module. The feature information is transmitted,
fused, and enhanced among the four branches, where two large-scale feature maps are fused and then
enhanced via the channel information enhancement module. The two small-scale feature maps are
fused and then enhanced via a spatial information enhancement module, and the four upsampling
feature maps are finally concatenated to form the input of the Softmax. We used high resolution
remote sensing images of Lake Erhai in Yunnan Province in China, collected by GF-2, to make one
dataset with a fine-grained semantic label and a dual-temporal image-pair label to train our model,
and the experiments demonstrate the superiority of our method and the accuracy of LightNet; the
pixel-level semantic change detection methods are up to 89% and 86%, respectively.

Keywords: change detection; dual-temporal remote sensing images; information enhancement;
Siamese network

1. Introduction

Research on change detection of HR (high spatial resolution) remote sensing images
is a cross-disciplinary field that involves remote sensing technology, image processing,
machine learning, deep learning, and other knowledge domains. Generally speaking, the
process of extracting changed regions from two or more remote sensing images for the same
location captured at different times is referred to as change detection. This technology has
wide-ranging applications in land cover [1], disaster assessment [2], city management [3],
ecological conservation [4], and other fields. In many countries, water shortages are
becoming worse, so the monitoring of water resources and the surroundings of rivers and
lakes is key for management. It is possible to monitor the construction and demolition
of buildings surrounding the river or lake in a timely fashion, find illegal constructions,
and prevent the illegal occupation of land resources by applying the technology of remote
sensing image change detection. Hence, change detection based on remote sensing is
becoming a better method to monitor changes in the surrounding rivers and lakes.

Traditional change detection is essentially a binary classification task, where each
pixel in remote sensing images within the same area is classified into two categories:
‘changed’ and ‘unchanged’. Semantic change detection attempts to further identify the
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type of change that has occurred at each location. With the development of deep learning,
convolutional neural networks (CNNs) have shown significant advantages over traditional
methods in image processing. CNNs possess powerful feature extraction capabilities and
can learn feature vectors from massive data. They can perform feature extraction and
classification tasks simultaneously. Due to their impressive performance, CNNs have
been widely applied in various image processing domains, including image classification,
semantic segmentation, object detection, object tracking, and image restoration [5]. With
the development of CNNs, change detection methods based on CNNs were proposed.

The semantic segmentation for remote sensing images aims to classify each pixel
in the image to achieve image region representation. Deep-learning change detection
methods based on semantic segmentation can be divided into direct comparison methods
and classification-based post-processing methods [6,7]. Direct comparison methods enable
real-time, end-to-end detection but are susceptible to registration accuracy and noise; in
addition, they just focus on where changes happened. Classification-based post-processing
methods do not require change detection labels during training and can detect pixel-level
semantic changes in the images.

However, the accuracy of these kinds of change detection methods depends on the
accuracy of semantic segmentation. According to the remote sensing images, there exist intra-
class differences due to the complex background, different colors, and diverse shapes of the
same objects, as well as inter-class similarities due to the same shapes and colors of different
objects. This makes semantic change detection in remote sensing images challenging.
Therefore, we explore a lightweight semantic segmentation network (LightNet) to carry out
the pixel-level semantic classification, use the parameter-sharing SiameseNet as the network
architecture to get the different classifications of each pixel in the image pair, and finish with
pixel-level change detection based on semantic comparison of the image pair.

The main contributions of our work are as follows:
(1) We propose a lightweight parameter-sharing SiameseNet to solve the semantic

classification of each pixel in the image pair, formalizing the pixel-level semantic compari-
son into a set operation problem to carry out pixel-level semantic change detection of the
image pair directly.

(2) We propose a lightweight semantic segmentation network (LightNet), which
consists of four long–short branches, each of which includes lightweight dilated residual
blocks and a channel or spatial information enhancement module.

(3) The feature information is transmitted, fused, and enhanced simultaneously among
the four branches. Two branches carry out the fusion and channel information enhancement
of two large-scale feature maps, while the other two carry out the fusion and spatial
information enhancement of two small-scale feature maps. The four feature maps are
concatenated to form the input of the Softmax.

(4) We made a fine-grained dataset for the training of SiameseNet. Each sample in
the dataset has two annotations, a semantic label and a matching label for dual-temporal
images, which guarantee the input of SiameseNet to be dual-temporal image pairs with the
semantic label.

2. Related Work
2.1. Change Detection of Remote Sensing Images

The existing change detection methods can be divided into the image difference
method [8,9], change vector analysis (CVA) [10,11], principal component analysis (PCA) [12,13],
and the deep learning method [6,7,14–27].

The image difference method refers to subtracting the bands of dual-temporal images
to obtain the difference map. This method is very simple and divides the image pixels into
two results: change or not change. Change vector analysis (CVA) is an extension of the
image difference method. It uses the information of multiple bands to obtain the change
vector with length and direction. The length of the vector represents the intensity of the
change, and the direction of the vector represents the change type. Principal component
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analysis (PCA), also known as eigenvector transformation, is a technology used to reduce
the dimension of datasets. These change detection methods have low detection accuracy
and the boundary between the detected changed region and the unchanged is rough.

