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Abstract: This paper presents the MSSFF (multistage spectral–spatial feature fusion) framework,
which introduces a novel approach for semantic segmentation from hyperspectral imagery (HSI).
The framework aims to simplify the modeling of spectral relationships in HSI sequences and unify
the architecture for semantic segmentation of HSIs. It incorporates a spectral–spatial feature fusion
module and a multi-attention mechanism to efficiently extract hyperspectral features. The MSSFF
framework reevaluates the potential impact of spectral and spatial features on segmentation models
and leverages the spectral–spatial fusion module (SSFM) in the encoder component to effectively
extract and enhance these features. Additionally, an efficient Transformer (ET) is introduced in the
skip connection part of deep features to capture long-term dependent features and extract global
spectral–spatial information from the entire feature map. This highlights the significant potential of
Transformers in modeling spectral–spatial feature maps within the context of hyperspectral remote
sensing. Moreover, a spatial attention mechanism is adopted in the shallow skip connection part to
extract local features. The framework demonstrates promising capabilities in hyperspectral remote
sensing applications. The conducted experiments provide valuable insights for optimizing the model
depth and the order of feature fusion, thereby contributing to the advancement of hyperspectral
semantic segmentation research.

Keywords: convolutional neural networks (CNNs); hyperspectral image (HSI); image-based
classification; vision transformer

1. Introduction

Hyperspectral imagery (HSI) contains a wealth of spectral information and comprises
multiple, and in some cases, hundreds of bands. This spectral information can be leveraged
to classify important ground objects based on the characteristics exhibited across different
bands. Feature extraction plays a pivotal role in HSI classification and has garnered
growing interest among researchers. Hyperspectral remote sensing has made significant
contributions in various domains. Such as military applications [1], medical research [2],
water quality monitoring [3], and agricultural research [4].

However, the presence of numerous frequency bands in the hyperspectral data results
in strong correlations between adjacent bands [5]. This correlation leads to a significant
amount of redundant information for classification tasks [6]. Consequently, early ap-
proaches in hyperspectral classification primarily focused on data reduction techniques
and feature engineering [7,8].

In recent years, with the advancements in deep learning, this technology has been
increasingly adopted in various domains [9–11], including hyperspectral remote sensing,
and has achieved remarkable success [6]. Deep learning models have the capability to
extract meaningful knowledge from vast amounts of redundant data [12]. The multi-layer
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structure of these models enables the acquisition of higher-level semantic information from
the samples [13].

Various deep learning models have been developed for hyperspectral data analysis,
with convolutional neural network (CNN)-based models standing out due to their remark-
able performance. Yu et al. [14] introduced a CNN architecture that takes a single pixel as
input, enabling the network to directly learn the relationships between different spectral
bands. Chen et al. [15] propose a 3D-CNN model with sparse constraints that can directly
extract spectral–spatial features from HSI. Ghaderizadeh et al. [16] presented a hybrid
3D-2D CNN architecture. This hybrid CNN approach offers advantages over standalone
3D-CNN by reducing the model’s complexity and mitigating the impacts of noise and
limited training samples.

In addition to CNNs, several other network architectures have demonstrated strong
performance in HSI classification. Recurrent neural networks (RNNs) are capable of
capturing both long-term and short-term spectral dependencies and have found widespread
application in HSI classification [17]. Fully convolutional networks (FCNs), a popular
model in image segmentation, have been extensively employed in hyperspectral remote
sensing tasks [18]. Transformers, which have shown significant advancements in recent
years, have also been successfully applied to HSI classification [19–23]. Furthermore,
graph convolutional networks (GCNs) have gained attention in HSI classification and have
achieved notable performance [24,25].

However, the majority of these models for HSI analysis are primarily patch-based, ne-
cessitating laborious preprocessing steps and resulting in substantial storage requirements.
Consequently, several studies [20,22,26,27] have attempted to address these challenges by
directly performing semantic segmentation on HSI. In these approaches, HSIs are treated
as multi-channel images, akin to conventional RGB images, and external ground object
labels are employed for annotation. This process can be seen as manually marking and
selecting regions of interest within the ROItools [28]. During the loss calculation, only the
known ground object types are considered for gradient computation using masks. Exper-
imental verification has demonstrated the simplicity and effectiveness of this approach.
Nevertheless, the spectral–spatial characteristics of hyperspectral images are often not
fully taken into account by most existing methods. Yu et al. [26] integrated Transformer
features directly within the decoder part, overlooking the intrinsic global relationship
between distinct patches [25]. In a similar vein, Chen et al. [20] employed a combination
of convolution and Transformer in the encoder part to extract hyperspectral image (HSI)
features. However, their approach models the spectral sequence in the upper layer of the
model, while the spatial characteristics are modeled in the lower layer, thereby neglecting
the consideration of consistent spectral–spatial characteristics.

Spatial–spectral fusion methods have been extensively employed in hyperspectral
classification tasks for over a decade. Early research focused on analyzing the size, orienta-
tion, and contrast characteristics of spatial structures in images, followed by the utilization
of support vector machines (SVMs) for classification purposes [29]. Subsequent studies
explored supervised classification of hyperspectral images through segmentation and spec-
tral features extracted from partition clustering [30]. Li et al. [31] investigated the use of 3D
convolutional neural networks (3DCNN) for direct spatial–spectral fusion in classification
tasks. More recently, a two-stage method inspired by image denoising and segmentation
was proposed in [32] to merge spatial and spectral information. Moreover, Qiao et al. [33]
introduced a novel approach that captures information by concurrently considering the
interactions between channels, spectral bands, spatial depth and width. However, it should
be noted that these methods primarily operate at the patch level and may not be directly
applicable to semantic segmentation tasks.

Some recent works [34,35] have focused on enhancing convolutional modules to bet-
ter capture spatial and channel details, yielding impressive performance across various
tasks. However, when applied to HSIs, extracting both spatial and spectral features com-
prehensively becomes crucial. Conventional 2D convolutions are insufficient for effective
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hyperspectral feature extraction, while 3D convolutions exhibit high complexity and param-
eter redundancy. Thus, to address these limitations holistically, there is a need to employ
modules that can extract both spectral and spatial features in hyperspectral tasks, thereby
replacing traditional 2D and 3D convolutions. Several studies in the field of HSI [36,37],
use new modules with attention mechanisms and multi-scale features to replace traditional
convolutions, and have achieved good results in HSI patch-based classification tasks. How-
ever, these modules need to be used in conjunction with various different modules, and at
the same time, the online module has a high number of parameters and complexity, making
it difficult to apply to semantic segmentation tasks.

