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Abstract: Hyperspectral data usually consists of hundreds of narrow spectral bands and provides
more detailed spectral characteristics compared to commonly used multispectral data in remote
sensing applications. However, highly correlated spectral bands in hyperspectral data lead to
computational complexity, which limits many applications or traditional methods when applied to
hyperspectral data. The dimensionality reduction of hyperspectral data becomes one of the most
important pre-processing steps in hyperspectral data analysis. Recently, deep reinforcement learning
(DRL) has been introduced to hyperspectral data band selection (BS); however, the current DRL
methods for hyperspectral data BS simply remove redundant bands, lack the significance analysis for
the selected bands, and the reward mechanisms used in DRL only take basic forms in general. In this
paper, a new reward mechanism strategy has been proposed, and Double Deep Q-Network (DDQN)
is introduced during BS using DRL to improve the network stabilities and avoid local optimum. To
verify the effect of the proposed BS method, land cover classification experiments were designed
and carried out to analyze and compare the proposed method with other BS methods. In the land
cover classification experiments, the overall accuracy (OA) of the proposed method can reach 98.37%,
the average accuracy (AA) is 95.63%, the kappa coefficient (Kappa) is 97.87%. Overall, the proposed
method is superior to other BS methods. Experiments have also shown that the proposed method
works not only for airborne hyperspectral data (AVIRIS and HYDICE), but also for hyperspectral
satellite data, such as PRISMA data. When hyperspectral data is applied to similar applications, the
proposed BS method could be a candidate for the BS preprocessing options.

Keywords: band selection; deep reinforcement learning; hyperspectral imagery classification; neural
network; supervised learning

1. Introduction

With the advance of imaging technology and the increasing demand of hyperspec-
tral data for many applications, more hyperspectral satellites/sensors are developed and
launched, such as HJ-1A [1], Zhuhai-1 [2], GaoFen-5 [3], DESIS [4], PRISMA [5], and the re-
cently launched EnMAP [6]. The huge volume of hyperspectral data significantly increases
computational inefficiency and also causes storage stress. In addition, the high resolution
of the spectrum data leads to high correlations between adjacent bands and certain data
redundancy. Therefore, dimensionality reduction, as an important pre-processing step of
hyperspectral analysis, is important and usually necessary to eliminate redundant bands
and increase computational efficiency [7].

Dimensionality reduction methods for hyperspectral data can be categorized into
feature extraction and band selection (hereinafter abbreviated as BS). Feature selection
is to extract a set of new feature vectors from the all available feature vectors through
function mapping [8,9]. Popular feature extraction methods are Projection Pursuit [10],
Principal Component Analysis (PCA) [11], maximum-variance PCA (mvPCA) [12], Wavelet
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Transform [13], Independent Component Analysis (ICA) [14], the latest feature extraction
method of deep learning [15], and so on. These projected features retain most of the
expected information, but change the physical meaning of data, and the original and
projected information may be distorted [8]. In contrast to feature extraction, BS chooses
a representative subset of the original hyperspectral bands without losing physical sig-
nificance [16,17]. BS has the advantage of retaining relevant original information in the
data and the data structures as well; therefore, BS methods attract more attention in many
hyperspectral applications.

Based on using labelled samples or not using labelled samples during BS, BS can be
further divided into supervised BS [18–21], semi-supervised BS [22–26], and unsupervised
BS [27,28]. Supervised and semi-supervised BS methods use labelled samples to guide
the selection process. However, because the acquisition of labelled samples is a difficult
and sometimes challenge task, in recent years, many unsupervised BS methods have
been proposed. The ranking method and clustering method are two kinds of popular
unsupervised BS methods.

The ranking method assigns a ranking value to each band and simply selects the
bands from high values to low values. This method is stable and effective. It first quantifies
the significance (ranking value) of each band according to certain criteria, then sorts the
significance from high to low, sets the ranking value as its weight, and finally selects the
bands with the higher weights as the chosen bands. Based on ranking criteria, there are
rank-based methods using non-Gaussian [8,29], variance [12], and mutual information [30].
The key point in the ranking methods is to accurately describe the significance of spectral
bands. However, the ranking method suffers a drawback that quite often the high-ranking
bands could be adjacent bands, therefore resultant highly correlation among selected bands.

Clustering method firstly partitions all bands into certain clusters, and then selects the
most representative bands from each cluster to form a subset of bands [31,32]. There are
clustering methods using affinity propagation [33], exemplar component analysis [34], K-
means-based BS methods [35], and the adaptive density method [36]. The clustering method
considers the interaction between bands, but there are always two inherent shortcomings
in the clustering process: the selected subset of bands may be unstable since the clustering-
based methods are sensitive to randomly selected initial centroids; and most of these
clustering methods only consider the correlation between bands, ignoring the information
content of the selected subset of bands [37].

