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Abstract: Due to technological limitations and budget constraints, spatiotemporal image fusion uses
the complementarity of high temporal–low spatial resolution (HTLS) and high spatial–low temporal
resolution (HSLT) data to obtain high temporal and spatial resolution (HTHS) fusion data, which
can effectively satisfy the demand for HTHS data. However, some existing spatiotemporal image
fusion models ignore the large difference in spatial resolution, which yields worse results for spatial
information under the same conditions. Based on the flexible spatiotemporal data fusion (FSDAF)
framework, this paper proposes a multilevel single-image super-resolution (SISR) method to solve
this issue under the large difference in spatial resolution. The following are the advantages of the
proposed method. First, multilevel super-resolution (SR) can effectively avoid the limitation of a
single SR method for a large spatial resolution difference. In addition, the issue of noise accumulation
caused by multilevel SR can be alleviated by learning-based SR (the cross-scale internal graph neural
network (IGNN)) and then interpolation-based SR (the thin plate spline (TPS)). Finally, we add the
reference information to the super-resolution, which can effectively control the noise generation.
This method has been subjected to comprehensive experimentation using two authentic datasets,
affirming that our proposed method surpasses the current state-of-the-art spatiotemporal image
fusion methodologies in terms of performance and effectiveness.

Keywords: remote sensing; spatiotemporal image fusion; SISR; IGNN; TPS

1. Introduction

There has been a growing focus on dense time-series satellite data and high-resolution
spatial imagery. An expanding array of applications is now demanding high temporal
and high spatial resolution (HTHS) imagery, particularly for tasks, such as land use/cover
mapping, change detection, and monitoring ecosystem dynamics. However, owing to
technological constraints and budget limitations, various satellite sensors exhibit distinct
temporal and spatial characteristics. Moreover, the desired HTHS data cannot be obtained.
Many satellite designs are tailored to specific application requirements. For instance,
certain remote sensing satellites, such as CBERS, SPOT5, and Landsat, are configured to
provide a high spatial and low temporal (HSLT) resolution [1–3]. Their spatial resolution
ranges from 5 to 30 m (SPOT5: 5 m; CBERS: 19.5 m; and Landsat: 30 m). Nonetheless,
achieving a higher spatial resolution often comes at the cost of longer revisit cycles, as
seen in satellites, like SPOT5 (revisit cycle: 26 days), CBERS (revisit cycle: 26 days), and
Landsat (revisit cycle: 15 days). In contrast, other satellites such as MODIS (revisit cycle:
2 days), AVHRR (revisit cycle: 6 days), and SPOT-VGT (revisit cycle: 1 day) are configured
to provide a high temporal and low spatial (HTLS) resolution, thanks to their shorter revisit
cycles [4,5]. Correspondingly, their spatial resolution ranges from 500 to 1200 m (MODIS:
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500m; AVHRR: 1.1 km; and SPOT-VGT: 1.15 km). Hence, employing spatiotemporal image
fusion technology to acquire HTHS images holds substantial significance.

Spatiotemporal image fusion [6,7] utilizes the complementarity of HTLS and HSLT
data to obtain HTHS fusion data, which can effectively satisfy the demand for HTHS data.
The key to solving the issue of spatiotemporal fusion is how to construct the corresponding
relationship between each pair of HTLS-HSLT images simultaneously. At present, most
algorithms focus on how to establish the corresponding relationship to build an algorithm
model. The methodologies in this domain can be broadly categorized into five distinct
groups [8]: weight-based, unmixing-based, Bayesian-based, learning-based, and hybrid
methods. Weight-based methods [9–15] resample an HTLS image in the same size as that
of an HSLT image to establish the spatial correspondence. Then, the weight is used to
calculate the information variation to obtain an HTHS image. For example, the classical
weight-based method is the Spatial and Temporal Adaptive Reflectance Fusion Model
(STARFM) algorithm [9], which assumes that a reflectance change is linearly interpolated
between the high-throughput high temporal–low spatial (HTLS) and high spatial–low tem-
poral (HSLT) images when an HTLS pixel exclusively represents a single land cover type. In
such cases, the high temporal–high spatial (HTHS) image can be straightforwardly derived
by incorporating the change information. However, when an HTLS pixel encompasses
multiple land cover types, STARFM employs a weighted approach by considering various
factors from the neighboring HSLT pixels to generate the HTHS image. Unmixing-based
methods [16–24] elucidate spatial correspondence by considering the perspective of mixed
pixels, wherein each pixel in the HTLS image is regarded as a combination of pixels from
the HSLT image. The spatial–temporal data fusion approach (STDFA) [19] is valid for cases
where the temporal variations in the land cover types are constant, which calculates the
changes in the land cover types between these two HTLS images and integrates them into
the HSLT image. Bayesian-based methods [25–29] describe the spatial correspondence from
the probability theory and regard the fusion problem as a maximum posterior problem for
solving the optimal state with known observations. Hence, the pivotal aspect of this method
lies in establishing the probability-based definition of the relationship between the input
HTLS and HSLT images and the HTLS images. These relationships encompass covariance
functions, as employed in [25], low-pass filtering as presented in [26], and joint covariance
as detailed in [29]. Learning-based methods [30–38] consider that HTLS and HSLT images
have the same or similar feature attributes in the spatial relationship. Learning-based
methods extract image features through the process of learning and subsequently generate
HTHS images by predicting HTLS images during the fusion phase. Currently, the dom-
inant branches of the learning-based methods encompass dictionary learning, machine
learning, and deep learning. The GAN-based spatiotemporal fusion model (GAN-STFM)
[37] introduces the conditional generative adversarial network (CGAN) and switchable
normalization technique into the spatiotemporal fusion problem. Hybrid methods [39–45]
combine the advantages of the abovementioned methods to obtain better fusion accuracy.
The robust flexible spatiotemporal data fusion (RFSDAF) [38] method uses a multiscale
fusion strategy that is adaptive to different degrees of coregistration error. It incorporates
multiscale information, which extends the analysis of the reflectance and class fraction
from per-MODIS pixel to inter-MODIS pixels, and it is robust to coregistration errors.
A rigorously incremental spatiotemporal data fusion method for fusing remote sensing
images with different resolutions [45] utilizes the particle swarm optimization Gaussian
mixture model to extract endmembers and establishes a linear relationship between sensors
to obtain accurate time increments. Furthermore, bicubic interpolation is used instead of
thin plate spline interpolation for spatial interpolation, and support vector regression is also
used to calculate weights for obtaining a weighted sum of temporal and spatial increments.
However, most solutions to the spatial correspondence of these methods are only suitable
for applications where the spatial resolution difference is small, such as 4 times or 8 times.