To simplify the modeling of spectral–spatial relationships in hyperspectral imaging
sequences and establish a unified hyperspectral image semantic segmentation architecture.
This paper proposes a novel image-based global spectral–spatial feature learning frame-
work called MSSFF. In contrast to conventional classification methods, MSSFF utilizes the
MMFF module to hierarchically model features in spectral–spatial sequences, resulting
in outstanding classification performance even with a limited number of labeled samples
(refer to Figure 1). Firstly, in the encoder component, effective extraction of hyperspectral
features is achieved by incorporating a spectral feature fusion module and a spatial feature
fusion module. Secondly, an efficient Transformer is introduced between the encoder and
decoder to capture global dependencies among deep feature nodes. Lastly, a spatial atten-
tion mechanism is employed in the upper layer of the model to model region-level features.
The contributions of our proposed MSSFF framework can be summarized as follows.

PPM
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Figure 1. The overall framework of MSSFF. In the encoder, the first convolutional layer is modified
to align with the spectral channel of the HSI. To enhance multi-scale feature extraction, a PPM is
added at the encoder’s end. Skip connections aid in gradient backpropagation, while the ET module
captures global information, and the SA module focuses on local features in the upper layer. The
decoder comprises three groups of upsampling and convolutional layers. During model training,
only known samples are used to compute the loss gradient, excluding unknown samples.

The contributions of this paper can be summarized as follows:

(1) The paper introduces the MSSFF framework, a new method for hyperspectral seman-
tic segmentation. It reevaluates the importance of spectral and spatial features and
incorporates them effectively into the encoder. The framework also includes a Trans-
former in the skip connection section to capture global spectral–spatial information
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from the feature map. This demonstrates the potential of Transformers in modeling
spectral–spatial feature maps for hyperspectral remote sensing.

(2) We conducted a series of ablation experiments and module selection experiments
to investigate the optimal depth of the hyperspectral semantic segmentation model.
The results of these experiments confirmed that increasing the depth of the model
beyond a certain point does not necessarily yield improved performance. Additionally,
we explored the order of feature fusion and found that performing spectral feature
fusion before spatial feature fusion yields better results. These findings suggest that
considering spectral information before spatial information enhances the performance
of the hyperspectral semantic segmentation model.

(3) We performed comparative experiments involving the patch-based method and the
semantic segmentation method to assess the feasibility of our proposed approach in
the field of hyperspectral semantic segmentation. The results of these experiments
confirmed the effectiveness and viability of our method for hyperspectral seman-
tic segmentation.

2. Method

As shown in Figure 1, we find that shallow models can effectively classify HSIs,
so we propose an end-to-end shallow semantic segmentation model. HSIs are rich in
spatial and spectral information, and spectral correlation and spatial correlation should
be fully utilized for modeling. Therefore, in this work, we first propose a Backbone that
simultaneously extracts spatial and spectral features, we use SSFM to replace the traditional
convolution module, and at the end of the model, we use a pyramid pooling strategy
to capture multiple scale contexts. In the decoder part, we followed the standard Unet
architecture. However, we introduce the efficient Transformer in the skip connection part
to model the deep feature map globally, and for the shallow (topmost) feature map, we use
the spatial attention module for shallow feature extraction. Through the above modules,
the accuracy of HSI classification is significantly improved. The following sections describe
the core components of the framework.

The framework adopts an encoder–decoder architecture, and the encoder part is
similar to ResNet18 [38], but we use SSFM to replace the standard Conv module in ResNet.
In general, we need to pad the boundaries of the input HSI. We choose to fill the length and
width of the HSI to a multiple of 16, assuming the input is an Indian image I ∈ R145×145×200,
we fill it with I ∈ R160×160×200. The HSI is directly input for forward calculation. In the
encoder part, we replace the input parameter of Backbone’s first convolutional layer with
the number of HSI spectral channels. A pyramid pooling module (PPM) is introduced at
the end of the encoder. The multi-scale features extracted by the multi-scale aggregation
module are very effective for the modeling of the framework. Residual connections between
PPM and underlying feature maps can better facilitate gradient backpropagation. In the
decoder part, one upsampling layer and two convolutional layers are set as a group, and
there are three groups of upsampling modules in total. Before the upper and lower layer
features are fused, the features of the encoder are enhanced by the ET or SA module, and
then concat with the upsampled output of the lower layer features. Perform the same
operation as above for each layer feature map of the encoder, and finally sample the feature
map to the input size. To compute the loss, a small number of samples from the region are
used to construct the mask. For the output of each batch, we only calculate the gradient of
the known samples after the mask, and do not calculate the unknown samples.

2.1. Spectral–Spatial Fusion Module (SSFM)

To enhance the feature extraction capabilities of traditional 2D convolutions in both
spectral and spatial domains, we introduce the concept of SSFM. Our approach involves the
extraction and fusion of features from both the spectral and spatial dimensions. Specifically,
we propose SSFM that applies the spectral feature fusion module first, followed by the
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connection of spatial feature fusion modules. The order of these modules will be discussed
in the experimental results section.

2.1.1. Spectral Fusion Module

In order to fully leverage the potential of spectral features, we propose the integration
of a spectral feature fusion module, as depicted in Figure 2. This module employs a split-
extract-fusion strategy, which aims to address the challenges associated with extracting
effective feature maps along the spectral dimension. In computer vision [38–40], particularly
in the context of HSIs, the use of repeated convolutions for feature extraction can pose
difficulties in capturing informative spectral-specific features, which has been identified as
a critical issue [20–22]. Therefore, our proposed spectral feature fusion module provides
a solution to overcome this flaw and improve the ability to extract meaningful spectral
features in HSI analysis.

Given an input feature map X ∈ RH×W×C, firstly, we divide the features into two
parts: X1 ∈ RH×W×(C/2) and X2 ∈ RH×W×(C/2), based on the spectral dimension C.
Simultaneously, both feature sets undergo a 1×1 convolution operation, which compresses
their dimensions by half, resulting in X′1 ∈ RH×W×(C/4) and X′2 ∈ RH×W×(C/4). Next,
the features from the upper layer undergo extraction using both 1×1 and 3×3 convolution
modules. Concatenation is then performed to obtain X′′1 ∈ RH×W×C. Similarly, the features
from the lower layer pass through a 1×1 convolution module while preserving their original
features. Concatenation is performed again to obtain X′′2 ∈ RH×W×C.

To obtain the combined feature representation, X′′1 and X′′2 are concatenated, resulting
in the total feature representation X′′ ∈ RH×W×2C. Subsequently, an average pooling (Avg-
Pooling) operation is applied to X′′, and the resulting weights are divided into two parts,
corresponding to X′′1 and X′′2. These weights are used to perform feature weighting on
the respective feature sets. Finally, the two weighted features are superimposed at the end
of the module.

The following formula can be used to summarize:

X1, X2 = Split(X), (1)

X′1 = WC1 X1, X′2 = WC2 X2, (2)

where the operation denoted by split signifies the splitting of the input along the spectral
dimension. Specifically, WC1 ∈ R(C/2)×1×1×(C/4) and WC2 ∈ R(C/2)×1×1×(C/4) are learn-
able weight matrices. These matrices are employed to facilitate the spectral-wise splitting
and manipulation of the input features.