Deep learning methods based on deep neural networks have attracted much attention
in the visual community due to their hierarchical expression and good generalization
abilities, and have been successfully adopted in the field of hyperspectral data [38–41]. This
has inspired the community to develop various attention mechanisms that can not only
indicate where the focus is, but also improve the quality of feature representation [42,43].
The band or channel attention module (CAM) was originally introduced in the BS network
(BSNet-Conv) [44] to select most significant spectral bands carrying useful information for
classification. However, BSNet-Conv captures remote contextual information weakly in
both spatial and spectral directions. In addition, the existing BS methods cannot simultane-
ously consider the global nonlinear interaction between spectral information and spatial
information of different bands.

Deep reinforcement learning (DRL) has been proven to be an effective, general-purpose
technique to develop reasonably good policies in sequential decision-making problems.
There are two recently published BS methods based on DRL [26,45]. The main idea of using
DRL for BS is to treat BS as a Markov Decision Process (MDP) and adjust BS effects by
changing the reward mechanism. Feng et al. [26] built an evaluation network, used the
network loss function as Asynchronous Advantage Actor-Critic (A3C) reward mechanism
to select bands, and then used deep neural network for classification. It only emphasized
the effect of deep neural network classification algorithms, did not describe the advantage
of A3C for BS. A3C is suitable for both continuous and discrete action environments,
but their experiments did not reflect this in the authors’ opinion. Mou et al. [45] used
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information entropy as Deep Q-Network (DQN) reward mechanism for BS. Their method
is suitable for discrete action environment. However, their method has obvious multiple
descent phenomena, which is unstable during BS and easily leads to local optimum.

In this paper, a partially supervised Double DQN (DDQN) BS method is proposed.
In this proposed method, the BS process is formalized as an MDP. In an MDP, each state
is a subset of possible bands, and each action is to determine which band to be selected
or end the selection. When computing the reward, the labeled data is used to calculate
the contribution of each band for the classification problem, and the contribution value is
treated as the reward in DRL. Therefore, the proposed method is a partially supervised BS
method. Considering that BS process is discrete, DDQN is therefore used for BS instead
of DQN. The main contributions of this study are as follows: (1) a new DRL BS method
which uses DDQN as the reward updating mechanism to avoid local optima was proposed;
(2) three reinforcement reward functions were compared to find the most suitable one for
the proposed method and; (3) the labeled land cover classification data was used for the
reward function, which is tailored for remote sensing classification applications.

The rest of this paper is organized as follows: Section 2 describes the details of the
proposed method. Section 3 describes the experimental datasets: from AVIRIS, HYDICE,
PRISMA and Sentinel-2 Multispectral remote sensor (MRS). Section 4 describes the ex-
perimental design. Section 5 describes the experimental results: The results of reward
functions and the results of different BS methods comparison., and the discussions are
given in Section 6. Finally, Section 7 is the conclusion.

2. Methods

The common techniques of BS for hyperspectral data are discussed in the previous
section and their technical details can be found in their relevant literatures [26,45]. In this
section only some the key concepts of DRL, which are tailored to the proposed BS method
are described, the readers may find the background information and general knowledge
about DRL from relevant sources such as [46]. In DRL, MDP acts as the basic mathematical
model. A broad range of applications including BS can be treated as a MDP, therefore there
are possibilities to employ DRL as a tool to solve the BS problems. MDP involves action,
status, status transition, reward and discount factors γ which reflects the value proportion
of future rewards at the current moment [47].

Action: this represents a limited set of actions. The agent is to select a spectral band
from the hyperspectral data at each time step, including the end action. The complete set of
all actions A is exactly the same as the band set. The band set size is L, which is the number
of bands. There is a ∈ A, where at represents the action at time t.

Status: the historical actions is used as status. It is represented by L-dimensional
vector, and the vector value is multi-hot encoding. For example, si = 1 represents that the
ith band has been selected in the previous time step, and si = 0 represents has not been
selected. Taking the action history as the state means that the dependency between bands
is considered, which helps to select the next band.

Transition: if any action is selected, the state will transition from one state to another.
This process is described as a state transition function. Specifically, band bi is selected from
the remaining bands which have not been selected yet, the status st will transition to the
status si+1. In new state si+1, the corresponding ith value of status vector is set to 1. If
the selected action is stop, the state will transition to the terminal state and the round of
selection will end. The transfer function is as follows:

si+1 =

{
Terminal, i f at = stop

st + bi, i f at = select a new band o f bi
(1)

Reward: this represents the feedback on actions for the environment.
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2.1. Reward Functions

Reward plays a vital role in DRL. It is common that using different reward functions
will produce different results. Three reward functions were proposed for updating the
reward scheme. The first reward function is information entropy (IE) [26]. IE can quantita-
tively measure the information of a random variable. In image processing, IE of an image
can be defined according to the pixel value distribution of the image, which reflects the
richness of image information. It is used to evaluate the abundance of spectral information.
IE of each band is defined as the reward:

IE(a) = −
N

∑
n=1

P(xn) log2 P(xn) (2)

where N represents the number of pixel values, xn represents the nth pixel value. P is the
proportion of the corresponding pixel value in the total number.