As is known, the current demand for remote sensing data is such that what we get
is not what we want. However, certain applications require spatiotemporal fusion under
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large spatial differences. If the spatial resolution difference is larger, such as 16 times or
more, it may lead to a worse fusion result or the solution might not meet this condition.
For example, with large differences in spatial resolution, the resampling of weight-based
methods will face a situation where a pixel value is resampled into hundreds of values.
Similarly, unmixing-based methods need to deal with a situation where one pixel is mixed
with hundreds of pixels. The difference in the amount of spatial information can inevitably
lead to errors in the fusion results. Bayesian-based methods need to deal with the lack
of prior knowledge caused by differences in the spatial resolution. For learning-based
methods, large differences in the spatial resolution can result in some HTLS image features
that cannot be extracted due to a lack of information.

Hence, this paper’s primary focus lies in addressing spatiotemporal fusion challenges
when dealing with substantial variations in spatial resolution. The most immediate conse-
quence of such disparities in spatial resolution is the acquisition and incorporation of spatial
information within the context of spatiotemporal fusion. To avoid mutual interference
between temporal and spatial domain information, this article draws inspiration from the
classic hybrid algorithm FSDAF. This model first predicts the change information from the
temporal and spatial domains, separately. Then, the actual change information by weight
is calculated to obtain the fusion result.

The spatial domain information is predicted to obtain images with more spatial
information by enhancing the spatial details of HTLS images. SISR methods are generally
used to solve this issue. SISR can be classified into learning-based [46–50] and interpolation-
based SISR methods [51]. The advantage of learning-based methods is that they can learn
the image features through training and then supplement the image details through the
learned prior knowledge. In contrast, interpolation-based methods aim to supplement the
image pixels through certain interpolation constraints.

In practice, a single SISR method typically achieves an optimal spatial resolution
enhancement of 4 to 8 times. However, this falls short when dealing with SISR tasks
requiring a resolution difference of 16 times or more, which is the specific focus of our
study. To tackle the challenge of obtaining spatial resolution information at significantly
larger scales, this paper proposes a multilevel SISR strategy. Our approach includes two
processes. First, when there is less noise, we utilize a learning-based SISR method, IGNN,
to extract the spatial features of an HTLS image. After the first step, as noise accumulates
to a predetermined threshold, we employ an interpolation-based method, TPS, to mitigate
the adverse impacts of excessive noise and supplement the image details. Therefore,
our method combines the advantages of the two types of SISR methods to overcome the
difficulty with a resolution difference of 16 times or more. In addition, we introduce more
control information in the SISR process to ensure the transmission and integrity of the
information in the multilevel SISR process.

The principal innovation presented in this methodology is the application of multilevel
SISR for the generation of spatial information predictions within spatiotemproal fusion.
Consequently, we refer to this approach as MSISR-STF in this paper.

The contribution of this work can be summarized as follows:

1. The multilevel SISR strategy can effectively solve spatiotemporal fusion with large
differences in the spatial resolution.

2. IGNN uses similar blocks in the image to complete the details, which introduces more
spatial information for spatiotemporal fusion.

3. MSISR-STF introduces more spatial information through constraint methods to im-
prove the fusion accuracy.

The remainder of this paper is structured as follows: Section 2 provides a compre-
hensive overview of the problem definitions and variable descriptions. Section 3 presents
detailed exposition of our proposed method, MSISR-STF, along with the primary flowchart
illustrating its functionality. Section 4 presents the experimental setup and showcases the
obtained results. The conclusion is drawn in Section 6.
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2. Problem Definition

In this paper, for the task of remote sensing image fusion, all images must be accurately
matched in a unique geographic location. Registration must be calibrated between HTLS
and HSLT images for fine geographic calibration. This problem is illustrated as Figure 1.

Figure 1. Problem definition. Given a pair of an HSLT image and HTLS image at time k− 1, the task
is to estimate the unobserved HTHS image at time k.

The following images are used in this spatiotemporal fusion:

1. A pair of an HSLT image Fk−1 and HTLS image Ck−1 at time k− 1.
2. An HTLS image Ck at time k.

The unknown image that needs to be estimated is the HTHS image at time k.
In addition, the symbols used in this paper are defined in Table 1.

Table 1. Definitions of symbols used in this paper.

Symbol Definition

k k refers to time, where k− 1, k, and k + 1 represent the past time, the fusion time, and
the future time in this paper, respectively.

i, j The ith HTLS image pixel is denoted by i, and the jth HSLT image pixel in one HTLS
image pixel is denoted by j.

(Ri, Li) The coordinate values of the ith HTLS image pixel.
(Rij, Lij) The coordinate values of the jth HSLT pixel in the HTLS pixel at location (Ri, Li).

C, F C is the HTLS image and F is the HSLT image.
Ck, Fk The position of k refers to time.
[c] The cth class.

3. MSISR-STF

To solve the large differences in the spatial resolution for spatiotemporal image fusion,
a multilevel SISR method is proposed to improve the spatial information by combining
the advantages of the two types of reconstruction methods. The main flowchart of the
proposed method is shown in Figure 2.
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Figure 2. Flowchart of the algorithm model.

This section introduces our algorithm from the following four main perspectives.

1. We show the fusion framework used for the research goal, as well as its advantages.
2. For the prediction of spatial information under a large spatial resolution difference,

we introduce a multilevel SISR strategy and introduce the constraint information to
enhance this strategy.

3. For predicting temporal domain information, we use an unmixing-based method to
solve the time-varying information.

4. We calculate the actual change, which is calculated by calculating the weight of the
real change by using the amount of change in the predicted image in the temporal
and spatial domains. The neighborhood pixels are used to enhance the robustness of
the algorithm and fusion accuracy.