X′′1 = Concat
(

WC11 X′1, WC12 X′1
)

, (3)

X′′2 = Concat
(

WC13 X′2, X′2
)

, (4)

where we define the learnable weight matrices associated with different components as follows:
WC11 ∈ R(C/2)×1×1×(C/4) represents the weight matrix for C11, WC12 ∈ R(C/2)×1×1×(C/4)

denotes the weight matrix for C12, and WC13 ∈ R(C/2)×1×1×(C/4) corresponds to the weight
matrix for C13. These weight matrices are learnable parameters that are utilized within the
given formulation for various processing steps and transformations. The function Concat
refers to dimension concatenation.

X′′ = Concat
(
X′′1, X′′2

)
, (5)

After performing feature extraction, instead of directly concatenating or adding the
two types of features, we adopt the approach proposed in [41,42] to selectively merge the
output features from the feature extraction stage, denoted as X′′1 and X′′2. Subsequently,
we apply global Avg-Pooling to aggregate the global spatial information and obtain X avg ,
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which includes spectral statistics. Next, we normalize the global spatial information and
multiply it element-wise with the feature map X′′, resulting in the generation of the feature
importance vector Y. To further refine the feature representation, we split the feature vector
Y into two equal parts, yielding Y1 and Y2. Finally, we superimpose Y1 and Y2 to obtain
the spectral refinement feature Ŷ.
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Figure 2. Spectral fusion module. This module employs a split-extraction-fusion strategy to enhance
spectral features.

2.1.2. Spatial Fusion Module

To ensure the encoder effectively captures spatial features, we propose the integra-
tion of a spatial feature fusion module, as illustrated in Figure 3. This module employs
separation and fusion operations to enhance its functionality. The primary objective of
the separation operation is to distinguish informative feature maps from those contain-
ing comparatively less relevant spatial content. By subsequently fusing feature maps
that possess rich information with those exhibiting lesser information, we can extract
more comprehensive feature information than what can be achieved through convolution
operations alone.

Specifically, we propose a method that utilizes group normalization (GN) for a given
feature X ∈ RH×W×C. GN partitions the input spectral dimension into 16 groups, enabling
independent calculations of the mean µ and variance σ for each group. The mean is
computed by averaging the values within a group, while the variance is determined
by calculating the squared differences between each value and the mean, followed by
averaging the squared differences. Subsequently, the activations within each group are
normalized by subtracting the group mean and dividing by the square root of the group
variance. This normalization process ensures consistent and efficient feature scaling within
each group. GN introduces learnable parameters, which include scaling and shifting factors
for each group. These parameters enable the network to learn optimal scaling and shifting
of the normalized activations. The scaling factor γ adjusts the normalized value, allowing
for fine-grained control of the feature representation, while the shift factor β introduces a
bias to the normalized value, aiding in capturing higher-order feature interactions.

GN(X) = γ
X− µ√
σ2 + ε

+ β, (6)

Simultaneously, the scaling factor γ within the GN layer serves as an indicator to
quantify the variance of spatial pixels within each spectral dimension. The value of γ
reflects the extent of spatial pixel variation, with richer spatial information resulting in a
larger γ value. To obtain the weights for different feature maps, the following formula is
employed: the features are multiplied with the weights within the GN layer. Subsequently,
a sigmoid function is utilized to map the feature values to the interval [0, 1]. This process
enables effective modulation and normalization of the feature representations.

W =
γi

∑C
n=1 γn

,i, n = 1, 2, · · · , C, (7)
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Xmid = Sigmoid(GN(X)⊗W), (8)

Subsequently, a mask is constructed for the feature Xmid based on a threshold of 0.5.
Values greater than or equal to 0.5 are assigned to x1, while values less than 0.5 are assigned
to x2. These divisions result in two weighted features: X1, representing the information-
rich feature, and X2, representing the less informative feature. To enhance the spatial
feature fusion capability of the module and reduce spatial redundancy, the feature with
rich information is added to the feature with less information. This is followed by a cross-
reconstruction operation that facilitates comprehensive integration of the two weighted
features, allowing for effective information exchange and generating more informative
features. The resulting cross-reconstructed features are then concatenated to obtain spatial
detail features, capturing fine-grained spatial information.

G
N

Sigm
iod

Split C

𝑋

𝑥

𝑥

𝑋

𝑋

𝐻 𝑊 𝐶
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𝐻 𝑊 𝐶

Figure 3. Spatial feature fusion module. This module employs separation and fusion operations to
enhance spatial features.

2.2. Efficient Transformer (ET)

The standard Transformer model exhibits limitations in terms of high computational
complexity and a lack of explicit spatial structure modeling. To address these short-
comings, researchers have proposed various enhanced Transformer models aimed at
improving their performance in computer vision tasks. For instance, attention mecha-
nism improvements [43], locality-based attention [44], and hybrid models [45] have been
developed. Consequently, it is valuable to explore the integration of Transformer with
convolutional models.

Recent research endeavors [46,47] have focused on replacing positional embedding
in the Transformer model with convolution operations. By incorporating convolution
operations into the Transformer, it becomes possible to effectively combine local and global
features. Building upon the aforementioned concept, we present the ET that utilizes
convolutional operations to effectively reduce the dimensionality of the feature space
while capturing positional information. The architecture of ET is depicted in Figure 4.
Furthermore, we introduce convolutional layers at both the input and output of the module
to enhance the extraction of spatial features.

Space-reduced Efficient Multi-head Self-Attention (SEMSA) operates in a similar
manner to Multi-head Self-Attention (MSA), as it takes Q (query), K (key), and V (value)
as input and produces features of the original size as output. However, a key distinction
lies in that SEMSA reduces the spatial scale of K and V before the attention operation. This
reduction significantly diminishes the computational and memory overhead.

Specifically, in our study, we employ SEMSA as a replacement for the traditional
MSA in the encoder module. Each instance of the ET comprises an attention layer and a
feed-forward layer (FFN). Considering the high-resolution feature maps involved in hyper-
spectral semantic segmentation, we utilize convolution (SR) to reduce the spatial dimension
of these feature maps while simultaneously learning spatial information. SEMSA operates
in a similar manner to MSA, as it takes Q, K and V as input and produces features of the
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original size as output. However, a key distinction lies in that SEMSA reduces the spatial
scale of K and V before the attention operation. This reduction significantly diminishes the
computational and memory overhead. The SEMSA of stage i can be expressed as follows.

SR𝑋
𝐻 𝑊 𝐶

N
orm

SEM
SA

N
orm

FFN 𝑌
𝐻 𝑊 𝐶Reshape

Reshape

𝐻𝑊 𝐶
𝐻𝑊 𝐶

Conv 3 3

Figure 4. Efficient Transformer (ET), which utilizes convolution operations to efficiently reduce the
dimensionality of the feature space while effectively capturing global information.

SEMSA(Q, K, V) = Concat(head0, . . . , headN)Wo, (9)

Then, for the i-th head, it can be expressed by the following formula:

headi = Attention
(

QWQ
i , SR(K)WK

i , SR(V)WV
i

)
, (10)

where WQ
i , WK

i , and WV
i ∈ RC×C′ represent linear projection matrices, and the size C′

of each head is equal to C/N. Here, N represents the number of attention heads. The
function SR(·) denotes the utilization of convolution to reduce the dimensionality of the
input feature space based on the reduction rate r∗.