The second reward function is information gain (IG). Information gain is an important
indicator of feature extraction. It is defined as how much information a feature can bring
to the classification system [36]. The more information it brings, the more important the
feature is, and therefore the greater the corresponding IE is. IG can be expressed by the
form IE and conditional entropy. Conditional entropy represents the complexity of random
variables under a certain condition. It is the probability of each classification under a certain
band. IG of the corresponding band is given as follows:

IG(C, B) = H(C)− H(C|B) (3)

H(C) = −
N

∑
i=1

P(xi) log2 P(xi) (4)

H(C|B) = − ∑
b∈B

P(b)H(C|B = b) (5)

where IG(C, B) is the information gain of band feature B, it represents the reward value,
C represents the category of labelled data, B represents the vector of the band. H(C)
represents IE of the category, N represents the number of categories, and P represents
the proportion of each category. H(C|B) is the conditional entropy, which represents the
category entropy when the feature is B, P(b) is the overall proportion of each pixel value in
feature B, and H(C|B = b) represents the information entropy of different categories when
the pixel value is B. Because the labelled data was used for calculating IG, this reward
is “supervised”.

The third reward function is termed as supervised reward (SR) by the authors, which
is also “supervised” and uses random forest as the classifier. SR indirectly compute the
reward scores using the classification accuracy derived from Random Forest (RF) classifier.
During RF classification, only one band is eliminated each time, and L-1 bands are reserved
(L represents the band number to be selected). The accuracy of RF is recorded as the weight
of the band. The higher the accuracy, the less important the band is. The smaller the weight
is, the more important the band is. The follow equation is used to compute the reward
SR score:

SR = 1− Accuracy (6)

where SR is the reward score, Accuracy is the classification accuracy derived from RF.
It can be seen from the reward mechanism, when the status transfers from st to

st+1, if the band which has a great impact on classification is selected, this will give the
enhancement of reward for this particular band, otherwise, the enhancement should be
weakened. Driven by this reward scheme, the selected band has overall maximum value.
The above three reward functions (IE, IG and SR) are compared at the beginning of the
experiments to find which reward function works best for the proposed BS method.
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2.2. Double Deep Q Network (DDQN)

DRL uses Deep Q-Network (DQN) to represent the optimal action-value function as
a neural network instead of using a Q-table. Its origin is back to 2015 DeepMind team
leveraged the DQN that learned to play many Atari video games better than humans [48].
DQN approximates a state-value function in a Q-Learning framework. Taking the selected
band history as the state, and DQN goes to the next status according to the state and
the next action. Action selection adopts ε− greedy policy. In state S, the results of action
a which is selected are determined by the maximum discount and reward, as shown in
Equation (7):

Q(s, a; θ) = E
(

rt + γrt+1 + γ2rt+2 + . . . + |st = s, at = a) (7)

where s is the current state, a is the action executed in the current state, θ is a network
parameter, rt represents the reward when a is selected, γ is a discount factor. Select the
action that maximizes Q.

Q(s, a; θ) = max
a

E(rt + γrt+1 + γ2rt+2 + . . . + |st = s, at = a) (8)

Suppose the state at time t + 1 is st+1, then the DQN target value is:

yt ← rt + γmax
a

Qm(st+1, at; θ) (9)

The loss function of DQN is defined as:

L = E(s,a,r,s)

[
(yt −Qm(s, a; θ))2

]
(10)

As many community shows that DQN suffers a major drawback from overestimation
of Q-values in early stage while it’s still evolving [49,50]. In attempting to solve the local
optimum problems caused by using DQN during select and evaluate actions, Double DQN
(DDQN) is used instead to improve the probability of selecting optimal actions. There are
two networks in DQN: evaluation network and target network. In DDQN, select actions
are conducted through Q-network which is the evaluation network to determine the action,
then evaluate actions are conducted through target Q-network, the rest of DDQN remains
the same as DQN. DDQN only needs to use the evaluation network to determine the action
and the target network to determine the action value. Therefore, it is only necessary to
change the target value in DQN:

yt = rt + γQ(st+1, argmax
a

Q(st+1, at; θ); θ′) (11)

where y is the target value, γ is a discount factor, θ is the evaluation network parameter, θ′

is the target network parameter. DDQN replaces the above DQN loss function, fits Q value
and train parameters.

