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Abstract: The COVID-19 pandemic greatly impacted socioeconomic life globally. Nighttime-lights
(NTLs) data are mainly related to anthropogenic phenomena and thus have the ability to monitor
changes in socioeconomic activity. However, the overglow effect is a source of uncertainty and
affects the applicability of NTL data for accurately monitoring socioeconomic changes. This research
integrates the NTL and fine bare-land-cover data to construct a novel index named the Bare Adjusted
NTL Index (BANTLI) to lessen the overglow uncertainty. BANTLI was used to measure the post-
pandemic resumption of religious rituals and socioeconomic activity in Makkah and Madinah at
different spatial levels. The results demonstrate that BANTLI significantly eliminates the overglow
effect. In addition, BANTLI brightness recovered during the post-pandemic periods, but it has
remained below the level of the pre-pandemic period. Moreover, not all wards and rings are affected
equally: wards and rings that are near the city center experienced the most explicit reduction of
BANTLI brightness compared with the suburbs. The Hajj pilgrimage period witnessed a larger
decrease in BANTLI brightness than the pandemic period in Makkah. The findings indicate that
(i) BANTLI successfully mitigates the overglow effect in the NTL data, and (ii) the cultural context is
important to understand the impact of COVID-19.

Keywords: Makkah; Madinah; Hajj; Umrah; COVID-19; nighttime; VIIRS DNB; BANTLI; methods

1. Introduction

The novel coronavirus (COVID-19), which was first announced by the World Health
Organization (WHO) at the beginning of 2020, is one of the biggest modern health chal-
lenges facing humanity. As a result of the rapid transmission of the virus, it spread all over
the world in March 2020 [1]. On 11 March 2020, the WHO officially declared the COVID-19
a pandemic. Different measures were implemented by international and national agencies
to control the spread of the virus, such as suspension of flights, city lockdowns, social
distancing, curfews, and closures of non-essential markets and shops. These measures
had a significant impact on health, environment, economy, travel, religious freedoms, and
tourism sectors, as well as social activity. According to the WHO, by 1 March 2022, a total
of 437 million cases of COVID-19 and nearly 6 million deaths had been reported worldwide.
Moreover, statistical estimates indicate that there was a 3.4% contraction in the global
economy in 2020, followed by a growth of 5.5% in 2021 [2]. The impact of the COVID-19
pandemic saw a decrease of international tourists by 74% in 2020 compared to 2019, with
an estimated loss of $1.3 trillion in tourism expenditure [3].
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The biological characteristics of the COVID-19 virus make the performance of religious
rituals at worship places one of the risk factors for the spread of the virus among large
groups of people. This is because worship places are visited by people from different
places, of different nationalities, ages, and health statuses. Thus, governments temporarily
closed worship places and cancelled the most prominent religious events, such as Hajj and
Umrah [4]. Hajj takes place in the Dhu al-Hijjah month of the Islamic calendar and for six
specific and consecutive days. Muslims perform their religious rituals by moving between
four places, namely Mina, Arafat, Muzdalifah and the Holy Mosque, and the distance
between these places ranges between 7 and 17 km. Umrah takes place at any time of the
year; takes one to three hours to finish it depending on the crowding, and it is performed
only in the Holy Mosque [5].

Hajj is the world’s largest annually recurring mass gathering of Muslims who come
from different countries [6]. Thus, to prevent COVID-19 transmission from abroad, the
Saudi government substantially scaled down the number of pilgrims for the Hajj pilgrimage
in 2020 and 2021 to 10,000 and 60,000, respectively, compared with 2.5 million in 2019 [7].
In addition, Umrah was suspended for international pilgrims on 26 February 2020 and
internally on 4 March 2020, gradually resuming on 4 October 2020 and 1 November 2020
nationally and internationally, respectively. The decision to resume religious rituals is
a major step to return socioeconomic activities to pre-COVID-19 pandemic levels, and
this may take a long time. Therefore, a spatiotemporal analysis of the resumption of
religious rituals has the potential to provide decision-makers with critical information
about socioeconomic recovery in the post-pandemic period.