3.1. Fusion Framework

This research is primarily centered around the challenge of spatiotemporal fusion
when confronted with substantial disparities in the spatial resolution. One of the immediate
consequences of these spatial resolution differences is their impact on the acquisition and
integration of spatial information within the context of spatiotemporal fusion. To avoid
mutual interference between temporal domain information and spatial domain information,
this article draws inspiration from the classic hybrid algorithm FSDAF. This model first
obtains the prediction of the change information from the temporal and spatial domain
separately and then calculates the actual change information by weight to obtain the
fusion result.
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In the design of the FSDAF model, there are two types of relationships in spatiotempo-
ral fusion. One is the relationship between the observed HSLT and HTLS images observed
on the same date in the spatial domain; this relationship is called the spatial model. The
other is the relationship between the HSLT and HTLS images observed on different dates;
this is called the temporal model. The scale model contains knowledge of the point spread
function, which maps the pixels of an HSLT image to the corresponding HTLS image.
The temporal model describes dynamic changes in the land surface, including changes in
vegetation (such as seasonal changes) and sudden land cover changes (such as forest fires
and floods). That is, how to accurately establish the scale model of time and space fusion
and the time model is the key to solving the problem of spatiotemporal fusion.

Generally, spatiotemporal fusion can be expressed as the image Fk to be solved, which
is the sum of the image Fk−1 at the previous moment and the change in the information
amount ∆F in this period.

Fk = Fk−1 + ∆F, (1)

where ∆F represents the difference between two HSLT images at k− 1 and k. However,
∆F cannot be solved directly. In fact, the change information is concentrated in that of the
HTLS images. Thus, Equation (1) can be written as follows:

Fk = Fk−1 + λ∆C, (2)

where λ represents the relationship between the degradation of the HSLT and HTLS images
and is related to the spatial model. In addition, ∆C represents the difference between two
HTLS images at k− 1 and k and is related to the temporal model. Considering the influence
of the spatial and temporal model, the spatiotemporal fusion framework can be described
as follows:

Fk = Fk−1 + (w∆Fλ + (1− w)∆F∆C), (3)

where ∆Fλ represents the amount of information change under the influence of λ on the
spatial scale, ∆F∆C represents the amount of information change under the influence of
∆C on the temporal scale, and w represents the weight of ∆Fλ. If FSP

k and FTP
k are used to

represent the prediction based on the spatial and temporal domain, respectively, then{
∆FSP = FSP

k − Fk−1.
∆FTP = FTP

k − Fk−1.
(4)

The variable λ in ∆Fλ represents the scale model, which represents the difference in
the spatial information, so ∆Fλ can be equivalent to the difference ∆FSP after the spatial
image prediction at k. The variable ∆C in ∆F∆C represents the temporal model, which
represents the difference in the temporal information, so ∆F∆C can be equivalent to the
difference ∆FTP after the spatial image prediction at k.

Fk = Fk−1 + (w∆FSP + (1− w)∆FTP). (5)

According to Equations (4) and (5), the unknown solution elements of the spatial–
temporal fusion framework are concentrated in FSP, FTP, and w.

3.2. Prediction Based on the Spatial Domain

The spatial information prediction of spatiotemporal fusion is embodied in the spatial
model. In general, the best approach to solving spatial models is SISR. However, the spatial
resolution scale range of the current SISR methods ranges from 4 to 8 times, which does
not meet the scale range of 16 times or more required in this study.

In this section, we introduce a multilevel SISR method to address the large-scale
differences in spatial resolution. In addition, we present some issues faced in using the
multilevel SISR method and our solutions to these problems.
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1. Aiming at noise accumulation in multilevel SISR, we propose the idea of using the
learning-based SISR method IGNN first and, then, the interpolation-based SISR
method TPS.

2. Aiming at obtaining the insufficient spatial information of the HTLS images under
large spatial resolution differences, we introduce more information and constraints to
ensure information gain and information transmission.

3.2.1. Noise Accumulation: IGNN + TPS

An inevitable issue that arises when using multilevel SISR is that the error caused
by the first SISR gets amplified in the subsequent SISR. By comparing the current SISR
methods, we consider the characteristics of the two types of SISR methods and propose to
use the learning-based SISR method first and then the interpolation-based SISR method
for spatial information prediction. First, a learning-based SISR method is used to train
the feature correspondence between the HTLS-HSLT images, and the image resolution is
enhanced on the basis of preserving the feature information of the image. Then, by using
the smoothing function of an interpolation-based SISR method, the spatial information is
enhanced without adding more errors. It is worth noting that the difference in the large-
scale spatial resolution of this algorithm in this paper is 16 times. In addition, through a
sensitivity analysis, the best multilevel SISR in this algorithm is the 4-times learning-based
SISR method first, followed by the 4-times interpolation-based SISR method.

We use IGNN [52] as the first-level SISR method. Combined with graph convolution,
IGNN proposes a non-local graph convolution aggregation module (GraphAgg). GraphAgg
finds the k nearest neighbors (NNs) of the HSLT image blocks for each HTLS image block,
constructs an HSLT-HTLS connection graph, and then aggregates the texture information
of k HSLT image blocks corresponding to the HTLS image block to help the SISR.

The network uses an enhanced deep residual network for single-image super-resolution
(EDSR) [47] as the backbone network and inserts the GraphAgg module into the middle of
the EDSR for cross-scale high-definition block aggregation, as shown in Figure 3.

Figure 3. Algorithm description of image prediction in spatial domain. We use IGNN and TPS as our
multilevel SISR method.
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The aggregated high-definition features can be directly transferred to the back high-
scale network layer through a cross-scale connection so that the network can directly
perceive the high-definition texture hidden in the image features. The module mainly
includes two steps: graph construction and block aggregation. Graph construction aims
to search k NN blocks that are similar to the target by using the k-NN method. However,
unlike the same-scale k-NN search, the cross-scale k-NN search cannot match image blocks
directly on the original image. To find the k NN blocks, IGNN first downsamples the
original image. For each target (blue box in Figure 3) in the original image, it searches k NN
blocks (yellow box in Figure 3) from the downsampled image by block matching. Then, the
k NN blocks are mapped to the scale of the original image by scale mapping, and k NN
blocks are obtained. The cross-scale association of the target and the k NN blocks is modeled
using a graph. Each NN block is regarded as a vertex, and each edge represents the direct
similarity between the target and k NN blocks. Based on the constructed graph, IGNN
proposes an adaptive block aggregation method, which defines the aggregation weight
of the edge according to the similarity between the target and NN blocks. In addition,
inspired by Adaptive Instance Normalization (AdaIN) [53], IGNN proposes Adaptive
Patch Normalization (AdaPN) for image blocks to align the low-frequency signals of the
neighboring blocks and the target without changing the high-frequency texture information.