SR(x) = Norm
(

Reshape(x, r∗)WS
)

, (11)

where x ∈ RHW×C, where HW represents the spatial dimensions of the input and C denotes
the number of spectrals. The reduction rate is denoted as R. The operation Reshape(x, r∗)
refers to transforming x into a new shape of HW

R2 × R2C. Here, WS ∈ RR2C×C corresponds
to a linear projection matrix.

The attention calculation is defined as follows:

Attention(Q, K, V) = Softmax
(

QKT
√

d

)
V, (12)

where Q, K, and V represent the query, key, and value matrices, respectively. The variable
d represents the dimension of the sequence.

2.3. Pyramid Pooling Module (PPM)

The PPM is shown in Figure 5. For the hyperspectral semantic segmentation task,
it is crucial to consider spatial features at different scales. Utilizing pooling modules
with varying sizes allows for the extraction of spatial feature information at different
scales, thereby enhancing the model’s robustness. To further address the loss of context
information between different subregions, approaches such as [48,49] have introduced a
hierarchical global prior structure. By incorporating language information from various
scales and subregions, a global scene prior can be constructed based on the final layer
feature map of the deep neural network, leading to significant improvements in region
segmentation accuracy.

To implement this, the input feature map X ∈ RH×H×C is transformed into four feature
maps with different spatial sizes. Subsequently, 1x1 convolutions are applied to reduce the
dimensionality of the four feature maps. Next, the four different feature maps are resized
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to match the size of the input feature map using linear interpolation. Finally, the input
feature map is concatenated with the four interpolated feature maps.

The above process can be expressed by the formula

PPM(X) = Concat(Pool1(X), Pool2(X), . . . , Pooln(X)), (13)

Ŷ = ConvModule(PPM(X)), (14)

where X denotes the input feature map. Pooli(X) represents the outcome of the ith pooling
operation applied to the input feature map. The variable n signifies the number of pooling
operations employed within the PPM. The function Concat refers to the concatenation of all
the pooling results along the spectral dimension. Lastly, ConvModule represents a module
encompassing convolution, batch normalization, and ReLU activation.

Pool
1×1

Pool
2×2

Pool
3×3

Pool
6×6

C Conv
Module

𝐻 𝑊 𝐶
𝑋 𝑌

𝐻 𝑊 𝐶

Conv 3 3

Figure 5. Pyramid pooling module (PPM), which helps enhance the model’s understanding of
complex visual scenes by aggregating features from different spatial scales.

2.4. Spatial Attention (SA)

The spatial attention in our work is modified from that in [39]. To apply SA, we first
reduce the dimensionality of the channel features. Then, we perform average pooling and
maximum pooling operations on the features to obtain corresponding results using the
“avg” and “max” operations, respectively. These pooled features are concatenated together
to form a single feature map.

Next, we utilize a two-dimensional convolutional layer with a kernel size of (7, 7) to
process the concatenated feature map. This convolutional operation can be represented by
the following formula:

Ŷ = X · Sigmoid
(

WSA[Xavg, Xmax
])

, (15)

where WSA ∈ R1×7×7×2 represents a learnable weight matrix. Xavg and Xmax represent avg-
pooling and maxpooling operations respectively, Sigmoid(·) represents sigmoid activation
function, and Ŷ represents module output features.

3. Experiments
3.1. Experimental Platform Parameter Settings

All experiments were conducted on a Windows 11 system equipped with an Intel (R)
Core (TM) i5 10400 CPU @ 2.90 GHz processor and Nvidia GeForce RTX 3060 graphics card.
To minimize experimental variability, the model adopts a controlled sampling approach
by selecting a limited number of samples from the dataset for training. The experiment
is conducted over 150 epochs, and all reported results are averaged over 5 independent
experiments to ensure statistical significance. The model employs the AdamW optimizer
with default parameters and initializes the learning rate to 5× 10−4 . The loss function
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uses the standard cross-entropy, and the training process is the same as that in the lit-
erature [20,26]. We employ the hierarchical mask sampling method for calculating the
loss function in our model. Specifically, we utilize masks to isolate relevant regions and
compute the cross-entropy loss between the masked vectors and the corresponding ground
truth objects. However, the presence of imbalanced class distributions and significant
inter-class variations pose challenges. To address this, we adopt a strategy of random pixel
sampling for known ground object categories. In this approach, we randomly select five
pixels from each ground object category during multiple sampling iterations. This ensures
comprehensive coverage of all known feature categories.

To verify the validity of the proposed method in this paper, a comparison is made
between the segmentation effect of our proposed method (MSSFF) and several alternative
methods, encompassing both patch-based approaches and semantic segmentation methods.
The experiments are conducted on three publicly available datasets, namely Indian Pines
(IA), Pavia Universitylia (PU), and Salinas (SA). In order to evaluate the performance of
various models for HSI classification, the overall accuracy (OA), average accuracy (AA),
and Kappa coefficient (K) are utilized as evaluation metrics.

3.2. Datasets
3.2.1. Indian Pines (IA)

The Indian Pines dataset was captured at a farm test site in northwest Indiana and
collected using AVIRIS, an onboard sensor. In this paper, the data of 200 bands are classified
after water absorption and low signal-to-noise ratio bands are eliminated. During the
experiment, 10% of each type of ground object was selected for training, and the remaining
samples were used for testing. When the number of selected samples of each type of ground
object was less than five, we set it to 5. The specific training samples and test samples are
shown in Table 1.

Table 1. The number of training and testing pixels per category in the IA dataset.

No. Color. Class. Train. Test. Total.

1 Alfalfa 5 41 46
2 Corn-notill 143 1285 1428
3 Corn-mintill 83 747 830
4 Corn 24 213 237
5 Grass-pasture 49 434 483
6 Grass-trees 73 657 730
7 Grass-pasture-mowed 5 23 28
8 Hay-windrowed 48 430 478
9 Oats 5 15 20
10 Soybean-notill 98 874 972
11 Soybean-mintill 246 2209 2455
12 Soybean-clean 60 533 593
13 Wheat 21 184 205
14 Woods 127 1138 1265
15 Buildings-Grass-Trees 39 347 386
16 Stone-Steel-Towers 10 83 93

Total 1036 9213 10,249

3.2.2. Pavia University (PU)

The dataset of Pavia University was shot in the University of Pavia, northern Italy, and
was collected by airborne sensor ROSIS. In this paper, the data of 103 bands were classified
by eliminating the bands affected by noise. During the experiment, 1% of each type of
ground object was selected for training, and the remaining samples were used for testing.
The specific training samples and test samples are shown in Table 2.
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3.2.3. Salinas (SA)

The Salinas dataset was taken in the Salinas Valley, California, and the USA, and like
the India dataset, it was collected using the airborne sensor AVIRIS. But unlike Indian
Pines, it has a spatial resolution of 3.7 m. During the experiment, 1% of each type of ground
object was selected for training, and the remaining samples were used for testing. The
specific training samples and test samples are shown in Table 3.