Recently, deep learning has developed rapidly, and many remote sensing image change
detection methods based on CNNs came into being. The remote sensing image change
detection method based on deep learning directly learns the change features from the
dual-temporal images, segments the image through the change features, and finally ob-
tains the change map. Zhang et al. [14] proposed a feature difference convolutional neural
network-based change detection method that achieves better performance than other classic
approaches and has fewer missed detections. Daudt et al. [15] proposed different methods,
named as FC-EF, FC-Siam-conc, and FC-Siam-diff, sequentially referring to U-Net, which
verified the feasibility of a fully convolutional network for change detection. Chen et al. [16]
proposed STANet, which establishes the spatiotemporal relationship between multitem-
poral images by adding two spatiotemporal attention modules. Experiments show that
the attention module of STANet can reduce the detection error caused by improper reg-
istration of multitemporal remote sensing images. Ke et al. [17] proposed a multi-level
change context refinement network (MCCRNet), which introduces a change context module
(CCR) to capture denser change information between dual-temporal remote sensing images.
Peng et al. [18] proposed a difference-enhancement dense-attention convolutional neural
network (DDCNN), which combines dense attention and image difference to improve the
effectiveness of the network and its accuracy in extracting the change features.

However, the above change detection methods actually complete a binary classification
task. Each pixel on the remote sensing image is classified into ‘changed’ and ‘unchanged’,
which does not identify the semantic information of the change parts.

In order to obtain the change region and its semantic information, semantic change
detection has gradually come to people’s attention. Semantic change detection can be
categorized into three types: prior-based semantic change detection [19], multitask model-
based semantic change detection [6,20], and semantic segmentation-based semantic change
detection [7,21]. Prior-based methods require the collection of prior information. A prior
semantic information-guided change detection method, PSI-CD, was introduced by [19],
incorporating prior information for semantic change detection. This approach effectively
mitigates the model’s dependence on datasets, creating semantic change labels on public
datasets and achieving semantic change detection in dual-temporal high resolution remote
sensing images. Multitask models handle semantic segmentation and change detection in
parallel. Daudt et al. [6] proposed integrating semantic segmentation and change detection
into a multitask learning model, and the association between the two subtasks is also
considered in the model to some extent. A dual-task semantic change detection network
(GCF-SCD-Net), introduced by [20] utilizes a generated change field (GCF) module for
the localization and segmentation of changed regions. Semantic segmentation-based
approaches do not explicitly emphasize simultaneous handling, which can be categorized
into direct comparison methods and classification-based post-processing methods [7,21].

However, these methods commonly ignore the inherent relationship between the two
subtasks and encounter challenges in effectively acquiring temporal features [7,22,23]. To
solve this problem, a semantic change detection model based on the Siamese network
has emerged on the basis of semantic segmentation based change detection, which uses
Siamese networks to extract dual-temporal image features [22,23].

Yang et al. [24] found that the change of land cover appears in different proportions
in multitemporal remote sensing images and proposed an asymmetric Siamese network
to complete semantic change detection. Peng et al. [25] proposed SCDNet, which realizes
end-to-end pixel-level semantic change detection based on Siamese network architecture.
Fang et al. [26] proposed a densely connected Siamese network (SNUNet-CD), which de-
creases the uncertainty of the pixels at the edge of the changed target and the determination
miss of small targets. Chen et al. [27] proposed a bitemporal image transformer (BIT) and
incorporated it in a deep feature differencing-based CD framework. This method used only
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three-fold lower computational costs and model parameters, significantly outperforming
the purely convolutional baseline.

Now, semantic change detection is being applied in water resource management in
China, but the accuracy and testing time of existing methods should be improved, so we
propose a pixel-level fine-grained change detection method for remote sensing images to
meet the needs of monitoring water resources.

2.2. Semantic Segmentation

Semantic segmentation aims to determine the label of each pixel in the image, so as
to realize the region division of the image. Early image semantic segmentation methods
mainly use manual extraction of some shallow features, such as edge [28], threshold [29],
etc. However, for complex scene images, the expected effect of segmentation cannot be
achieved. In recent years, the semantic segmentation method based on deep learning has
achieved outstanding performance.