EDSR is based on a super-resolution residual network (SRResNet), which includes the
convolution layer (Conv), rectified linear units layer (ReLU), and batch normalization layer
(BN). The Conv layer is used for feature extraction; the ReLU layer performs the activation
function; and the BN layer can simplify the training of a deeper network, accelerate
convergence, and have some regularization effect, which can prevent the over-fitting of the
model. In terms of SISR and image generation, BN does not perform well. With the addition
of batch norm, the training speed becomes slow, unstable, and even divergent. Therefore,
EDSR is optimized by deleting the BN layer to simplify the SRResNet architecture, train
the network with an appropriate loss function, and optimize the model.

Please refer to the original paper [52] for the specific implementation details.
Using IGNN, we can obtain images with a resolution ranging from 1 to 4 times.

F1→4
k = ψIGNN(Ck−1, Fk−1, Ck). (6)

TPS is used as the second-level SISR method. A surface passing through all the control
points is established by the TPS function, and the gradient change in all the points is
minimized. In other words, the spline function of the thin plate fits the control point with
the minimum curvature surface. Given N known points, the estimated value of the TPS
function is obtained as follows:

C(R, L) = a + bR + cL +
N

∑
i

Aid2
i logdi, (7)

where a, b, c are scalar; Ai is the band A of the point i; and di is the distance between the
interpolation point and the coordinate value of the control point. To solve Equation (7),
three additional control conditions are introduced. ∑i Ai = 0;

∑i AiRi = 0;
∑i AiLi = 0.

(8)

where d2
i = (R− Ri)

2 + (L− Li)
2

Using TPS, we can obtain images with a resolution ranging from 4 to 16 times.

F4→16
k = ψTPS(F1→4

k ) (9)
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3.2.2. Insufficient Spatial Information: Information Gain + Information Transmission

Another unavoidable issue in this study is the lack of information caused by the large
difference in spatial resolution. To solve this issue, this algorithm gains information by
searching similar blocks with IGNN. In addition, we use TPS to supplement and transfer the
gain information. Apparently, the multilevel SISR method can realize the large-scale spatial
information prediction. However, to match similar blocks, IGNN adds downsampling
processing. The mixed pixels caused by downsampling affect the selection of similar blocks.
In addition, under the downsampling resolution, different objects with the same spectrum
can also affect the gained information.

To ensure the effectiveness of the gain information, we use a wavelet transform to
reprocess the spatial prediction results after multilevel SISR.

Wavelet transform uses a series of wavelets of different scales to decompose the origi-
nal function and thus obtain the coefficients of the original function in different scales. In
digital image processing, continuous wavelets need to be discretized in a wavelet transform.
A discrete wavelet transform is obtained by discretizing the scale and displacement of the
continuous wavelet transform according to the second power. The discrete wavelet trans-
form decomposes the image into corresponding low- and high-frequency signals through
low- and high-pass filters. The low-frequency signal represents the frame information
of the image, whereas the high-frequency signal represents the detailed information of
an image.

We use the wavelet transform to extract the frame information of an HTLS image
Ck and detailed information of a multilevel SISR image F4−16

k . In addition, we use the
inverse transform of the wavelet transform to fuse the detail information into the frame
information to ensure the accuracy of the gained information.

Then, the improved spatial prediction FSP
k can be described as follows:

FSP
k = ψWAV(F4→16

k , Ck) (10)

3.3. Prediction Based on the Temporal Domain

The temporal information of the spatiotemporal fusion model is in the change ∆C in
the HTLS images. We use the unmixing-based method to predict the temporal information.
The unmixing-based method assumes that the abundance of mixed pixels does not change
with time. This is acceptable under a large spatial resolution difference. The steps can be
described as follows.

3.3.1. Endmember and Abundance

First, the pixels in the HSLT image Fk−1 are classified by ISODATA. The number of
endmembers is determined according to the classification results. Second, the abundance
of each class is calculated according to the corresponding relationship of the resolution
in the HTLS-HSLT images at the k-1 moment. Suppose an HTLS pixel corresponds to m
HSLT pixels and can be divided into l classes. In the classification result, if the cth class
has N[c] pixels, the quantity denoted as abundance, represented by the variable A, can be
formulated as follows:

A[c](Ri, Li) = N[c](Ri, Li)/m. c ∈ 1, 2, . . . , l (11)

3.3.2. Change in Temporal Domain:∆C

In accordance with the assumption underlying the theory of linear mixing, the alter-
ation in the temporal domain information within an HTLS pixel can be conceptualized
as the cumulative effect of temporal domain information changes across all HSLT pixels
contained within that HTLS pixel:

∆C(Ri, Li) = Ck(Ri, Li)− Ck−1(Ri, Li). (12)
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∆C(Ri, Li) =
l

∑
c=1

A[c]∆F[c]. (13)

Equation (12) signifies the temporal domain change information within the HTLS
image, and Equation (13) remains valid within the framework of the linear mixing theory
assumption. Consequently, by amalgamating Equations (12) to (13), it becomes possible to
estimate the temporal domain change for each class, denoted as ∆F[c].

3.3.3. Temporal Prediction: FTP
k

By allocating the temporal domain information changes for each class to the image
Fk−1, we can derive a predicted image FTP

k that is grounded in the temporal domain at the
moment k.

FTP
k [c](Rij, Lij) = Fk−1[c](Rij, Lij) + ∆F[c]. (14)

3.4. Final Fusion

In the previous section, we obtained the spatial and temporal prediction separately.
In accordance with Equations (4) and (5) of the fusion model, this section describes the
weight w of different pixels in the spatial and temporal domain. w is used to obtain the
actual value with both spatial and temporal domain changes. In addition, considering the
influence of the neighborhood pixels, a method of collecting the neighborhood influential
factors is used to further update the fusion results.

3.4.1. Temporal and Spatial Prediction Weight: w

In accordance with the theory of unmixing, it is plausible to view an HTLS pixel as a
composite blend of the corresponding m HSLT pixels:

Ck−1(Ri, Li) =
1
m ∑m

j=1 Fk−1(Rij, Lij) + ξ.