Table 2. The number of training and testing pixels per category in the PU dataset.

No. Color. Class. Train. Test. Total.

1 Asphalt 67 6564 6631
2 Meadows 187 18,462 18,649
3 Gravel 21 2078 2099
4 Trees 31 3033 3064
5 Metal sheets 14 1331 1345
6 Bare Soil 51 4978 5029
7 Bitumen 14 1316 1330
8 Bricks 37 3645 3682
9 Shadows 10 937 947

Total 432 42,344 42,776

Table 3. The number of training and testing pixels per category in the SA dataset.

No. Color. Class. Train. Test. Total.

1 Brocoli-green-weeds-1 21 1988 2009
2 Brocoli-green-weeds-2 38 3688 3726
3 Fallow 20 1956 1976
4 Fallow-rough-plow 14 1380 1394
5 Fallow-smooth 27 2651 2678
6 Stubble 40 3919 3959
7 Celery 36 3543 3579
8 Grapes-untrained 113 11,158 11,271
9 Soil-vinyard-develop 63 6140 6203
10 Corn-senesced-green-weeds 33 3245 3278
11 Lettuce-romaine-4wk 11 1057 1068
12 Lettuce-romaine-5wk 20 1907 1927
13 Lettuce-romaine-6wk 10 906 916
14 Lettuce-romaine-7wk 11 1059 1070
15 Vinyard-untrained 73 7195 7268
16 Vinyard-vertical-trellis 19 1788 1807

Total 549 53,580 54,129

3.2.4. Houston (HU)

The Houston dataset was acquired using the ITRES CASI-1500 sensor in the vicinity
of the University of Houston, Texas, USA, including nearby rural areas. This dataset
serves as a benchmark and is commonly utilized to evaluate the performance of land
cover classification models. The hyperspectral dataset consists of 349 × 1905 pixels with
144 wavelength bands spanning from 364 to 1046 nm at 10 nm intervals. During the
experiment, 5% of each type of ground object was selected for training, and the remaining
samples were used for testing. The specific training samples and test samples are shown in
Table 4.
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Table 4. The number of training and testing pixels per category in the Houston dataset.

No. Color. Class. Train. Test. Total.

1 Healthy Grass 63 1188 1251
2 Stressed Grass 63 1191 1254
3 Synthetic Grass 35 662 697
4 Tree 63 1181 1244
5 Soil 63 1179 1242
6 Water 17 308 325
7 Residential 64 1204 1268
8 Commercial 63 1181 1244
9 Road 63 1189 1252
10 Highway 62 1165 1227
11 Railway 62 1173 1235
12 Parking Lot1 62 1171 1233
13 Parking Lot2 24 445 469
14 Tennis Court 22 406 428
15 Running Track 33 627 660

Total 759 14,270 15,029

3.3. Comparative Experiment

Tables 5–8 present a comparative analysis of our proposed model alongside several
patch-based frameworks, such as M3DCNN [50], HyBridSN [51], A2S2K [52], ViT [53],
and SSFTT [54]. Additionally, the experimental results of Unet [55], PSPnet [48], Swin [44],
and SegFormer [47], which are based on semantic segmentation frameworks, are also
included for comparison. It is worth noting that semantic segmentation-based methods
demonstrate superior performance in capturing global spatial information and exhibit
significant advantages, particularly in scenarios with imbalanced training samples.

The experimental findings demonstrate the significant advantages of MSSFF when
compared to both patch-based models and various semantic segmentation models. Specifi-
cally, M3DCNN, as a conventional 3DCNN model, suffers from parameter redundancy and
inadequate extraction of spectral and spatial features, resulting in the poorest performance.
ViT overlooks the unique characteristics of hyperspectral data by solely modeling the
spectral sequence without considering the spectral similarity of ground objects, leading to
subpar results. In contrast, HyBridSN leverages the strengths of both 3DCNN and 2DCNN,
yielding certain improvements and highlighting the importance of feature redundancy in
hyperspectral analysis. A2S2K adopts a residual-based 3DCNN approach where residual
blocks are introduced into the hyperspectral domain. This design choice enables the model
to effectively capture and exploit residual information, enhancing its ability to learn com-
plex spatial and spectral features from hyperspectral data. Consequently, better results are
achieved, although the computational complexity and parameter count of 3DCNN remain
high. SSFTT employs a combination of 3DCNN and 2DCNN for feature extraction and
incorporates Transformer to globally model the feature map. Notably, SSFTT outperforms
other patch-based methods, underscoring the effectiveness of Transformers in modeling
underlying feature maps.

However, the encoder component of Unet fails to fully consider the spatial and spectral
characteristics of HSIs, resulting in poor correlation, particularly observed in the AA index,
indicating significant misclassification issues with the Unet model. Similarly, PspNet
shares the same encoder as Unet but introduces the PPM in the decoder to effectively
capture semantic information at multiple scales, leading to improved performance. Swin
Transformer incorporates Transformer in the encoder to globally model spectral and spatial
features. Additionally, Swin Transformer includes UperNet in the decoder, enabling
the capture of semantic information at various scales. Consequently, Swin Transformer
demonstrates favorable results; however, Transformers still exhibit feature redundancy
compared to convolutional methods.
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In contrast, SegFormer leverages an efficient Transformer as the encoder while de-
signing a simple and lightweight MLP decoder to reduce feature redundancy, resulting in
outstanding performance across multiple tasks. Nevertheless, using a pure Transformer as
the encoder for hyperspectral tasks may introduce invalid modeling, leading to poor model
stability. To address this concern, MSSFF introduces SSFM, which considers both spectral
and spatial features, as a replacement for the standard 2DCNN. The modification enhances
stability and reduces model complexity. Additionally, MSSFF incorporates an efficient
Transformer in the deep feature map, aligning with the findings of previous literature [54].
By considering feature extraction ability and model complexity, MSSFF achieves the best
performance across the three datasets.

Table 5. Classification accuracy (%) of the IA image with different methods.