Long et al. [30] proposed FCN, which extends the new idea of deep learning in the
field of image segmentation and realizes end-to-end pixel-level semantic segmentation.
Noh et al. [31] proposed Deconvnet, which adopts a symmetrical encoder–decoder struc-
ture to optimize the FCN. Badrinarayanan et al. [32] proposed SegNet, which carries out
maximum unpooling in the decoding part to realize upsampling; this improves the segmen-
tation accuracy compared with FCN. Zhang et al. [33] proposed an FCN without pooling
layers, which can achieve higher accuracy in extracting tidal flat water bodies from re-
mote sensing images. U-Net, proposed by Ronneberger et al. [34], can train pictures in the
form of end-to-end when there are few pictures in the dataset. Li et al. [35] proposed a
Multi-Attention-Network (MANet), which optimizes the U-Net by extracting contextual
dependencies through multiple efficient attention modules. Ding et al. [36] proposed a local
attention network (LANet), which improves semantic segmentation by enhancing feature
representation by integrating a patch attention module and an attention embedding module
into a baseline FCN. Zhang et al. [37] proposed a multiscale contextual information enhance-
ment network (MCIE-Net) for crack segmentation and redesigned the connection structure
between the U-Net encoder and decoder to capture multiscale feature information, enhancing
the decoder’s fine-grained restoration ability of crack spatial structure. He et al. [38] proposed
Mask R-CNN, a network model combining target detection and semantic segmentation, so
the model can classify, recognize and segment images. The DeepLabv3+ network proposed
by Chen et al. Zhang et al. [39] improved Mask R-CNN for high spatial resolution remote
sensing images building extraction. The latest and best network framework of the DeepLab
series [40] is based on an encoder–decoder structure and atrous spatial pyramid pooling
(ASPP). It achieved a brilliant performance on the PASCAL-VOC2012 dataset. Different
from the current popular serially connected network, the HRNet proposed by KeSun and
others [41] is a new parallel architecture. It continuously fuses with each other in four stages
to maintain the resolution in the whole process and avoid the loss of information caused
by downsampling. Therefore, the predicted image is more accurate in space. However, the
complex parallel subnet and repeated feature fusion of HRNet lead to a huge number of
parameters and computational complexity. In high resolution remote sensing images, the
intra-class differences are significant due to complex scenes, large-scale changes, different
colors, and diverse shapes. On the other hand, different classes exhibit similarities in terms of
shapes and colors, resulting in small inter-class differences [42]. These factors pose significant
challenges for semantic segmentation in high resolution remote sensing imagery and lead to
low recognition accuracy of existing semantic segmentation models.

3. Dataset

The public dataset for semantic change detection is absent, and the semantic label
of the public dataset HRSCD is rough and not applied to the refined management of
government. The sample in HRSCD is illustrated in Figure 1, which shows that the change
label is too coarse to be trained to carry out the pixel-level change detection. Hence, we
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make a fine-grained dataset for the training of SiameseNet based on semantic segmentation,
and each sample in the dataset has two annotations, semantic label and image pair label,
which guarantee the input of HR remote sensing image pairs and the semantic segmentation
of the image pair simultaneously.
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In order to demonstrate the accuracy of any change detection method based on
SiameseNet, pixel-level precise matching of the image pair is necessary. And different
semantic change detection tasks generally need different semantic labels in application,
so we propose an efficient pixel-level precise matching algorithm to solve the matching
problem of large-scale remote images in applications quickly and accurately.

3.1. Fast and Precise Matching Algorithm for Large-Scale Remote Sensing Dual-Temporal Images

The remote sensing images from different satellites appear at varying scales, such as
an average size of 30,000 × 30,000 and spatial resolution of 4 m for GF-2, and an average
size of 7800× 7800 and spatial resolution of 30 m for Landsat, but they all have latitude and
longitude label information. Therefore, we combine latitude and longitude information for
large size matching and pixel information for point matching to achieve fast and precise
matching for large-scale remote sensing image pairs [43,44]. The method is as follows.

(1) We firstly take one original remote sensing image pair from a satellite, and extract
the time label and the latitude and longitude coordinates of the four corner points, which
are denoted clockwise: am1k1, am2k2, am3k3, am4k4, and bp1q1, bp2q2, bp3q3, bp4q4, respectively,
corresponding to the pre-temporal and the post-temporal remote sensing image. Secondly,
we calculate the intersection of the pixel regions A enclosed by am1k1, am2k2, am3k3, am4k4
and the pixel region B enclosed by bp1q1, bp2q2, bp3q3, bp4q4, and obtain the latitude and lon-
gitude coordinates of the four intersection points: cm1k1, cm2k2, cm3k3, cm4k4. Subsequently,
the pixels outside the region enclosed by cm1k1, cm2k2, cm3k3, cm4k4 are removed from the
original remote sensing image pair and we then sort the remaining pixels into a raster
format image. Based on latitude and longitude calculations, this approach achieves fast
large-scale matching of remote sensing image pairs.

(2) We refine the matching based on a SIFT+ matching algorithm that we propose. We
use the Scale-Invariant Feature Transform (SIFT) to obtain the matched feature points and
denote them as S, and we set a distance threshold T for the matched point pairs to refine
the matching result.

(3) Based on the fundamental theory that any three randomly selected points from the
sample cannot be collinear, at least four sample data points are randomly selected from the
set of matched feature points S. These selected matching points are used as an initial set to
calculate the distance matrix between the corresponding matched feature points.

(4) The remaining matched points in set S are used to calculate new position coordi-
nates based on the average distance in the distance matrix. The distance d between the
calculated position coordinates and the original position coordinates is then computed.



Remote Sens. 2023, 15, 5631 6 of 18

(5) If d ≥ T, the matched point is defined as an incorrect match. If d < T, the matched
point is defined as a correct match.

(6) Repeat steps (3) to (5) until the root mean square error of the matched point pairs
meets our requirement. Select the group with the highest number of correct matches as the
final set of correct matching points, and we achieve fast and precise pixel-level matching of
the large-scale remote sensing image pairs.

The comparison of our method, the SIFT+ algorithm, and the SIFT algorithm is shown
in Table 1. It is seen from Table 1 that our method is more accurate.