Ck(Ri, Li) =
1
m ∑m

j=1 Fk(Rij, Lij) + ξ.
(15)

Within the heterogeneous region, the residual of the HTLS image’s heterogeneous area
Ehe(Ri, Li) can be formulated as:

Ehe(Ri, Li) =
1
m

m

∑
j=1

Fk(Rij, Lij)−
1
m

m

∑
j=1

FTP
k (Rij, Lij). (16)

By consolidating Equations (12)–(16), the expressions for the residuals within the
heterogeneous regions, denoted as Ehe(Ri, Li), can be derived as follows:

Ehe(Ri, Li) = ∆C(Ri, Li)

− 1
m
(

m

∑
j=1

FTP
k (Rij, Lij)−

m

∑
j=1

Fk−1(Rij, Lij)).
(17)

In the homogeneous region, the spatial prediction generated by TPS can accurately
represent the actual value of an HSLT image. The residual within the homogeneous region,
denoted as Eho(Rij, Lij), can be formulated as:

Eho(Rij, Lij) = FSP
k (Rij, Lij)− FTP

k (Rij, Lij). (18)

FSDAF ascertains the extent of the influence exerted by the temporal and spatial
domain predictions on the resultant pixel values by computing the weighting factors
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associated with the residual distributions from both the heterogeneous region, denoted as
Ehe(Ri, Li), and the homogeneous region, denoted as Eho(Rij, Lij).

HI(Rij, Lij) = (
m

∑
q=1

Iq)/m. (19)

where the variable Iq assumes values within the range of 0 to 1. When the q-th pixel in
the HSLT image corresponds to the same land cover type as the central HSLT image pixel
(Rij, Lij), Iq takes on the value of 1.

CW(Rij, Lij) = Eho(Rij, Lij)HI(Rij, Lij)

+ Ehe(Rij, Lij)(1− HI(Rij, Lij))
(20)

W(Rij, Lij) = CW(Rij, Lij)/(
m

∑
j=1

CW(Rij, Lij). (21)

Equations (19)–(21) facilitate the reassignment of residuals by computing the weighting
factors associated with both homogeneous and heterogeneous residuals.

The actual variations denoted as ∆F(Rij, Lij) within an HSLT pixel, derived from the
residual distribution, are computed as follows:

∆F(Ri j, Li j) = m ∗ Ehe(Rij, Lij)W(Rij, Lij) + ∆F[c] (22)

3.4.2. Image Fusion Using Neighborhood Information

In the context of data fusion, in order to mitigate the uncertainties in the ultimate
predictions, FSDAF employs an approach reminiscent of STARFM and ESTARFM, which
integrates the neighborhood information. The weighting of this neighborhood information
is contingent upon the pixel-to-pixel distance, denoted as Dq:

Dq = 1 +
√
(Rq − Rij)2 − (Lq − Lij)2/(w/2), (23)

where w is the window size.
The weighting factors and the ultimate prediction techniques can be represented by

Equations (24) and (25):

wq = (1/Dq)/
n

∑
q=1

(1/Dq), (24)

where n signifies the count of pixels within the window.

Fk(Rij, Lij) = Fk−1(Rij, Lij) +
n

∑
q=1

wq ∗ ∆F(Ri j, Li j). (25)

As the algorithm framework follows FSDAF, for a detailed description of FSDAF,
please refer to [41]. For the specific content about the use of neighborhood information for
convergence, please refer to [9,11].

4. Experiments and Analysis

The experiments and analyses encompassed the following parts: Datasets: The study
considered the datasets used for experimentation. Quantitative evaluation indicators and
comparison methods: The research employed specific metrics for quantitative evaluation
and made comparisons with other methods. Experimental results: The outcomes and
findings of the experiments were presented and discussed. Computational costs: The
computational resources and costs associated with the proposed method were examined
and reported.
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4.1. Datasets

This algorithm’s experimental dataset employs satellite data from Landsat-7 ETM+
and MODIS. The images are situated at approximately 54◦N and 104◦W. We utilized three
pairs of Landsat-7 ETM+ and MODIS images for evaluation purposes. To create false-color
compositions, we employed the red, green, and near-infrared (NIR) bands.

The experimental datasets are depicted in Figure 4. In the context of MSISR-STF,
one pair of HSLT images (Landsat-7 ETM+) and HTLS images (MODIS) obtained on 24
May 2001 (referred to as time k − 1), along with the HTLS image acquired on 11 July
2001 (referred to as time k), were employed to predict the HSLT image at time k. Then,
the predicted image was compared with a real Landsat ETM+ image acquired at time
(k) for assessing the performance of MSISR-STF (we call this model 3→1, which uses
Figure 4a,d,e to obtain Figure 4b). However, in some spatiotemporal fusion algorithms, an
additional pair of HTLS-HSLT images at time k + 1 is required as the input. For example,
spatiotemporal fusion via CycleGAN-based image generation (CycleGAN-STF) (we call
this model 5→1, which uses Figure 4a,d,e,c,f to obtain Figure 4b). In addition, the enlarged
area A in Figure 4b is used for the first experimental dataset, and the enlarged area B is
used for the second dataset.

(a) (b) (c)

(d) (e) (f)

Figure 4. Experimental data. (a,d) HSLT and HTLS image in k− 1, (b,e) HSLT and HTLS image in k,
and (c,f) HSLT and HTLS image in k + 1. The enlarged area in (b) is the selected redtwo experimental
data locations. The rest of the image is cropped as training data for IGNN when a set of experiments
is conducted. (c,f) are used to serve FSDAF as another set of HSLT and HTLS data.

The spatial resolution of the Landsat-7 ETM+ satellite data is 30 m, while that of
the MODIS data is 500 m. To bridge the spatial resolution difference of 16 times, we
resampled the MODIS data to 480 m. Before engaging in the spatiotemporal fusion process,
preprocessing steps, which encompassed calibration and resampling, were applied to both
the HTLS and HSLT images.
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In this experiment, we prepared two sets of Landsat and MODIS data. The first
experimental dataset was characterized by obvious heterogeneous changes, as shown in
Figure 5. In the second experimental dataset, there are heterogeneous changes accompanied
by land cover changes, as shown in Figure 6.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5. The first set of experimental result. (a) HTLS image in k − 1, (b) HSLT image in k − 1,
(c) HTLS image in k, (d) HSLT image in k, (e) TPS+TPS, (f) IGNN+IGNN, (g) TPS+IGNN, (h) MSISR-
STF, (i) STARFM, (j) FSDAF, (k) CycleGAN-STF, and (l) MSISR-STF. Sub-block A and Sub-block B
exhibit a clear inclination towards manifesting heterogeneous changes.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6. The second set of experimental result. (a) HTLS image in k− 1, (b) HSLT image in k− 1,
(c) HTLS image in k, (d) HSLT image in k, (e) TPS+TPS, (f) IGNN+IGNN, (g) TPS+IGNN, (h) MSISR-
STF, (i) STARFM, (j) FSDAF, (k) CycleGAN-STF, and (l) MSISR-STF. Sub-block A exhibits a clear
inclination towards manifesting heterogeneous changes, sub-block B appears to favor alterations in
land cover changes.