No. M3DCNN HyBridSN A2S2K ViT SSFTT Unet PspNet Swin SegFormer MSSFF

1 73.913 97.826 100.000 95.652 95.652 82.609 95.652 97.826 93.478 97.826
2 89.636 97.619 97.689 94.398 98.880 98.529 97.899 98.529 99.020 99.510
3 91.566 97.952 97.711 94.578 98.313 97.108 97.470 94.699 98.313 99.036
4 59.916 92.405 96.624 87.764 97.046 94.093 95.359 94.093 97.890 100.000
5 94.617 98.137 99.172 98.137 99.379 97.308 100.000 98.758 99.172 98.758
6 98.767 99.863 100.000 99.041 100.000 99.178 97.808 98.630 99.315 98.630
7 39.286 100.000 100.000 53.571 100.000 92.857 100.000 100.000 100.000 100.000
8 100.000 100.000 100.000 100.000 100.000 99.791 99.582 100.000 99.791 99.791
9 15.000 100.000 100.000 70.000 100.000 100.000 100.000 100.000 100.000 100.000

10 90.123 99.280 98.251 98.457 99.486 96.914 99.691 98.868 99.691 99.486
11 92.872 99.430 99.674 95.764 99.104 99.552 97.882 95.642 99.430 99.511
12 83.305 94.772 97.639 88.702 95.110 97.133 94.435 99.325 97.133 98.988
13 99.512 99.024 98.049 98.049 100.000 100.000 100.000 100.000 100.000 100.000
14 95.336 99.605 99.684 99.289 100.000 100.000 100.000 99.684 100.000 100.000
15 83.420 89.119 97.409 95.078 98.187 99.741 99.741 100.000 99.741 100.000
16 88.172 100.000 100.000 100.000 100.000 86.022 97.849 95.699 93.548 96.774

OA 91.228 98.234 98.819 96.009 98.976 98.429 98.312 97.795 99.151 99.424
AA 80.965 97.814 98.869 91.780 98.822 96.302 98.336 98.235 98.533 99.269
K 89.993 97.986 98.654 95.451 98.832 98.208 98.077 97.489 99.032 99.344

Table 6. Classification accuracy (%) of the PU image with different methods.

No. M3DCNN HyBridSN A2S2K ViT SSFTT Unet PspNet Swin SegFormer MSSFF

1 92.610 97.587 99.020 96.230 96.954 98.341 96.230 99.502 97.768 99.955
2 99.163 99.995 100.000 99.844 99.844 99.914 99.930 99.571 99.920 100.000
3 73.273 92.139 94.378 88.899 88.852 80.515 98.190 97.904 99.285 98.285
4 83.322 90.601 96.377 94.191 96.932 92.004 85.901 90.078 96.377 98.792
5 98.290 100.000 100.000 100.000 100.000 99.926 92.416 99.331 99.405 100.000
6 83.058 100.000 98.867 96.083 99.165 100.000 100.000 100.000 100.000 100.000
7 48.496 98.947 91.955 96.617 99.925 91.053 96.842 98.722 99.248 99.850
8 73.574 94.324 87.344 78.599 94.758 91.798 99.620 97.882 99.321 100.000
9 23.337 92.819 96.410 97.888 93.031 89.229 88.807 72.122 82.049 99.472

OA 88.365 97.884 97.760 95.932 97.987 96.952 97.669 98.062 98.826 99.806
AA 75.014 96.268 96.039 94.261 96.607 93.642 95.326 95.012 97.041 99.595
K 84.316 97.190 97.027 94.592 97.329 95.950 96.908 97.429 98.445 99.743
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Table 7. Classification accuracy (%) of the SA image with different methods.

No. M3DCNN HyBridSN A2S2K ViT SSFTT Unet PspNet Swin SegFormer MSSFF

1 100.000 98.457 100.000 100.000 100.000 88.552 100.000 99.004 99.851 100.000
2 100.000 100.000 100.000 100.000 99.866 99.544 100.000 98.658 100.000 100.000
3 99.899 100.000 100.000 99.949 100.000 93.421 100.000 100.000 100.000 100.000
4 92.539 98.852 99.785 98.278 100.000 96.700 100.000 99.713 100.000 100.000
5 98.208 98.842 98.096 97.461 98.581 95.108 99.627 99.627 99.328 99.813
6 99.949 99.848 100.000 100.000 100.000 98.257 99.065 99.495 100.000 100.000
7 99.944 100.000 99.972 100.000 99.609 97.262 100.000 99.860 100.000 100.000
8 92.175 97.711 97.809 95.582 99.139 99.814 99.548 99.938 99.867 99.991
9 100.000 100.000 100.000 100.000 100.000 97.550 100.000 100.000 100.000 100.000

10 97.956 98.383 99.420 96.522 99.237 90.818 100.000 100.000 99.878 100.000
11 97.472 98.502 99.438 98.408 99.345 87.921 100.000 97.097 100.000 100.000
12 98.080 100.000 100.000 99.429 99.948 90.867 95.745 98.443 98.755 98.651
13 44.323 97.817 100.000 80.677 96.834 66.376 100.000 100.000 100.000 100.000
14 97.009 99.346 99.159 97.383 98.224 71.963 99.907 99.533 99.907 100.000
15 84.741 93.960 93.010 89.461 95.570 99.009 100.000 99.876 98.638 100.000
16 98.783 98.284 99.225 99.170 99.723 73.326 100.000 100.000 100.000 100.000

OA 94.746 98.323 98.415 96.824 98.962 95.082 99.666 99.647 99.697 99.941
AA 93.817 98.750 99.120 97.020 99.130 90.405 99.618 99.453 99.764 99.903
K 94.146 98.131 98.234 96.462 98.843 94.507 99.628 99.607 99.663 99.934

Table 8. Classification accuracy (%) of the Houston2013 image with different methods.

No. M3DCNN HyBridSN A2S2K ViT SSFTT Unet PspNet Swin SegFormer MSSFF

1 97.475 99.832 100.000 97.727 99.579 98.321 97.202 98.002 97.442 99.041
2 98.573 98.405 98.908 98.489 98.657 96.890 93.620 91.148 92.105 99.841
3 98.640 99.547 99.698 100.000 99.396 100.000 99.857 99.570 99.570 99.857
4 98.393 98.985 99.831 100.000 99.323 90.595 87.862 90.354 93.810 99.598
5 100.000 100.000 100.000 100.000 100.000 98.712 100.000 99.436 98.551 100.000
6 100.000 99.029 100.000 85.113 94.822 94.769 99.692 99.077 100.000 100.000
7 97.261 98.506 98.091 91.784 98.921 96.609 95.426 95.978 95.347 98.423
8 88.917 88.917 85.025 85.787 88.156 78.135 86.656 84.244 85.611 91.399
9 86.375 91.505 93.272 87.721 89.823 85.543 83.387 83.387 82.348 93.131

10 98.113 99.485 100.000 99.657 97.684 95.355 99.511 100.000 100.000 99.837
11 98.806 98.039 98.721 98.039 99.488 94.980 99.109 100.000 100.000 100.000
12 92.314 99.402 99.488 98.036 98.804 92.944 98.135 97.242 97.242 98.378
13 68.610 97.758 97.982 80.717 98.655 95.309 98.081 98.294 98.294 98.294
14 99.509 99.754 100.000 98.280 100.000 100.000 100.000 100.000 100.000 100.000
15 100.000 100.000 100.000 99.841 100.000 100.000 100.000 100.000 100.000 100.000

OA 95.314 97.647 97.710 95.462 97.367 93.785 95.016 94.903 95.143 98.250
AA 94.866 97.944 98.068 94.746 97.554 94.544 95.903 95.782 96.021 98.520
K 94.933 97.456 97.525 95.092 97.153 93.281 94.613 94.491 94.750 98.108

The classification results of different methods are presented in Figures 6–9. It can be
observed from the figures that there is a significant number of misclassifications between
M3DCNN and ViT, particularly when dealing with ground objects that exhibit similar
spectral characteristics. However, HyBridSN, A2S2K, and SSFTT show some improvements,
although there are still instances of misclassifications. Unet and PspNet, which take
into account spatial characteristics, notably reduce the misclassification phenomenon in
the central areas of ground objects. However, misclassification still occurs in the edge
connection areas of different ground objects. Swin and SegFormer employ a hierarchical
Transformer as the encoder, providing a global receptive field. Nevertheless, there are
still misclassifications for ground objects with similar spectral and spatial characteristics.
MSSFF shows significant improvements in mitigating misclassifications for ground objects
with similar spectral and spatial characteristics, with only very few misclassifications
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occurring in the edge areas of different ground objects. Overall, MSSFF exhibits excellent
classification performance for diverse ground objects, fully considering their spectral and
spatial characteristics.