Table 1. Comparison of our method SIFT+ algorithm and SIFT algorithm.

Algorithm Number of Matching Point Pairs MSE

SIFT 75 2.395
SIFT+ 34 0.842

3.2. Data Making with Semantic and Matching Labels

(1) We firstly finish the matching labels for the dual-temporal remote sensing images
based on the matching result of the method in Section 3.1, and we use i and i+ to demote
them respectively, i = 1,2,. . ., where i corresponds to the pre-temporal image and i+ corre-
sponds to the post-temporal image. These symbol pairs can express matching and timing
relationships of the image pair simultaneously.

(2) We make the semantic labels semi-automatically for each matched image. We find
enough points through the edge of any object manually, and then use linear interpolation
to draw an enclosed area and define the same semantic labels for the enclosed interior
automatically. Our method makes data faster than those manual methods.

(3) We obtain a new dataset with semantic and matching labels for change detection
of the remote sensing images, and it is shown that the making process of our dataset
can be applied to any semantic change detection task based on deep learning. Moreover,
the samples in our dataset have better fine-grained semantic information than the public
dataset HRSCD, and we can achieve fine-grained semantic change detection for remote
sensing images based on the dataset we made.

We construct the dataset using two Gaofen-2 remote sensing images taken in Dali,
Yunnan Province, on 13 February 2017 and 1 April 2020, respectively. Due to the disorderly
tourism development of Lake Erhai and lax law enforcement on illegal buildings in recent
years, more and more buildings have been constructed surrounding Erhai Lake, leading to
poor water quality. If the management finds illegal occupation based on remote sensing
images in time, it will be helpful to protect the environment and so on. Therefore, we select
some key changes in water management as a case study of our method in this paper. We
obtain 2100 pairs of change detection samples with semantic and matching labels. The
example in our dataset is shown in Figure 2. It is seen that our data has better fine-grained
semantic information than the data in the public dataset HRSCD.

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 19 
 

 

leading to poor water quality. If the management finds illegal occupation based on remote 

sensing images in time, it will be helpful to protect the environment and so on. Therefore, 

we select some key changes in water management as a case study of our method in this 

paper. We obtain 2100 pairs of change detection samples with semantic and matching la-

bels. The example in our dataset is shown in Figure 2. It is seen that our data has better 

fine-grained semantic information than the data in the public dataset HRSCD. 

    
(a) (b) (c) (d) 

Figure 2. The sample in our fine-grained semantic change detection dataset. (a) Semantic label of 

pre-temporal image. (b) Semantic label of post-temporal image. (c) Pre-temporal image. (d) Post-

temporal image. (Building:  Plant:  Bare soil:  Water:  Background:  ). 

4. Methodology 

4.1. Framework 

Our framework is a deep learning model based on the Siamese network for the se-

mantic change detection of multi-source remote sensing images. The key to the Siamese 

network is two parallel semantic segmentation networks, which obtain the different se-

mantic classifications of the image pair via parameter-sharing and finish with the pixel-

level change detection based on semantic comparison of the image pair. The framework 

of our method is shown in Figure 3. 

 

Figure 3. The framework of our method. 

4.2. LightNet 

Figure 2. The sample in our fine-grained semantic change detection dataset. (a) Semantic la-
bel of pre-temporal image. (b) Semantic label of post-temporal image. (c) Pre-temporal image.
(d) Post-temporal image. (Building:

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 19 
 

 

leading to poor water quality. If the management finds illegal occupation based on remote 

sensing images in time, it will be helpful to protect the environment and so on. Therefore, 

we select some key changes in water management as a case study of our method in this 

paper. We obtain 2100 pairs of change detection samples with semantic and matching la-

bels. The example in our dataset is shown in Figure 2. It is seen that our data has better 

fine-grained semantic information than the data in the public dataset HRSCD. 

    
(a) (b) (c) (d) 

Figure 2. The sample in our fine-grained semantic change detection dataset. (a) Semantic label of 

pre-temporal image. (b) Semantic label of post-temporal image. (c) Pre-temporal image. (d) Post-

temporal image. (Building:  Plant:  Bare soil:  Water:  Background:  ). 

4. Methodology 

4.1. Framework 

Our framework is a deep learning model based on the Siamese network for the se-

mantic change detection of multi-source remote sensing images. The key to the Siamese 

network is two parallel semantic segmentation networks, which obtain the different se-

mantic classifications of the image pair via parameter-sharing and finish with the pixel-

level change detection based on semantic comparison of the image pair. The framework 

of our method is shown in Figure 3. 

 

Figure 3. The framework of our method. 

4.2. LightNet 

Plant:

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 19 
 

 

leading to poor water quality. If the management finds illegal occupation based on remote 
sensing images in time, it will be helpful to protect the environment and so on. Therefore, 
we select some key changes in water management as a case study of our method in this 
paper. We obtain 2100 pairs of change detection samples with semantic and matching la-
bels. The example in our dataset is shown in Figure 2. It is seen that our data has better 
fine-grained semantic information than the data in the public dataset HRSCD. 