4.2. Quantitative Evaluating Indicators and Comparison Methods

To assess the fusion outcomes, we conducted a comparison with the reference data.
Additionally, various evaluation metrics were employed to assess the experimental dataset.

The first evaluation indicator is the root mean square error (RMSE), employed to
measure the discrepancy between the actual and fused values. The RMSE quantifies
how much the predicted value deviates from the true value, with smaller RMSE values
indicating closer proximity of the fused image to the actual value.

The second evaluation indicator is the correlation coefficient (CC), which quantifies
the degree of linear correlation between the research variables. A higher CC value implies
a closer alignment between the predicted and actual images. A CC value of 1 indicates a
perfect linear relationship between the predicted and actual images.
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The third evaluation indicator is the structural similarity (SSIM) [54], employed to
assess the similarity of the overall structures between the fused and actual images. The
SSIM value ranges from −1 to 1, with higher values indicating a superior fusion outcome.

The fourth evaluation indicator is the spectral angle mapper (SAM) [55], which quan-
tifies the spectral dissimilarity in the fused image. A smaller SAM value signifies better
preservation of the spectral information in the fused image.

These evaluation indicators are employed to assess the fusion accuracy of the fusion
algorithm presented in this paper. Among them, the RMSE, CC, and SSIM primarily
emphasize spatial details, while SAM places a greater emphasis on spectral fidelity.

To gauge the impact of MSISR-STF, we have chosen traditional spatiotemporal fusion
algorithms for a comparative analysis.

STARFM is a classic weight-based method, and its technique of using weight to
integrate neighboring pixel information to predict pixels plays an important role in MSISR-
STF. STARFM is a 3→1 model.

FSDAF is a classic hybrid method. MSISR-STF draws lessons from the fusion frame-
work of FSDAF using temporal and spatial domain prediction. MSISR-STF improves
FSDAF under a large-scale spatial difference. FSDAF is a 3→1 model.

CycleGAN-STF is a hybrid approach. The reason why we use CycleGAN-STF in this
paper is that both CycleGAN-STF and MSISR-STF are spatiotemporal fusion methods
under large-scale spatial differences. CycleGAN-STF is a 5→1 model.

4.3. Experimental Results

We conducted two distinct sets of experiments to thoroughly explore the capabilities
of our algorithms. The first set of experiments was primarily centered around areas
exhibiting pronounced and intricate changes in heterogeneity. In contrast, the second
set of experiments encompassed alterations in land cover but within the broader context
of substantial heterogeneity modifications. This deliberate division allowed us to assess
how our algorithms perform under varying degrees of complexity and heterogeneity in
the landscape.

As we delve into the results presented in Tables 2 and 3, it is noteworthy that the
bold numbers highlight the best-performing outcomes among the numerous algorithms
evaluated. These bold numbers serve as indicators of excellence, signifying which algo-
rithm excelled in capturing and representing the changes within the given experimental
conditions. The emphasis on these best outcomes provides valuable insights into the
strengths and adaptability of our algorithms across different scenarios, guiding us toward
more informed decision making in our research and application endeavors.

Table 2. The first set of experimental result.

Method
RMSE CC SSIM

SAMRed Green NIR All Red Green NIR All Red Green NIR All

TPS + TPS 0.142 0.161 0.171 0.166 0.853 0.873 0.813 0.866 0.882 0.734 0.835 0.825 0.042
IGNN + IGNN 0.127 0.154 0.178 0.157 0.891 0.866 0.806 0.862 0.906 0.785 0.863 0.853 0.036

TPS + IGNN 0.143 0.157 0.132 0.142 0.923 0.893 0.843 0.873 0.915 0.835 0.853 0.874 0.033
MSISR-STF 0.071 0.100 0.090 0.088 0.968 0.946 0.940 0.959 0.954 0.854 0.913 0.908 0.023

STARFM 0.177 0.187 0.179 0.182 0.776 0.771 0.804 0.791 0.698 0.529 0.626 0.619 0.059
FSDAF 0.173 0.181 0.166 0.174 0.792 0.791 0.835 0.812 0.716 0.538 0.641 0.632 0.054

CycleGAN-STF 0.099 0.135 0.138 0.125 0.937 0.887 0.893 0.907 0.913 0.759 0.789 0.821 0.038
MSISR-STF 0.071 0.100 0.090 0.088 0.968 0.946 0.940 0.959 0.954 0.854 0.913 0.908 0.023
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Table 3. The second set of experimental result.

Method
RMSE CC SSIM

SAMRed Green NIR All Red Green NIR All Red Green NIR All

TPS + TPS 0.182 0.170 0.193 0.184 0.874 0.857 0.811 0.873 0.871 0.727 0.714 0.738 0.062
IGNN + IGNN 0.173 0.151 0.175 0.172 0.881 0.866 0.832 0.849 0.906 0.731 0.715 0.757 0.058

TPS + IGNN 0.151 0.141 0.174 0.159 0.905 0.853 0.834 0.895 0.864 0.745 0.736 0.755 0.058
MSISR-STF 0.102 0.143 0.150 0.134 0.936 0.946 0.868 0.895 0.912 0.770 0.776 0.821 0.044

STARFM 0.117 0.149 0.157 0.142 0.913 0.867 0.848 0.876 0.884 0.755 0.771 0.805 0.046
FSDAF 0.095 0.145 0.157 0.134 0.927 0.883 0.851 0.887 0.906 0.768 0.768 0.817 0.050

CycleGAN-STF 0.101 0.147 0.162 0.139 0.939 0.881 0.848 0.890 0.912 0.775 0.728 0.815 0.047
MSISR-STF 0.102 0.143 0.150 0.134 0.936 0.946 0.868 0.895 0.912 0.770 0.776 0.821 0.044

Each dataset for comparison consisted of a 480× 480 image extracted from a larger
1200× 1200 image. The remaining portions were utilized as the training data for IGNN.
Additionally, to augment the volume of training data, various operations such as rotation
and flipping were applied.