RGB Label M3DCNN

M3DCNN

HyBridSN A2S2K ViT

SSFTT Unet PspNet Swin SegFormer MSSFF

Figure 6. IA dataset ground feature classification result map.

A2S2K

RGB Label M3DCNN HybridSN A2S2K ViT

SSFTT Unet PspNet Swin SegFormer MSSFF

Figure 7. PU dataset ground feature classification result map.

1DCNN

RGB M3DCNN HybridSN A2S2K ViT

SSFTT Unet PspNet Swin SegFormer MSSFF

Label

Figure 8. SA dataset ground feature classification result map.
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Figure 9. Houston2013 dataset ground feature classification result map.

3.4. Model Analysis

To verify the effectiveness of each component in the proposed MSSFF framework,
this section focuses on conducting ablation experiments. Additionally, we also explore the
selection of the number of layers in the encoder and the sequencing of the spectral feature
fusion module and the spatial feature fusion module in SSFM.

3.4.1. Ablation Experiments

We conducted a series of ablation experiments to assess the individual contributions
of the modules in the MSSFF method. The results of the ablation experiments are shown
in Table 9. The MSSFF method comprises four modules: SSFM, PPM, ET, and SA. During
the ablation experiments, we systematically removed these modules and evaluated the
resulting changes in the classification metrics, namely OA, AA, and K.

When all modules were removed, the classification metric scores were relatively low,
indicating the significant role of these modules in improving the classification performance.
Specifically, when only the PPM was used, there was a significant improvement in the
classification index, demonstrating its favorable impact on enhancing classification per-
formance. Building upon the PPM, the addition of the ET module further improved the
classification index, highlighting its positive influence on classification performance. The
inclusion of the SA module resulted in slight improvements in the classification metrics.
Although the observed improvements were small, they still indicated the contribution of
the SA module to the enhancement of classification performance. Finally, when all modules
(SSFM, PPM, ET, and SA) were utilized, the classification metrics (OA, AA, and K) achieved
their highest levels. This observation underscores the effectiveness of combining these
modules in improving the hyperspectral classification performance of the MSSFF method.
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Table 9. Different module ablation experiments. The symbols "!" and "%" are used to indicate the
act of selecting and not selecting a module, respectively.

SSFM PPM ET SA
IA PU SA

OA AA K OA AA K OA AA K

% % % % 98.556 98.367 98.353 98.745 98.193 98.338 99.507 99.461 99.451
% ! % % 99.054 98.027 98.921 99.140 98.642 98.860 99.666 99.645 99.628
% ! ! % 99.180 98.468 99.065 99.439 98.934 99.256 99.797 99.720 99.774
% ! % ! 99.093 98.486 98.965 99.275 98.835 99.040 99.782 99.803 99.757
% ! ! ! 99.219 98.546 99.110 99.444 98.986 99.263 99.869 99.829 99.854
! % % % 99.083 98.739 98.954 99.435 99.076 99.183 99.758 99.599 99.768
! ! % % 99.132 98.801 99.010 99.584 99.302 99.449 99.871 99.781 99.856
! ! ! % 99.317 98.949 99.221 99.640 99.324 99.523 99.887 99.799 99.875
! ! % ! 99.268 98.995 99.166 99.619 99.477 99.495 99.882 99.748 99.868
! ! ! ! 99.424 99.269 99.344 99.806 99.595 99.743 99.941 99.903 99.934

Figure 10 illustrates the visualization of feature maps obtained from the MSSFF frame-
work using SSFM and ET modules. A careful selection of representative feature maps
was made for visual comparison, revealing that the visualization results obtained with the
SSFM module exhibit enhanced refinement, capturing finer details such as object edges,
contours, and texture structures. On the other hand, the visualization results obtained
with the ET module demonstrate a wider receptive field and a greater emphasis on the
overall context compared to those without ET. This visual analysis provides compelling
evidence for the effectiveness and superiority of the designed SSFM and ET modules in the
MSSFF framework.

(b)(a) (c) (d) (e) (f) (g)

Figure 10. Visualization of selected encoder output features using three different methods. The
different labels in the figure above refer to (a) RGB image, (b) and (c) base model, (d) and (e) using
SSFM, and (f) and (g) using SSFM and ET.

3.4.2. Comparative Analysis of Attention Modules in MSSFF

We consider the impact of various types of attention modules on MSSFF. Specifically,
we study and compare multiple existing attention mechanisms, including self-attention,
channel attention, and spatial attention. Each attention module provides unique capabilities
to capture different types of dependencies and enhances feature representation. Through
comprehensive experiments, we identify the most effective attention module based on the
characteristics of the dataset and the task goals. This systematic approach improves the
performance of our deep learning models and enhances model interpretability. As shown
in Table 10, the ET module achieved the best results on all three datasets.
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Table 10. Attention module replacement experiment.

Method
IA PU SA

OA AA K OA AA K OA AA K

CBAM [39] 99.229 98.909 99.121 99.682 99.319 99.579 99.891 99.835 99.879
Triplet [56] 99.229 99.043 99.121 99.701 99.571 99.604 99.933 99.893 99.926
WMSA [44] 99.219 99.056 99.110 99.710 99.399 99.616 99.852 99.793 99.835
MSA [53] 99.346 99.248 99.255 99.659 99.401 99.548 99.906 99.868 99.895

ET 99.424 99.269 99.344 99.806 99.595 99.743 99.941 99.903 99.934

3.4.3. Fusion Module Order Selection

The results of the sequential selection experiments conducted on the spectral feature
fusion module and spatial feature fusion module in SSFM are presented in Table 11. The
feature fusion module employed in SSFM shares similarities with CBAM [39], as both
require careful consideration of the order in which spectral and spatial dimensions are
modeled. To comprehensively evaluate the impact of feature fusion, we divided the
experiments into two parts: Space-Spectral and Spectral-Space.

Interestingly, our findings indicate that fusing the spectral dimension features of
hyperspectral data prior to the fusion of spatial dimensions yields better results. We
speculate that this is due to the fusion of spatial dimensions potentially causing a disruption
to the spectral features, leading to a decline in the effectiveness of spectral feature fusion.