    
(a) (b) (c) (d) 

Figure 2. The sample in our fine-grained semantic change detection dataset. (a) Semantic label of 
pre-temporal image. (b) Semantic label of post-temporal image. (c) Pre-temporal image. (d) Post- 

 

temporal image. (Building:  Plant:  Bare soil:  Water:  Background:  ). 

4. Methodology 
4.1. Framework 

Our framework is a deep learning model based on the Siamese network for the se-
mantic change detection of multi-source remote sensing images. The key to the Siamese 
network is two parallel semantic segmentation networks, which obtain the different se-
mantic classifications of the image pair via parameter-sharing and finish with the pixel-
level change detection based on semantic comparison of the image pair. The framework 
of our method is shown in Figure 3. 

 
Figure 3. The framework of our method. 

Bare soil:

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 19 
 

 

leading to poor water quality. If the management finds illegal occupation based on remote 
sensing images in time, it will be helpful to protect the environment and so on. Therefore, 
we select some key changes in water management as a case study of our method in this 
paper. We obtain 2100 pairs of change detection samples with semantic and matching la-
bels. The example in our dataset is shown in Figure 2. It is seen that our data has better 
fine-grained semantic information than the data in the public dataset HRSCD. 

    
(a) (b) (c) (d) 

Figure 2. The sample in our fine-grained semantic change detection dataset. (a) Semantic label of 
pre-temporal image. (b) Semantic label of post-temporal image. (c) Pre-temporal image. (d) Post- 

 

temporal image. (Building:  Plant:  Bare soil:  Water:  Background:  ). 

4. Methodology 
4.1. Framework 

Our framework is a deep learning model based on the Siamese network for the se-
mantic change detection of multi-source remote sensing images. The key to the Siamese 
network is two parallel semantic segmentation networks, which obtain the different se-
mantic classifications of the image pair via parameter-sharing and finish with the pixel-
level change detection based on semantic comparison of the image pair. The framework 
of our method is shown in Figure 3. 

 
Figure 3. The framework of our method. 

Water:

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 19 
 

 

leading to poor water quality. If the management finds illegal occupation based on remote 
sensing images in time, it will be helpful to protect the environment and so on. Therefore, 
we select some key changes in water management as a case study of our method in this 
paper. We obtain 2100 pairs of change detection samples with semantic and matching la-
bels. The example in our dataset is shown in Figure 2. It is seen that our data has better 
fine-grained semantic information than the data in the public dataset HRSCD. 

    
(a) (b) (c) (d) 

Figure 2. The sample in our fine-grained semantic change detection dataset. (a) Semantic label of 
pre-temporal image. (b) Semantic label of post-temporal image. (c) Pre-temporal image. (d) Post- 

 

temporal image. (Building:  Plant:  Bare soil:  Water:  Background:  ). 

4. Methodology 
4.1. Framework 

Our framework is a deep learning model based on the Siamese network for the se-
mantic change detection of multi-source remote sensing images. The key to the Siamese 
network is two parallel semantic segmentation networks, which obtain the different se-
mantic classifications of the image pair via parameter-sharing and finish with the pixel-
level change detection based on semantic comparison of the image pair. The framework 
of our method is shown in Figure 3. 

 
Figure 3. The framework of our method. 

Background:

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 19 
 

 

leading to poor water quality. If the management finds illegal occupation based on remote 
sensing images in time, it will be helpful to protect the environment and so on. Therefore, 
we select some key changes in water management as a case study of our method in this 
paper. We obtain 2100 pairs of change detection samples with semantic and matching la-
bels. The example in our dataset is shown in Figure 2. It is seen that our data has better 
fine-grained semantic information than the data in the public dataset HRSCD. 

    
(a) (b) (c) (d) 

Figure 2. The sample in our fine-grained semantic change detection dataset. (a) Semantic label of 
pre-temporal image. (b) Semantic label of post-temporal image. (c) Pre-temporal image. (d) Post- 

 

temporal image. (Building:  Plant:  Bare soil:  Water:  Background:  ). 

4. Methodology 
4.1. Framework 

Our framework is a deep learning model based on the Siamese network for the se-
mantic change detection of multi-source remote sensing images. The key to the Siamese 
network is two parallel semantic segmentation networks, which obtain the different se-
mantic classifications of the image pair via parameter-sharing and finish with the pixel-
level change detection based on semantic comparison of the image pair. The framework 
of our method is shown in Figure 3. 

 
Figure 3. The framework of our method. 

).



Remote Sens. 2023, 15, 5631 7 of 18

4. Methodology
4.1. Framework

Our framework is a deep learning model based on the Siamese network for the se-
mantic change detection of multi-source remote sensing images. The key to the Siamese
network is two parallel semantic segmentation networks, which obtain the different seman-
tic classifications of the image pair via parameter-sharing and finish with the pixel-level
change detection based on semantic comparison of the image pair. The framework of our
method is shown in Figure 3.
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4.2. LightNet

The semantic model is the key to improving the accuracy of our method. We name
our network LightNet because it is an efficient lightweight semantic segmentation network.
The LightNet consists of four long–short branches. Two branches include lightweight
serial-parallel dilated residual modules (LDRM) and a multiscale channel information en-
hancement module (MCEM), while the other two branches include LDRM and a multiscale
spatial information enhancement module (MSEM). The LDRM integrates the advantages
of serial and parallel dilated residual networks and has a lightweight serial-parallel struc-
ture. The MCEM captures the correlation between local and global features by calculating
multiscale spatial attention matrices and performs weighted fusion of the upsampled
multiscale spatial features extracted by the LDRM to enhance the semantic consistency
of discriminative features on the same object. The MSEM utilizes attention mechanisms
to compute channel weight vectors and performs weighted fusion of the same-channel
features at different scales to enhance the semantic distinctiveness among different objects.