Various studies have considered the resumption of economic, social and environmen-
tal conditions after the COVID-19 pandemic, using data sources other than remote sensing.
For example, Li et al. [8] analyzed the influence on workers’ incomes of returning after the
COVID-19 pandemic using population mobility data for 366 Chinese cities. Zhang et al. [9]
developed a statistical model to predict tourist return after the devastating pandemic
in Hong Kong. Xu et al. [10] analyzed traffic volume during and after the pandemic in
Shanghai, China. Earth observation satellite data are an important source that can help in
understanding, assessing and developing solutions to natural, human-made and health
disasters [11]. This research focused on the use of nighttime remote-sensing technolo-
gies. Nighttime lights (NTLs) data, a substantial proxy for anthropogenic phenomena,
provide a unique perspective for mapping urban areas [12] with the ability to measure
socioeconomic activity levels [13]. Thus, NTL data have been widely utilized to monitor
electricity consumption [14–16] and GDP [17–19], map urban areas [12,20,21], estimate
populations [22–24], measure pollution [25–28] and track natural disasters [28,29].

In the absence of timely, accurate and detailed information, NTL data can provide
valuable spatial information to quantify and analyze the influence of unexpected events
(war, earthquake, tsunami, pandemic, etc.) on socioeconomic activity due to their large area
coverage and near-real-time acquisition. Studies using NTL data have reported substantial
decreases in NTL brightness during the pandemic period in countries such as China [30],
India [31] and Saudi Arabia [32]. Xu et al. [33] compared the influence of the COVID-19
pandemic in 20 global megacities, using NTL imagery, and found an overall reduction in
NTL brightness among the cities of differing magnitudes.

A range of studies evaluated aspects of life during the post-pandemic period [11,34–36].
Beyer et al. [34] used daily electricity consumption, NTL and gross value added (GVA)
data to analyze the influence of COVID-19 in India at the country, state, city and district
levels. The COVID-19 pandemic dimmed India from March 2020 to June 2020, with an
NTL decline of −8%, followed by recovery to −1.5% in July 2020 and −3% in August
2020 [34]. Straka et al. [36] investigated the impact of COVID-19 on the economy and
environment in three United States cities (Washington, D.C.; Chicago; and Los Angeles)
and found a decline in the economic sector resulting from increased levels of poverty and
unemployment; however, an improvement in air quality was observed. A study conducted
in China reports similar findings [37]. Roberts [38] tracked the impact of the pandemic on
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economic activity (GDP) in Morocco at the national and regional levels and in some cities.
The findings indicated a large percentage decline in NTL intensity particularly in March
2020 at all levels compared with the pre-pandemic period. NTL intensity slightly increased
during the post-pandemic period, but it is still lower than pre-pandemic [38].

Different containment measures were implemented in response to the COVID-19
pandemic. One of the most effective of these was the closure of workplaces and remote
working. Shao et al. [1] utilized NTL data to analyze work resumption in Wuhan, China,
from January 2020 to August 2020 and concluded that although there was an increase in the
NTL brightness after the end of lockdown, the recovery had not reached the pre-pandemic
level. Tian et al. [39] investigated levels of work resumption in some provinces and cities
in China by using different datasets to develop a work-resumption index. They found an
increase of 70% in the work-resumption index in most cities [39].

We suggest that some dimensions have not been fully taken into account in the
previous studies. First, the application of NTL data in studying COVID-19 consequences
has mostly been undertaken in developed countries and China. The influence of COVID-19
varies from place to place and depends on the economic, social, environmental, religious
and urban context [32,40]. Arabian, Middle Eastern and Gulf countries have received little
attention in these studies. This research addresses this gap through the selection of a study
area with different socioeconomic characteristics compared to previous research. Second, it
is clear that Visible and Infrared Imaging Suite Day–Night Band (VIIRS-DNB) data are less
affected by light saturation, as adjacent NTL pixels have similar brightness particularly in
central populated areas, unlike the Defense Meteorological Program Operational Line-Scan
System (DSMP-OLS) data [41]. However, it is still subject to the overglow effect due to
sky brightness resulted from the built-up areas [42], and this uncertainty leads to various
statistical and spatial challenges. Thus, inaccurate results and conclusions could be drawn
from analysis of NTL data if the overglow effect is not addressed. This research will mitigate
the overglow effect in the NTL data by using fine ancillary land-use/cover data. In other
words, we propose an improved NTL index in response to overglow uncertainty.