4.3.1. The First Experimental Results: Heterogeneity Changes

Figure 5 shows the experimental results of the first set of data. Figure 5a–c present
the input data of the 3→1 model and Figure 5d presents the ground truth. From Figure 5b
to Figure 5d, we can observe pronounced heterogeneity changes. We have magnified
the prominent segment in the experimental findings. Figure 5e–h are the experimental
results of TPS+TPS, IGNN+IGNN, TPS+IGNN, and MSISR-STF (IGNN+TPS). Figure 5i–l
are the experimental results of the first group data of STARFM, FSDAF, CycleGAN-STF,
and MSISR-STF, respectively.

In the enlarged area in Figure 5d–l, we select sub-blocks A and B for comparison.
From the visual effect of sub-block A, the results of CycleGAN-STF and MSISR-STF were
closer to the ground truth. However, due to the large difference in their spatial resolutions,
STARFM and FSDAF obtain very little information of the heterogeneity change from the
HTLS image shown in Figure 5c. The result simply attempts to approach the real value, but
the performances of STARFM and FSDAF are not good. From the visual effect of sub-block
B, MSISR-STF performs the best. The second best performer is CycleGAN-STF. Due to the
same reason as that for sub-block A, the effect of STARFM and FSDAF are closer to the
HSLT image shown in Figure 5b.

Based on our experimental results, we observed significant noise in the images when
using both the IGNN+IGNN and TPS+TPS methods. This suggests that neither of these
methods effectively suppressed noise and, in fact, led to the accumulation of noise during
the super-resolution process, resulting in a noise iteration scenario. This noise issue has
had a noticeable adverse impact on image quality.

In contrast, when we employed the TPS+IGNN method, we achieved relatively good
visual results. However, there were still noticeable levels of noise present, which may
have affected the final visual quality of the images. These noise-related challenges could
potentially limit the effectiveness of super-resolution techniques in practical applications.

To address these issues, we introduced a novel method called MSISR-STF, which
involves learning first and then interpolating to process images. What sets this method
apart is its ability to effectively suppress noise and enhance image quality. Numerically, our
approach showed significant improvements across various performance metrics, indicating
its effectiveness in the context of super-resolution tasks.

Table 2 presents a comprehensive overview of the evaluation metrics derived from
our initial set of experiments. This table serves as a valuable reference point for assessing
the performance of the various methods under scrutiny.

Upon closer examination of the data, a notable trend emerges: both CycleGAN-STF
and MSISR-STF exhibit significantly superior outcomes compared to their counterparts,
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STARFM and FSDAF. This observation underscores the efficacy of CycleGAN-STF and
MSISR-STF in addressing the specific challenges posed by the experimental context.

What is particularly striking is that MSISR-STF consistently outperforms all other
methods across each evaluation metric. This comprehensive dominance across the board
highlights MSISR-STF’s versatility and adaptability, suggesting that it possesses a unique
ability to produce desirable outcomes in a variety of scenarios. This could be attributed to
its capacity to effectively learn and adapt to the underlying data distribution, making it a
robust choice for a wide range of image translation and enhancement tasks.

4.3.2. The Second Experimental Results: Land Cover Changes

In Figure 6, we present the data and outcomes stemming from the second set of
experiments. Upon closer examination in the zoomed-in section of Figure 6, we discern
interesting trends within sub-block A and sub-block B. Sub-block A displays a noticeable
inclination toward exhibiting heterogeneous changes, suggesting a more diverse alteration
pattern. Conversely, sub-block B appears to lean toward alterations in land cover, implying
a greater focus on land transformation processes.

In this set of experimental results, we can clearly observe that whether using the
IGNN+IGNN or TPS+TPS methods, there is still a small amount of noise present in the
image results. This phenomenon primarily arises from the inability of these two super-
resolution methods to effectively suppress noise, leading to the gradual accumulation
of noise during the super-resolution process, resulting in a noise iteration scenario. The
presence of noise can potentially affect the clarity and quality of the images, which is a
significant issue that cannot be overlooked in some applications.

However, at the same time, when employing the TPS+IGNN method, we achieve
relatively satisfactory visual results. Nevertheless, this method does not excel in preserv-
ing spatial details, implying that some image details may be lost, especially in highly
homogeneous regions.

Furthermore, we also observed that these three methods did not perform well in
handling the homogeneity variations within sub-block A. This suggests that these methods
face challenges when dealing with uneven or complex image regions, leading to a decrease
in performance.

However, the MSISR-STF method that we introduced demonstrates significant im-
provements across all aspects. Whether evaluated from a visual perspective or based on
numerical metrics, our method shows a notable enhancement. This indicates that the
MSISR-STF method is more adept at handling noise, preserving details, and exhibiting
greater robustness in the face of homogeneity variations.

In terms of the visual impact, it is noteworthy that the performance of sub-block B
in the STARFM model appears to be the least favorable, as evidenced by Figure 6b. The
resultant output from STARFM aligns more closely with the observations made in Figure 6b.
This observation points to the limitations of the STARFM model in capturing the desired
changes effectively.

On the other hand, sub-block B of the FSDAF model exhibits superior performance,
albeit with some noticeable pixel blocks missing in this sub-block. This highlights FS-
DAF’s capability to generate meaningful changes in land cover, although there is room for
improvement in pixel accuracy.

Furthermore, CycleGAN-STF demonstrates a commendable performance in sub-block
B, outperforming MSISR-STF. This suggests that CycleGAN-STF excels in capturing and
translating changes related to land cover in this specific context.

In terms of overall performance, sub-block A of MSISIR-STF emerges as the top per-
former, with FSDAF following closely behind. Notably, there exists a substantial disparity
in the spectral characteristics between STARFM and CycleGAN-STF. This disparity empha-
sizes the distinct approaches taken by these models in capturing and representing changes
in the landscape.
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Table 3 displays the assessment metrics derived from this series of experiments,
shedding light on the overall performance of the models under examination.