The LightNet structure is shown in Figure 3. The first branch of the backbone network
consists of four LDRMs and an MCEM, the second branch includes three LDRMs and
an MCEM, the third branch includes two LDRMs and an MSEM, and the fourth branch
includes an LDRM and an MSEM. Different feature maps from four branches are upsampled
or downsampled and then input into other branches and take part in the fusing operation.
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4.2.1. Lightweight Serial-Parallel Dilated Residual Module (LDRM)

In order to extract the required multiscale contextual information for the MSEMs
and MCEMs, we integrate the advantages of serial and parallel dilated residual networks
and design the lightweight serial-parallel dilated residual module (LDRM). The specific
structure of the LDRM is shown in Figure 4. It consists of three dilated residual blocks with
parameter sharing, so achieves a lightweight serial-parallel structure. The three parallel
dilated residual blocks of the LDRM consist of three, two, and one dilated residual layers
respectively, and they are series connections when there are at least two. Each dilated
residual block is composed of two convolutional layers and a skip connection. The three
blocks extract multiscale spatial features and channel features using different dilation
rates. The blocks share parameters to achieve a lightweight serial-parallel structure. The
multiscale spatial features, channel features, and original features in each branch are fused
together as the final output of this module. We will give the specific calculation in detail.
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The first block consists of three series-connection dilated residual layers, with dilation
rates of 1, 2, and 4, respectively. Its output is represented as follows:

Output1 = D4(D2(D1(X))) (1)

where Di represents the output of the dilated residual block with dilation rate i, and X
represents the feature map as the input.

The second block consists of two series-connection dilated residual layer with dilation
rate of 1 and 2, respectively. Its output is represented as follows:

Output2 = D2(D1(X)) (2)

The third block consists of a dilated residual layer with a dilation rate of 1, and its
output is represented as D1(X). The final output of the LDRM is the fusion of the multiscale
features extracted from the three dilated residual blocks and the original input features,
represented as:

Output = D4(D2(D1(X))) + D2(D1(X)) + D1(X) + X (3)

The parameter-sharing among the three parallel dilated residual blocks is illustrated
in Figure 4.



Remote Sens. 2023, 15, 5631 9 of 18

4.2.2. Multiscale Spatial Information Enhancement Module (MSEM)

In order to capture more correlation between local and global features and enhance the
semantic consistency of discriminative features, a multiscale spatial information enhance-
ment module (MSEM) is designed. The module is divided into two parts, with one solving
the multiscale spatial attention matrix and the other performing a weighted fusion of the
multiscale spatial features based on the multiscale spatial attention matrix. The MSEM
structure, shown in Figure 5, improves the network performance to distinguish confused
categories easily via enhancing the semantic consistency of the same object.
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The computation of the multiscale spatial attention matrix is performed as follows:
Firstly, the multiscale spatial feature map X ∈ RC×H×W (where C, H, W represent the
number of channels, height, and width of the feature map, respectively) is passed through
a convolutional layer (C, 1× 1) to obtain the feature map X′ ∈ RC×H×W . Similarly, X
is passed through another convolutional layer (C′, 1 × 1) to obtain two feature maps
U, V ∈ RC′×H×W , where C′ is a factor of C. Secondly, the three-dimensional matrix X′

is reshaped into a two-dimensional matrix C× N, and the three-dimensional matrices U
and V are also reshaped into two-dimensional matrices C′ × N, where N = H ×W. Next,
the transpose of the matrix U is multiplied by the matrix V, and the obtained matrix is
passed through the Softmax function to compute the spatial attention matrix A ∈ RN×N .
The calculation formula is as follows:

A = so f tmax
(

UTV
)

(4)

The calculation of the weighted fusion of multiscale spatial features based on the mul-
tiscale spatial attention matrix is as follows: The two-dimensional matrix X′ is multiplied
by the transpose of the spatial attention matrix A, and the obtained two-dimensional matrix
is reshaped into a three-dimensional matrix to obtain the sum of it and the input feature
map X by element-wise sum, so we obtain the final enhanced feature map Y ∈ RC×H×W .
The calculation formula is as follows:

Y = r
(

X′AT
)⊕

X (5)

where r represents the reshape operation, and
⊕

represents element-wise sum.