The DDQN pseudo code is shown in Algorithm 1, the framework is shown in Figure 1.
Since the core algorithm of DRL-Mou [45] is DQN and the proposed method uses DDQN,
therefore the DQN and DDQN comparisons are made through DRL-Mou method and the
proposed method. During training process and environment fitting, DDQN will learn a
BS strategy and guide to select the bands. No matter in the training process or the testing
process, the agent will not select the already selected bands. In the training phase, the
initial state is empty. In the test phase, the initial state is randomly selected, any band
could be in the initial state. It is hoped that an optimal subset of bands can be found from
this mechanism.
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Algorithm 1 Double DQN

1: Input: randomly initialize Q-network weights θ, copy θ to θ’; initialize replay memory M;
initialize the complete set of all actions A; load reward table R;
2: for e = 0; e < E; do
3: initialize state: s
4: empty the set of chosen bands: B
5: for t = 0; t < K; do
6: compute the actual set of actions, simulate one step with the ε-greedy policy;
7: choose action a;
8: a, st+1, r = STEPT(s, a);
9: add the experience (s, a, r, st+1 ) into M;
10: s← st+1 ;
11: end for
12: randomly sample a mini-batch Bc from M;
13: for (s, a, r, st+1)εBc do
14: calculate the learning target according to Equation (11)

15: yt = rt + γQ(st+1, argmax
a

Q(st+1, at; θ); θ′)

16: end for
17: carry out a gradient descent step on L, according to Equation (10)

18: L = E(s,a,r,s)

[
(yt −Qm(s, a; θ))2

]
19: update Q− network θ, θ′

20: end for

1 

 

 

Figure 1. An overview of DDQN model for hyperspectral band selection. In the training phase,
Q-network interacts with a tailored reword function in order to learn a band-selection policy by trial
and error. In the test phase, the method selects bands according to the learned policy.

2.3. The Proposed DDQN Based BS Method

The proposed BS method uses DDQN as the backbone. It contains two networks:
Q-network and target Q-network. Q-network is for training parameters, the construct
of target Q-network is the same as Q-network. In Q-network, the input consists of a L-
dimensional vector. The first fully connected layer has 2 L units, followed by rectifier linear
units, the function is ReLUs. In the last layer, a linear fully connected layer with L units. In
the practical experiments, the size of the playback memory is set to 10,000 and used 100 as
the batch size. ε− greedy starts from 0.9 and gradually drops to 0.01 during iterations. The
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learning rate is 0.001. After evaluating three reward functions, IG is chosen as the reward
function for the proposed method (see more details in 5.1).

During the training stage, the L-dimensional empty vector is used as the current state,
the next band (action) is predicted according to the evaluation network. Then, the reward
and the next state are calculated: if the next state is terminated, the band selection comes to
the end, otherwise the L-dimensional vector is changed to the next state when the value
of L corresponding to the selected band position is set to 1. The reward is obtained by
selecting that band. The current state, the selected band, the next state, and the reward, are
then put together into the replay pool. A random batch of data is drawn from the replay
pool, the target value is calculated using the target network, and the evaluation network
and target network parameters are updated according to the loss function. The training
process is terminated until the value of the loss function is less than 0.001. In the test, the
next band is predicted based on the trained network. Through the iterations a sequence
bands are then selected.

The proposed method was implemented under a Tensorflow environment, and all
the experiments are conducted on a desktop Windows machine which has an AMD Ryzen
5 4500U CPU and 16G RAM. At this system configuration, when K is 30, the number of
actions is 190 and episode is 1000, the train process used 29 s. The input data has very small
volume and the structure is uncomplicated. This method is very effective.

3. Datasets

(A) AVIRIS dataset: to validate the proposed BS method and compare it with other BS
methods, a publicly available hyperspectral image dataset acquired using NASA’s
Airborne Visible-Infrared Imaging Spectrometer sensor (AVIRIS) on 12 June 1992 was
used. This particular dataset (the Indian Pines) was chosen because it has ground
truth information captured through field observations and pixel-by-pixel labelled. It
covers a geographical area in the northwest of Indiana in the United States as shown
in Figure 2. The dataset includes 145× 145 pixels, with pixel spatial resolution of
20 m. There are 220 bands in total, and the wavelength range is between 400–2500
nm. The data provided 16 types labelled data, most of which are crops and are they
are in different growth stages. Before applying the BS methods, 20 bands (104–108,
150–163 and 220), all of which are water absorption bands, are removed. A total of
200 spectral bands are used as the input data.
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Figure 2. The dataset of the Indian Pines from AVIRIS airborne hyperspectral sensor: (A) is the Indian
Pines three-band display image using bands 30, 20 and 10 as red green and blue channels; (B) is the
Indian Pines land cover map (ground truth); (C) is the color and name for each Indian Pines land
cover.

(B) HYDICE dataset: the Washington District of Columbia (Washington DC) Mall dataset
was captured using Hyperspectral Digital Imagery Collection Experiment (HYDICE)
sensor over the urban region Washington DC Mall in 1995. HYDICE has 191 bands,
and 0.4 µm to 2.4 µm spectral range. The image (only shows three bands), the ground
truth and mapping classes are shown in Figure 3. This data set contains 1208 scan
lines with 307 pixels in each scan line. It has seven classes (roofs, street, path, grass,
trees, water, and shadow).
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Figure 3. The dataset of the Washington DC Mall from HYDICE airborne hyperspectral sensor: (A) is
the Washington DC Mall three-band display image using bands 90, 69 and 7; (B) is the Washington
DC Mall ground truth image that the position corresponds to (A); (C) is the color and name for each
Washington DC Mall land cover (ground truth).