In a broad perspective, MSISR-STF demonstrates commendable results across all
the evaluation indices, affirming its overall proficiency. However, it is noteworthy that
in specific spectral bands, MSISR-STF lags behind the performance exhibited by both
FSDAF and CycleGAN-STF. This underscores the notion that different models may exhibit
varying strengths and weaknesses, which can be context-dependent and tied to specific
spectral characteristics.

Interestingly, when evaluating the red band, FSDAF emerges as the frontrunner,
registering the lowest root mean square error (RMSE). This signifies FSDAF’s exceptional
accuracy in predicting changes within this particular band, making it a robust choice for
tasks demanding precise quantitative assessments.

Conversely, CycleGAN-STF excels in the red band when assessing the correlation
coefficient (CC) and the structural similarity index (SSIM). These superior values imply
that CycleGAN-STF effectively captures and maintains both the correlation and struc-
tural fidelity between the generated and observed images within this band. This makes
CycleGAN-STF particularly well suited for applications where preserving structural infor-
mation is paramount.

However, it is important to note that the green band of MSISR-STF falls short when
compared to FSDAF and CycleGAN-STF in terms of SSIM. This discrepancy hints at a
potential challenge for MSISR-STF in maintaining image fidelity, especially within the
green spectral band. Further refinement and optimization might be necessary to enhance
its performance in this specific regard.

4.4. Computational Costs

The testing of this algorithm was carried out on a computer with the following
specifications: Intel(R) Core(TM) i7-8700K CPU (3.70 GHz), 32 GB RAM, and a 3090 GPU.
Table 4 shows the execution times under identical experimental settings. During the
experiment, STARFM and FSDAF were implemented using ENVI IDE. CycleGAN-STF
employed Python (Cycle-GAN), MATLAB (wavelet transform), and ENVI IDE (the fusion
part). MSISR-STF utilized Python (IGNN), MATLAB (TPS), and ENVI IDE (the fusion part).

Because Cycle-GAN and IGNN necessitate the use of a GPU, we split the computa-
tional time costs into two components: training and fusion. We employed the GPU during
the training phase and the CPU during the fusion phase, ensuring equitable time costs.

Table 4 demonstrates that CycleGAN-STF incurs the least computational time costs
among all the algorithms in the fusion phase, followed by MSISR-STF. However, compared
to the other two algorithms, CycleGAN-STF and IGNN require a more extended data
training time. Specifically, each epoch takes 9 s for CycleGAN and 12 s for IGNN, with the
epoch count set to 300 in the experimental data. Consequently, this results in a relatively
longer total time cost for our algorithm. Nonetheless, in the actual fusion task, we perform
thousands of fusion operations, whereas the training process only needs to be executed
once. Therefore, the training time costs for the fusion task remain reasonable.

Table 4. Computational cost.

STARFM FSDAF CycleGAN-STF MSISR-STF

Train Fusion Train Fusion Train Fusion Train Fusion

Time - 97 - 150 9/epoch 86 12/epoch 132

5. Discussions

This study employed a multilevel super-resolution approach to extract spatial in-
formation, aiming to maximize the retrieval and preservation of valuable details within
low-resolution images through a process of learning followed by interpolation. The testing
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was conducted on two distinct datasets with distinctive characteristics, and the results indi-
cate that our method achieved favorable outcomes, both visually and numerically, meeting
the anticipated objectives. Furthermore, it successfully accomplished spatiotemporal fusion
at a larger spatial resolution scale.

Our method adopts the idea of learning before interpolation and has been tested on ex-
isting datasets. We hope to learn more effective information from Ck images through learn-
ing methods and then save the information through interpolation while enlarging the size.
In addition, the other three methods all have theoretical flaws. Interpolation+Interpolation:
The interpolation uses a smoothing function, which causes a large amount of information
to be lost in each interpolation. If two interpolations are used, the Ck image with limited
useful information will only have a very small amount of information transmitted to the
fused image. Learning+Learning: The learning method can effectively capture effective
features. But, for two studies, first of all, training the dataset is a relatively large problem.
This is because we need an intermediate resolution data for training. And our data are
Landsat and MODIS data, which means that we need to learn twice and overcome the
impact of sensor differences at least once during the training process. This can cause
significant noise interference, resulting in poor results. Our test results also indicate this
situation. Interpolation+Learning: The smoothing function of the interpolation can cause
some information loss, and obtaining features from the interpolation results through learn-
ing methods cannot guarantee the accuracy of the learned features. In addition, the noise
caused by the interpolation will also be learned by the learning method. So, our method
ultimately chose the mode of learning before the interpolation. In addition, in order to
overcome the shortcomings of two different methods, we have also added some control
information ideas to minimize the interference of noise as much as possible.

However, this method still possesses certain limitations at present. Firstly, this type of
approach tends to excel primarily in scenarios with significant differences in the large-scale
spatial resolution. However, its performance may not be as prominent when dealing with
small-scale spatial variations. Additionally, the method’s temporal scale prediction is
relatively simplistic, and there is room for improvement in future work in this regard.

6. Conclusions

This paper presents a novel approach to address the challenge of handling significant
disparities in spatial resolution in the context of spatiotemporal image fusion. Our pro-
posed method, referred to as multilevel single-image super-resolution for spatiotemporal
fusion (MSISR-STF), is designed to leverage the benefits of two distinct yet complementary
techniques: super-resolution reconstruction based on learning and interpolation.

The motivation behind MSISR-STF lies in the inherent difficulties posed by large
spatial resolution differences when attempting to fuse heterogeneous remote sensing data
sources. In scenarios where data from high-resolution and low-resolution sensors need to
be integrated, achieving seamless fusion becomes a formidable task. Traditional approaches
often fall short in preserving the spatial details and spectral characteristics, especially when
dealing with substantial resolution gaps.

MSISR-STF addresses this challenge by first learning the unique features and char-
acteristics of low-resolution images. It extracts valuable information from these images
using advanced learning techniques, enhancing their inherent spatial details. Subsequently,
it leverages interpolation methods to upsample the low-resolution images, bridging the
resolution gap to align them with high-resolution counterparts.

The experimental analysis conducted in this study confirms the effectiveness of our
approach. The results indicate that by incorporating the knowledge acquired from low-
resolution images before the interpolation step, MSISR-STF significantly mitigates the issues
associated with large resolution disparities. This, in turn, leads to notable improvements in
fusion accuracy.
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