4.2.3. Multiscale Channel Information Enhancement Module (MCEM)

In order to enhance the semantic differences among different objects and alleviate the
information interference caused by the similarity of different object classes, a multiscale
channel information enhancement module (MCEM) was designed, which consists of two
parts: One part is to compute the weight vectors of different channels using attention
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mechanisms, and the other part is for the weighted fusion of the different scales’ features
in the same channel. Its structure is shown in Figure 6.
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The computing operation of the weight vectors of all the channels is as follows:
Firstly, global average pooling is applied to the input feature map X ∈ RC×H×W , and it is
compressed into a global spatial feature with size 1× 1× C. Secondly, the global spatial
feature is passed through two fully connected layers and a sigmoid activation function to
obtain a channel weight vector with size 1× 1× C. Each element in the channel weight
vector corresponds to the weight of a feature channel, ranging from 0 to 1. In the first fully
connected layer, the number of channels is reduced to C

r , where r represents the scale factor.
According to the channel weight vector, different scale features in the same channel are

weighted and fused. Specifically, each element in the channel weight vector is multiplied by
the corresponding channel in the original feature map, and common channel features are
ignored to enhance semantic differences and alleviate information interference caused by
similarity among different objects. The weighted fusion calculation formula is as follows:

Yc = zc Mc, c = 1, 2, . . . , C (6)

where Yc represents the feature map outputted from the cth channel, Mc represents the
feature map input to the c-th channel, and zc is the channel weight vector of the feature
map in the c-th channel.

4.3. Loss Function for LightNet

Loss function is one of the most important parts in deep learning because it guides
the CNNs to optimize model parameters during the back-propagation period. The loss
function of LightNet we designed is represented as follows:

Loss = Loss1 + Loss2

Loss1 and Loss2 are multi-class cross-entropy loss functions that evaluate the loss
between the predicted semantic segmentations of the image pair and the ground truths.
They are defined as follows:

Loss1 = − 1
m∑j∈P1 ∑n

i=1 I
(

yj = i
)
× log

(
P
(

y(j) = i|x(j)
))

(7)

Loss2 = − 1
m∑j∈P2 ∑n

i=1 I
(

yj = i
)
× log

(
P
(

y(j) = i|x(j)
))

(8)



Remote Sens. 2023, 15, 5631 11 of 18

where P1 and P2 represent the pre-temporal and post-temporal remote sensing images,
respectively, m denotes the number of pixels in the remote sensing images, and n represents
the number of classes. I(x) is an indicator function that will be 1 when the predicted
class yj of pixel j matches the true class i, and 0 otherwise. P

(
y(j) = i|x(j)

)
represents the

probability that pixel j belongs to class i, which can be obtained via a Softmax classifier.

4.4. Semantic Comparison Algorithm

Following the parallel semantic segmentation of dual-temporal remote sensing images
based on LightNet, we perform the semantic comparison algorithm for the two different
semantic segmentations, and then directly express the semantic changes of the land cover
in one remote sensing image.

Our algorithm is as follows:
The inputs are the pixel-level semantic segmentation results of the pre-temporal and

post-temporal remote sensing images, denoting the semantics in the pre-temporal image as
xi, and the matching semantics in the post-temporal image as yi; for each matching pixel
pair (xi,yi), if the prediction category of xi is the same as yi, the semantic label remains
as xi. Otherwise, the semantic category of xi is replaced with the semantic change label
xi→yi. This method can express the pixel-level semantic change intelligently and help
the management find the specific change without any manual semantic comparison. The
visualization map of semantic change labels included in this paper is shown in Figure 7. We
have five class objects (building, plant, bare soil, water, and background) and 21 semantic
changes in our dataset.
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5. Experiment and Analysis
5.1. Experimental Setup

The experiments are implemented on a system with NVIDIA GeForce RTX 2060 and
Intel(R) Core (TM) i7, and the operating system is Windows 10. The software environment
of the system is ENVI 5.3, Python 3.8, and Pytorch 1.8.1. After testing experiments, we set
the model training parameters as follows: The batch size is 4, the learning rate is 0.001, the
epoch is 100, the momentum is 0.9, the weight decay is 0.0005, and the optimizer is Adam.



Remote Sens. 2023, 15, 5631 12 of 18

5.2. Evaluation Metrics

(1) Semantic segmentation metrics
The performance evaluation indexes of general semantic segmentation model mainly

include mean pixel accuracy (MPA) and mean intersection over union (mIoU). In order
to accurately analyze the experiments, these two indicators are selected to quantitatively
evaluate the model.

mi = ∑N
j=1 nij (9)

MPA =
1
N ∑N

i=1
nii
mi

(10)

mIoU =
1
N ∑N

i=1
nii

mi + ∑N
j=1 nji − nii

(11)

where N represents the total number of categories, nij represents the number of pixels
which should be in class i but is classified as class j, and mi represents the total number of
pixels of class i.

(2) Change detection metrics
To evaluate the efficiency of change detection and consider whether the pixels have

changed, we selected the PA (Pixel Accuracy) as the evaluation index.

PA =
TP + TN

TP + FP + TN + FN
(12)

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false
negative, respectively.