(C) PRISMA dataset: PRISMA is a small satellite hyperspectral imaging sensor, managed
and operated by the Italian Space Agency. It has a total of 239 spectral bands that
acquire images at a 30 m spatial resolution and at a 10 nm spectral resolution. The
entire hyperspectral range of bands in a PRISMA scene is from 400 nm to 2505 nm.
Among 239 bands, 66 are in the visible and near infrared range (VNIR) and 173 are in
the short-wave infrared range (SWIR). The Level 1 product was used for experiment.
Chongming Island data from PRISMA was acquired on 8 May 2022. After evaluating
Chongming Island PRISMA data, it was found that there are three empty bands in
VNIR and 2 in SWIR. Ten types of common land cover types were manually sampled,
including water body, bare sand, four types of coast bush vegetation, four types of
cultivated land cover, there are 4775 sample pixels in total (Figure 4). The Indian Pines
and Washington DC Mall datasets are from airborne hyperspectral sensors (ARIVIS
and HYDICE, respectively). In order to further verify the performance of the proposed
BS method, a recently available PRISMA satellite hyperspectral scene in a coast region
(Chongming Island Shanghai China) was utilized.
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(D) Sentinel-2 MRS: the Sentinel-2 multispectral data of Chongming Island was acquired
at 02:35 (UTC time) on 8 May 2022 (by satellite Sentinel-2A), which is just 10 min
apart from PRISMA data which was acquired at 02:45 (UTC time) on the same day,
therefore it was a rare opportunity to compare hyperspectral and multispectral data
performance on classification applications. Sentinel-2 is a high-resolution multispec-
tral imaging satellite. The resolution of Bands 2, 3, 4, and 8 is 10 m. The resolution
of bands 5, 6, 7, 8a, 11, and 12 is 20 m. In order to compare with PRISMA data, the
Sentinel-2 data was resampled to 30 m. The corresponding band’s spectral range is as
Table 1.

Table 1. Band comparison between Chongming Island PRISMA and Sentinel-2 datasets.

Sentinel-2 Band Center Wavelength Bandwidth PRISMA Bands

1-Coastal aerosol 442.3 21 5–8
2-Blue 492.1 66 9–17
3-Green 559 36 20–25
4-Red 665 31 32–35
5-Vegetation red edge 703.8 16 37–39
6-Vegetation red edge 739.1 15 41–42
7-Vegetation red edge 779.7 20 44–46
8-NIR 833 106 47–52
8A-Narrow NIR 864 22 53–54
9-Water vapour 943 21 60–61
10-SWIR-Cirrus 1376.9 30 109–112
11-SWIR 1610.4 94 128–137
12-SWIR 2185.7 185 186–209

4. Experimental Design

Besides the proposed BS method (hereinafter abbreviated as proposed), the following
three BS methods were implemented and conducted the experiments along with the
proposed method:

(A) PCA [11]: the most popular dimensionality reduction technology, which is widely
used in many fields.

(B) mvPCA [12]: a ranking-based BS method that uses an eigen analysis-based criterion
to prioritize spectral bands.

(C) ICA [14]: a method that compares mean absolute independent component analysis
coefficients of individual spectral bands and picks independent ones including the
maximum information. The stated three methods are feature extraction methods.

(D) WaLuDi [37]: a BS method based on hierarchical clustering, which uses Kullback-
Leibler divergence as the standard for clustering.

(E) DRL-Mou [45]: a DRL (DQN based) BS method based on value function, also uses
information entropy and/or band correlation as the reward function.

(F) RLSBS-A [26]: a DRL (A3C based) BS method was used for BS, based on the mixture
of policy and value function, also uses the loss function of the deep neural network
based on semi-supervised classification as the reward function.

In order to analyze the performance of the proposed BS method and above-mentioned
methods, the selected bands were fed into several classifiers to perform supervised clas-
sification tasks and the results were compared against the ground truth. The following
classifiers were implemented: K-Near Neighbor algorithm (KNN) [51], n_neighbors is 2;
Random Forest (RF) [52] (random_state is 20, n_estimators is 100); Support vector ma-
chine kernel radial basis function (SVM-RBF) [53]: based on radial basis function kernel,
c = 100, kernel = ‘rbf’; Leave all settings of the algorithm on the default parameters of
Scikit-learn [54]. CNN convolution neural network algorithm [26], which consists of a con-
volutional layer, pooled layer, and fully connected layer superimposed. In the multi-scale
convolutional layer, the convolutional layer of 1× 1 core is designed to extract spectral
features, and the convolutional features of 3× 3 nuclei are used to extract spatial features.
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After that, spatial and spectral features are cascaded and fed into the next layer. To speed
up training, a batch normalization layer is added after evaluating each convolutional layer
in the network.

The following criteria were used to validate the effectiveness of selected bands: the
overall accuracy (OA), average accuracy assessments (AA) and kappa coefficient (Kappa).
OA is calculated by summing the amount of correctly identified data and dividing by the
total amount of data. AA is the average of each type of accuracy. Kappa coefficient is
used to measure the consistency between the evaluation forecast and the ground truth
(supplied labels).