Table 11. Sequential selection experiments for feature fusion in SSFM.

No.
IA PU SA

Space-Spectral Spectral-Space Space-Spectral Spectral-Space Space-Spectral Spectral-Space

1 93.478 97.826 98.975 99.955 100.000 100.000
2 99.580 99.510 99.887 100.000 100.000 100.000
3 97.349 99.036 99.619 98.285 100.000 100.000
4 100.000 100.000 97.324 98.792 100.000 100.000
5 98.344 98.758 99.851 100.000 99.701 99.813
6 98.493 98.630 100.000 100.000 100.000 100.000
7 100.000 100.000 100.000 99.850 99.860 100.000
8 99.791 99.791 100.000 100.000 100.000 99.991
9 100.000 100.000 98.944 99.472 100.000 100.000

10 99.074 99.486 − − 100.000 100.000
11 99.389 99.511 − − 100.000 100.000
12 98.314 98.988 − − 96.679 98.651
13 100.000 100.000 − − 100.000 100.000
14 100.000 100.000 − − 100.000 100.000
15 100.000 100.000 − − 99.725 100.000
16 96.774 96.774 − − 99.225 100.000

OA 99.141 99.424 99.553 99.806 99.795 99.941
AA 98.787 99.269 99.400 99.595 99.699 99.903
K 99.021 99.344 99.409 99.743 99.772 99.934

3.4.4. Explore the Layers of Encoder

Regarding the impact of different layers in the encoder on the model, the correspond-
ing results are presented in Table 12. Recent literature [20,54,57,58] has demonstrated the
effectiveness of shallower models in hyperspectral object classification tasks. Therefore, we
conducted an exploration by varying the number of layers in the encoder to assess their
influence on model performance.

Table 12 clearly indicates that the number of layers in the encoder does not necessarily
follow a “deeper is better” trend. Specifically, the model’s performance does not consistently
improve as the number of layers increases. On the contrary, there is a downward trend
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in model performance with an increasing number of layers. This phenomenon can be
attributed to the introduction of excessive redundant information by overly deep encoders
when processing hyperspectral data, which subsequently hampers model performance.

Based on these observations, we can conclude that for hyperspectral object classifica-
tion tasks, a shallower encoder may be more suitable, and an excessively deep encoder
does not necessarily lead to performance improvements. Thus, when designing the model,
the number of layers in the encoder should be considered in a comprehensive manner, and
an appropriate number of layers should be selected to achieve the optimal performance.

Table 12. Encoder layer exploration experiment.

No.
IA PU SA

3 4 5 3 4 5 3 4 5

1 93.478 97.826 95.652 98.854 99.955 99.005 100.000 100.000 99.900
2 99.300 99.510 99.300 100.000 100.000 99.995 100.000 100.000 100.000
3 98.072 99.036 97.229 95.141 98.285 98.142 100.000 100.000 100.000
4 100.000 100.000 99.578 98.172 98.792 98.597 100.000 100.000 100.000
5 99.172 98.758 99.172 100.000 100.000 100.000 99.552 99.813 99.776
6 98.630 98.630 98.356 100.000 100.000 100.000 100.000 100.000 100.000
7 100.000 100.000 100.000 99.925 99.850 100.000 99.441 100.000 99.693
8 99.791 99.791 99.791 100.000 100.000 99.267 99.991 99.991 100.000
9 100.000 100.000 100.000 99.472 99.472 99.683 100.000 100.000 100.000

10 98.868 99.486 99.486 − − − 99.969 100.000 100.000
11 99.511 99.511 99.470 − − − 100.000 100.000 100.000
12 98.145 98.988 98.482 − − − 98.651 98.651 99.637
13 100.000 100.000 100.000 − − − 100.000 100.000 100.000
14 99.921 100.000 100.000 − − − 99.159 100.000 99.907
15 100.000 100.000 100.000 − − − 100.000 100.000 99.972
16 96.774 96.774 96.774 − − − 99.502 100.000 99.336

OA 99.200 99.424 99.190 99.439 99.806 99.582 99.856 99.941 99.924
AA 98.854 99.269 98.956 99.063 99.595 99.410 99.767 99.903 99.889
K 99.088 99.344 99.077 99.257 99.743 99.445 99.840 99.934 99.916

3.4.5. Mean Squared Error (MSE) Discussion on Different Methods

Although the confusion matrix accounts for the significant differences between differ-
ent categories, we have observed that the patch-based methods (HyBridSN, A2S2K, and
SSFTT) exhibit similar Kappa coefficients, OA, and AA. However, merely comparing the
significance differences is insufficient to fully explain the relative merits of these methods.
Therefore, we conducted further testing using the MSE metric on different datasets. The
experimental results are shown in Table 13.

Through the analysis of the MSE metric, we have found that the SSFTT method demon-
strated a distinct advantage over A2S2K and HyBridSN across all datasets. Particularly,
on the lower-resolution IA and SA datasets, A2S2K showed relatively better performance
compared to HyBridSN. However, on the higher-resolution PU dataset, A2S2K exhibited
relatively poorer performance.

Table 13. MSE indicator values by different methods.

Dataset M3DCNN HyBridSN A2S2K ViT SSFTT Unet PspNet Swin SegFormer MSSFF

IA 3.4604 0.9210 0.5827 1.6187 0.4194 0.4436 0.5156 0.7707 0.2993 0.2247
PU 3.7061 0.5185 0.6401 1.1174 0.5167 0.6283 0.4062 0.4065 0.3093 0.1153
SA 1.9024 0.7576 0.6947 1.1847 0.4321 1.5610 0.0521 0.0604 0.1095 0.0372

4. Conclusions

In this paper, we propose an architecture called MSSFF that effectively combines
spectral and spatial features for accurate hyperspectral semantic segmentation. MSSFF
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incorporates spectral and spatial feature aggregation modules within the encoder, allowing
for the fusion of features and the generation of hierarchical representations. Additionally,
in the deep layers of the encoder, we introduce a PPM for aggregating multi-scale semantic
information. In the skip connection part, we employ an efficient Transformer to perform
global modeling on deep feature maps, while utilizing a spatial attention mechanism for
local feature extraction on shallow feature maps. Consequently, MSSFF exhibits strong
capabilities in feature extraction as well as local–global modeling.

The performance of MSSFF was evaluated on three benchmark datasets, and it consis-
tently outperformed other methods in terms of key evaluation metrics, including OA, AA,
and Kappa. These results highlight the remarkable potential of MSSFF for hyperspectral
semantic segmentation tasks, confirming its superiority over existing approaches.

Furthermore, we conducted an investigation into the impact of the number of layers
in the encoder on the model’s performance. Our analysis revealed that deeper models
tend to yield better results, with the optimal performance achieved when the number of
layers is set to four. In future research, we plan to explore the feasibility of shallow models
for hyperspectral semantic segmentation and investigate the deployment of lightweight
hyperspectral semantic segmentation models on resource-constrained devices.
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