5.3. Evaluation Metrics
5.3.1. Performance Analysis of LightNet

In order to verify the effectiveness of the semantic segmentation model LightNet,
we selected U-Net, PSPNet, and DeepLabv3+ for comparison experiments. The semantic
segmentation results of remote sensing images are shown in Figure 8. Figure 8a shows
the original image, Figure 8b shows the ground truth, and Figure 8c–f show the semantic
segmentation experiments obtained by U-Net, PSPNet, DeepLabv3+, HRNet, and our
model, respectively. The semantic segmentation of our model is closer to the ground truth
than the other models, so our model is better. In remote sensing images including rivers
and lakes, the difference of various buildings is significant, while the differences of plants,
bare soil, and water bodies are not. However, our model uses LDRM to obtain more
contextual information, enhances the semantic consistency of the discriminative features,
and introduces MSEM and MCEM to enhance the model’s ability to distinguish confused
categories easily. The semantic segmentations of our model are significantly better in terms
of overall and smoothness than other models, which indicates LightNet is superior to
other semantic segmentation models and can effectively solve intra-class inconsistency and
inter-class similarity in remote sensing images.

The quantitative comparison of the four methods for semantic segmentation on PA,
IoU, mIoU, and MPA is shown in Table 2. Compared with U-Net, PSPNet, DeepLabv3+,
and HRNet, our model has advantages for semantic segmentation in remote sensing
images. The mIoU and the IoU of each category of LightNet for semantic segmentation is
the highest. The PA on building, plant, bare soil, and water has been improved by at least
2.2%, 2.1%, 1.3%, and 2.1%, respectively, and the mean PA is improved by 1.9%. According
to the network structure, the parameter number of Lightnet is 23M, and the HRNet is 29M,
so our model is lighter, and the testing time of our model is about 0.027 s, which means the
model can deal with 36 frames per second.
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5.3.2. Ablation Study on LightNet

We decompose the network step by step and verify the performance of each optimized
module in LightNet. The performance evaluations are shown in Table 3, in which we use
the bounding boxes to highlight and demonstrate the differences of semantic segmentation
with different optimization technologies in Figure 9, which easily indicate the effectiveness
of different modules. Model1 represents the HRNet model without any improvement
strategies. Model2 incorporates the LDRM module to capture more multiscale contextual
information. Compared to Model1, Model2 improves accuracy by 1.1%. Based upon
Model2, Model3 introduces MSEM for multiscale spatial information enhancement, to
capture correlations between local and global features. As a result, Model3 improves
segmentation accuracy by 0.5% compared to Model2. Model4, in comparison to Model3,
incorporates MCEM to enhance the representation of key channel features. This helps
alleviate information interference caused by similarities of different categories. Model4
achieves a segmentation accuracy of 89%. These demonstrate that each optimized module
can enhance the performance of semantic segmentation in remote sensing images.

Table 3. Comparison of four methods for semantic segmentation. (%).

Model LDRM MSEM MCEM MPA

Model1 87.1%
Model2

√
88.2%

Model3
√ √

88.7%
Model4

√ √ √
89.0%
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missed or false detections inside the orange box.)

5.3.3. Performance Analysis of Change Detection Method

We verified the efficiency of the semantic segmentation model LightNet we proposed.
Now we verify the performance of our pixel-level semantic change detection method based
on LightNet and the SiameseNet framework. The change detection results of different
methods are shown in Figure 10. The change detection result obtained by our method is
better and more consistent in the visual interpretation. The most changes in the first and
third image pair are in building→bare soil, which indicates that there were some illegal
buildings before, and the most changes in the second and fourth pair in Figure 10 are in
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plant→water, which indicates that there were some illegal occupations of water resources
before. Besides the fine-grained semantic change detection, Table 4 shows that the accuracy
of our method for change detection is the highest in the four methods by comparing the
binary accuracy of the change region, which demonstrates the superiority of our method in
fine-grained semantic change detection in remote sensing images.
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Table 4. Comparison of different change detection methods. (%).

Method Accuracy

Siam-UNet 81.2
Siam-PSPNet 75.1

Siam-DeepLabv3+ 84.5
Our method 86.0

6. Conclusions

According to the requirement of water management, we use the high resolution remote
sensing images of Lake Erhai in Yunnan Province in China collected by GF-2 to make the
dataset with a fine-grained semantic label and an image-pair label. There are five classes
and 21 semantic changes in our dataset, which is more fine-grained than the public dataset
HRSCD, and the data-making process can be applied to any application. Aiming at the
variations of land features in high resolution remote sensing images and the requirement
of the refined management, we propose a pixel-level semantic change detection method to
solve the fine-grained semantic change detection for HR remote sensing image pairs. We
firstly propose a lightweight semantic segmentation network to carry out the pixel-level
semantic classification, then use the parameter-sharing SiameseNet as the architecture of
our method to obtain the different classifications of the image pair, and finish with the pixel-
level change detection based on semantic comparison of the image pair. LightNet consists
of four long–short branches and obtains feature information at different scales. The features
in each branch are transmitted, fused, and enhanced via channel information enhancement
layer or spatial information enhancement layers, and the four upsampling feature maps are
finally concatenated to form the input of the Softmax. Our method solves the intra-class
inconsistency and inter-class similarity, so it not only achieves end-to-end change detection
in remote sensing images, but also helps management find the specific change without any
manual semantic comparison. The experiments demonstrate the superiority of our method
and the accuracy of LightNet, and the pixel-level semantic change detection methods are
up to 89% and 86%, respectively.
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