5. Experimental Results
5.1. The Results of Reward Functions

For the Indian Pines dataset, three reward functions were compared: information
entropy (IE), information gain (IG), and supervised reward (SR). In the proposed method,
each of three reward functions was chosen as the reward function candidate to select bands.
Then RF classifier was applied to these bands to perform the final classification tasks and
the classification accuracy results were compared against the ground truth. The comparison
results are shown in Figure 5. As can be seen in Figure 5, it clearly shows that as a reward
function, IG performs better than other two reward functions in overall. Therefore, in the
rest of experiments, IG was chosen as the reward function.
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Figure 5. Classification accuracy comparisons when three different reward functions were used in the
proposed BS method: (A) OA results under various numbers of selected bands; (B) AA results under
various numbers of selected bands; (C) Kappa results under various numbers of selected bands.

When the number of selected bands is 30, OA and Kappa have the high values and
AA has the lowest values when IG was used as the reward function. Table 2 shows the
confusion matrix, and Table 3 shows the accuracy of each type. The type number is the
identifier of land cover which can be found in Figure 2C. In Table 2, sample number [6]
represents the number of labeled samples of each type. The samples distribution is not
uniform; the number of type 13–16 is not enough. Recognized number (RN) represents
the recognized number of each type by the classifier. True Positive (TP) represents the
number of correctly identified data of each type in RN. Accuracy represents the proportion
of TP in RN. The last row in Table 3 shows the average accuracy of each type. 9323 is the
total sample number of all labelled types. 7003 is the amount of correctly identified data in
labelled types. 0.75 is the value of OA. It can be also found in Table 2 that the distribution of
sample data is uneven. For type 15, the number of labelled samples is 23, the RF classifier
recognized 20, 9 of them are correct, 11 of them are wrong. The accuracy of 0.45 (9/20) is
low. The average accuracy is affected however for OA, 11 wrongly recognized samples
have no significant effect on it.
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Table 2. The confusion matrix obtained by the proposed method using RF classifier, 30 bands were
selected by using IG as the reward function.

Types 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 SN

1 888 19 7 2 6 0 82 255 26 0 0 4 1 0 0 0 1290
2 115 369 16 0 2 0 8 187 53 0 0 0 0 0 0 0 750
3 62 14 58 3 5 0 4 30 32 0 0 1 0 0 1 0 210
4 0 2 1 366 12 10 5 2 2 0 36 6 0 1 4 0 447
5 0 0 0 9 651 0 1 0 1 0 2 8 0 0 0 0 672
6 0 0 0 5 1 432 0 0 0 0 0 1 0 1 0 0 440
7 43 6 0 2 3 1 540 241 30 0 0 0 0 0 4 1 871
8 106 30 0 8 15 3 87 1921 43 0 0 6 0 0 1 1 2221
9 90 31 15 1 2 1 26 94 287 0 0 0 4 0 1 0 552

10 0 0 0 0 5 0 1 0 0 164 0 20 0 0 0 0 190
11 0 0 0 20 7 0 0 0 0 1 1104 32 0 0 0 0 1164
12 0 0 0 11 87 0 0 0 0 15 96 131 1 0 0 1 342
13 0 1 0 0 0 0 2 10 2 0 0 1 69 0 0 0 85
14 0 0 0 5 0 28 1 4 0 0 0 0 0 10 0 0 48
15 0 0 0 2 0 12 0 0 0 0 0 0 0 0 9 0 23
16 0 0 0 0 12 0 0 0 0 0 0 2 0 0 0 4 18

RN 1304 472 97 434 808 487 757 2744 476 180 1238 212 75 12 20 7 9323
TP 888 369 58 366 651 432 540 1921 287 164 1104 131 69 10 9 4 7003

accuracy 0.68 0.78 0.60 0.84 0.81 0.89 0.71 0.70 0.60 0.91 0.89 0.62 0.92 0.83 0.45 0.57 0.75(OA)

Table 3. The classification average accuracy assessments (AA) of three reward functions. The
proposed BS method was used for the Indian Pines dataset and the selected band number was
set to 30.

Type IE IG SR

1 0.67 0.68 0.67
2 0.77 0.78 0.76
3 0.61 0.60 0.62
4 0.86 0.84 0.86
5 0.81 0.81 0.79
6 0.87 0.89 0.88
7 0.70 0.71 0.71
8 0.70 0.70 0.70
9 0.58 0.60 0.57
10 0.90 0.91 0.89
11 0.90 0.89 0.89
12 0.62 0.62 0.55
13 0.92 0.92 0.96
14 0.88 0.83 0.75
15 0.80 0.45 1.00
16 0.67 0.57 0.67

AA 0.77 0.74 0.77

It clearly shows that as a reward function, IG performs better than other two reward
functions in overall. The OA and Kappa are more stable and important than AA. Therefore,
in the rest of the experiments, IG was chosen as the reward function.

5.2. The Comparison of Different BS Methods

During the experiments, a various numbers of selected bands were conducted (K is
the selected bands number). Figure 6 presents the results of each BS method with different
numbers of bands (K) on the Indian Pines dataset. Table 4 shows the results when K is
40. The traditional machine learning algorithms (KNN, RF, SVM-RBF, CNN) were used
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as classifiers on the Indian Pines dataset. Table 5 shows the results of BS methods on
Washington DC Mall dataset. Table 6 and Figure 7 show the result on Chongming dataset.
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Table 5. Comparisons different BS methods for the Washington DC Mall dataset with 30 selected
bands. The first row indicates the classification assessment criteria (OA, AA, and Kappa) when
different classifiers were used, the first column lists the BS methods.

BS

Classifiers KNN RF SVM-RBF

OA AA Kappa OA AA Kappa OA AA Kappa
PCA 0.9842 0.9685 0.9794 0.9845 0.9746 0.9797 0.9857 0.9751 0.9813

mvPCA 0.9815 0.9242 0.9693 0.9820 0.9650 0.9355 0.9832 0.9660 0.9799

WaLuDi 0.9722 0.9628 0.9767 0.9772 0.9567 0.9701 0.9730 0.9650 0.9778
RLSBS-A 0.9843 0.9647 0.9795 0.9835 0.9656 0.9785 0.9831 0.9662 0.9778
DRL-Mou 0.9838 0.9506 0.9788 0.9833 0.9634 0.9781 0.9835 0.9725 0.9785

Proposed 0.9850 0.9804 0.9655 0.9837 0.9563 0.9787 0.9857 0.9763 0.9812

Table 6. Comparisons different BS methods on the PRISMA dataset with 30 selected bands. The first
row indicates the classification assessment criteria (OA, AA, and Kappa) when different classifiers
were used, the first column lists BS methods.

BS

Classifiers KNN RF SVM-RBF

OA AA Kappa OA AA Kappa OA AA Kappa
PCA 0.8518 0.8573 0.8346 0.9072 0.9155 0.8963 0.7325 0.7790 0.7172

mvPCA 0.8581 0.8630 0.8417 0.9151 0.9227 0.9052 0.6348 0.6926 0.6259

WaLuDi 0.8436 0.8526 0.8255 0.8646 0.8526 0.8488 0.8997 0.9053 0.8880
RlSBS-A 0.8274 0.8328 0.8074 0.8804 0.9013 0.8849 0.8869 0.8889 0.8738

DRL-Mou 0.8611 0.8646 0.8450 0.9049 0.9105 0.8953 0.9030 0.9102 0.8917

Proposed 0.8678 0.8715 0.8526 0.9044 0.9094 0.8932 0.9072 0.9140 0.8964
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Figure 7. OA results of different BS methods for Chongming Island PRISMA dataset: (A) using RF as
the classifier; (B) using SVM-RBF as the classifier; (C) using KNN as the classifier.

Excluding bands 1, 9, and 10 of Sentinel-2, the rest 10 bands of Sentinel-2 were used to
conduct the classification using SVM-RBF as the classifier which got the best performance on
PRISMA data. By applying the proposed BS method, 10 bands from PRISMA hyperspectral
data were selected as is shown in Table 7. From Table 7, it can be seen that there are
3 selected PRISMA bands which are equivalent or very close to Sentinel-2’s. The final
classification accuracies results were shown in Table 8. It is found that better classification
accuracy can be derived from PRISMA data.

Table 7. The PRISMA bands selected using the proposed method.

PRISMA Band 3 5 23 29 52 62 76 91 102 195

Center Wavelength (nm) 419 434 571 623 855 962 1008 1163 1284 2175
Sentinel-2 band 3 8 12
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Table 8. Comparisons of classification accuracies between hyperspectral data PRISMA and multi-
spectral data Sentinel-2 of Chongming Island. Only 10 selected bands (by the proposed method) from
PRISMA were used. The Sentinel-2-like is the 10 Sentinel-2 like 10 bands reconstructed from PRISMA.

OA AA Kappa

Sentinel-2 (10 bands) 0.8755 0.8787 0.8610
PRISMA (10 selected bands) 0.9037 0.9108 0.8925

Sentinel-2-like (10 simulated bands) 0.9702 0.9700 0.9668

An extra task was performed to explore the PRISMA data further: to simulate Sentinel-
2 bands using PRISMA data. Because there are usually several bands whose spectral ranges
are within each Sentinel-2 band’s spectral range (see Figure 11 and Table 8), therefore a
10-band Sentinel-2-like data can be reconstructed from PRISMA using some techniques
(averaging in our case). It is a very simple dimensionality reduction technique, and the clas-
sification accuracies using the simulated Sentinel-2-like PRISMA data is shown in Table 8.
It is an interesting finding that through this simple dimensionality reduction technique,
Sentinel-2-like PRISMA data outperformed Sentinel-2 and PRISMA band selected subset
using the proposed method. Sentinel-2-like data has higher the signal-to-noise ratio, and
the OA is higher. The results support the findings in [55].

6. Discussions

As can be seen in Figure 6, the proposed method has achieved the highest OA when
RF, KNN, and CNN were used as the classifiers based on Indian Pines dataset. When
K = 10 to 60, OA increased. The DRL-Mou method has the same trends as the proposed
method. For the purpose of dimensionality reduction, the number of the selected bands
should not be too big or too small, considering the uneven distributed sample data which
results the decrease in AA, after conducting many tests, a reasonable number of the selected
band is set to 40 (K = 40) which seems representing the hyperspectral data quite well.

As shown in Table 4, in the deep convolution neural network algorithm (CNN), the
bands selected by all methods are more than 90% in the classification. Except ICA, the
accuracy is about 95%. This paper randomly intercepts continuous bands for classification,
such as 1–40 bands, which can also reach 95% by using CNN classification. Experiments
show that if the depth neural network algorithm is used for ground object classification,
the band selection is not necessary. Another reason that all SB methods have high OA is
that if the small data sample is used for classification in the deep neural network, it is likely
to be over fitted. Therefore, the else experiments did not use the CNN for justify.

DRL methods (the proposed one or DRL-Mou and RLSBS-A methods) are better than
clustering method (WaLuDi). The proposed method can achieve the highest OA when
using RF, SVM-RBF and KNN are used as the classifiers. Although the AA of proposed
method is a little bit lower than that of clustering methods while RF was employed as the
classifier. Compared with the other two reinforcement learning methods (DRL-Mou and
RLSBS-A), the proposed method performed better, the main reason is that the proposed
method has better “supervised” when the labelled data is introduced into the reward
mechanism. Among all BS models, the feature extraction methods such as PCA, mvPCA
perform instable in classification, and the ICA method performs relatively poor. Deep
learning algorithm tends to achieve good results in classification, but it is not applicable to
evaluation BS.

The Washington DC Mall dataset (HYDICE sensor) has distinct spectral character-
istics in land covers comparing to the Indian Pines dataset (AVIRIS sensor). Therefore,
the classification task is relatively easy for all BS methods when they are applied to the
Washington DC Mall dataset, the classification accuracies of all methods are high (96% or
above), as shown in Table 5. However, the proposed BS method can still be considered the
best performer in overall.



Remote Sens. 2023, 15, 682 15 of 20

Table 6 presents accuracy assessments on the band selection results from Chongming
Island PRISMA dataset. mvPCA and PCA have more higher OA using RF classifier with 10
to 60 selected bands than the proposed method. The PCA and mvPCA is much better than
other methods on KNN and RF, but there is only less than 2 percentage point difference
between the proposed method and feature extraction on RF. They all more than 90%; while
among DRL based BS methods, the proposed method performed much better than the
other two DRL based BS methods. The proposed method achieved the highest OA when
using RF, SVM-RBF and KNN as the classifiers. Assessing the PRISMA data, K = 30 was
chosen. The results when K = 30 is shown in Table 6.

Overall, it can be seen that among all band selection models, the feature extraction
methods such as PCA, mvPCA had instable performances, and the ICA method’s perfor-
mance was relatively poor. The proposed method performed very well in all cases. Deep
learning algorithm tended to achieve good results in classification, but it was not applicable
to evaluate band selection.

In order to visualize which bands were selected, all bands selected by different meth-
ods were located on the spectral curves. The selected bands’ locations on the spectral
curves can be found in Figures 8–11. It can be seen that for most BS methods, the most of
the selected bands are in the range of near-infrared bands. Comparing to other BS methods,
the proposed method tends to select bands at the turning points on the spectral curves and
the selected bands are evenly distributed across the spectral range. In other words, the
proposed method can capture the most significant bands (spectral characteristics) better
than others therefore the resultant selected bands present the original hyperspectral data
better. It is evidenced by the accuracy assessments.
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7. Conclusions

In this paper, a partially supervised deep reinforcement learning method for hyper-
spectral band selection is proposed. This proposed method uses labeled data to optimize
the reward scheme and makes reinforcement learning supervised. The proposed method
was applied in classification applications using both airborne and spaceborne hyperspec-
tral data. The experiment results demonstrated that the further improvements could be
achieved using the proposed method comparing to other similar band selection methods.
Another advantage of the proposed method is that it tends to choose the most spectral
significant bands and the chosen bands are well distributed along the spectral dynamic
range, therefore the resultant bands present the original hyperspectral data better.

The experimental datasets include three types of areas: farms, towns, and coastal
areas. The more complex and difficult to distinguish the land cover the data is, the more
suitable for band selection the data becomes. The data with good discrimination, such as
towns, each method has a high score on OA and AA, for BS method is not obvious. In the
future the proposed band selection method will focus on more complex land covers using
hyperspectral data.

The proposed method provides a new deep reinforcement learning method for hy-
perspectral band selection. In addition to classification tasks, it can be easily extended to
other tasks such as target detection, semantic segmentation, and the other decision-making
applications. Those are the future research areas that the authors are going to explore.
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