This paper aims to (1) propose a new index that integrates NTL and fine bare-land-
cover data, to be called Bare Adjusted NTL Index (BANTLI); and (2) use BANTLI to
quantify spatiotemporal changes associated with resumption of religious rituals and so-
cioeconomic activity during the post-pandemic period in Makkah and Madinah cities.
Millions of pilgrims from different countries visit Makkah city for Hajj and Umrah rituals
and Madinah city for Ziarah (Hajj and Umrah pilgrims who visit the Prophet’s City and
Mosque). According to Saudi Arabia’s General Authority of Statistics (GAS), the numbers
of Hajj and Umrah pilgrims in 2019 were 2.5 and 19 million, respectively [7,43]. As men-
tioned earlier, a key factor to prevent the spread of COVID-19 is social distancing, which
aims to reduce physical contact between people. For these reasons, the Saudi government
suspended these religious rituals for nearly 240 days, causing multiple indirect difficulties
for Muslim countries and direct difficulties in Saudi Arabia, with particular economic
impacts in Makkah and Madinah. These two cities thus serve as a particularly important
study area.

2. Materials and Methods
2.1. Study Area

The Kingdom of Saudi Arabia has a leading role among the Islamic countries because
Islam originated from this land, as well as having a major economic position as the largest
oil producer in the world. Saudi Arabia consists of 13 provinces. Makkah and Madinah
cities are located in the western part of the Kingdom (Figure 1), and their province adminis-
trative boundaries are called by their names. The latitude and longitude of Makkah are
21◦25′52.979′ ′ N and 39◦48′29.573′ ′ E, and they are 24◦27′35.751′ ′ N and 39◦36′53.543′ ′ E for
Madinah. Both are religious cities and receive a special status from the Saudi government
for many considerations. Makkah includes the first house of worship (Kaaba), the Holy
Mosque, and is the birthplace of Prophet Mohammed. Makkah covers an area of 1400 km2
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and has a population of 1.7 million, according to the 2010 census. Madinah includes the
first mosque in Islam (Quba Mosque) and the Prophet’s Mosque and Tomb. Madinah has
an area of 2600 km2 with a total population of 1.2 million, based on the 2010 census. The
religious characteristics of these cities make them the principal destinations for Muslims
across the world, especially during the festivals of Ramadan and Dhul Hijjah.

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 26 
 

 

for many considerations. Makkah includes the first house of worship (Kaaba), the Holy 
Mosque, and is the birthplace of Prophet Mohammed. Makkah covers an area of 1400 km2 
and has a population of 1.7 million, according to the 2010 census. Madinah includes the 
first mosque in Islam (Quba Mosque) and the Prophet’s Mosque and Tomb. Madinah has 
an area of 2600 km2 with a total population of 1.2 million, based on the 2010 census. The 
religious characteristics of these cities make them the principal destinations for Muslims 
across the world, especially during the festivals of Ramadan and Dhul Hijjah. 

 
Figure 1. Site location of Makkah and Madinah cities. 

  

Figure 1. Site location of Makkah and Madinah cities.

2.2. Data
2.2.1. Nighttime Satellite Data

This study used the VNP46A2 dataset (https://ladsweb.modaps.eosdis.nasa.gov/
search/, (accessed on 2 December 2021)), obtained from the Visible Infrared Imaging
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Radiometer Suite (VIIRS) suite on board the Suomi National Polar-Orbiting Partnership
(Suomi-NPP) satellite platform that crossed the equator at about 1:30 am, the second
of the two VNP46 products released using the Black Marble Algorithm. The precursor
to VNP46A2, known as VNP46A1, contains top-of-atmosphere (TOA) radiance values
and requires extensive processing to reduce noise due to extraneous artifacts. By con-
trast, VNP46A2 applies the novel “Turn off the moon” methodology to remove such
artifacts. Specifically, the use of the Bidirectional Reflectance Distribution Function (BRDF),
a radiometry-based lunar irradiance model, and a linearized radiative transfer model [44],
among other techniques, has led to a significant improvement, especially in images affected
by noise. The dataset is available as hierarchical data format files and contains seven layers,
known as Science Data Sets, with 15 arc-second and 16-bit geospatial and radiometric
resolutions, respectively. The wavelength of the day/night band (DNB) starts from 500 nm
to 900 nm, making it sensitive to detect low light. In this study, we used the BRDF-corrected
and Mandatory_Quality_Flag layers.

2.2.2. Land-Use/Cover Data

Information on land use/cover data is essential for various spatial applications such as
desertification, drought, land surface temperature, tsunami, land degradation, population
mapping, etc. As a result of the huge development in satellite and computer technologies,
remotely sensed satellite-sensor data have become one of the most important and effective
sources of producing land-use/cover data [45]. Freely available satellite data encourage
global organizations and research centers to produce global land-use/cover data at no
cost to end users. Since the 1990s, global land cover (GLC) data have been introduced
at different spatial and temporal resolutions [46], such as Moderate Resolution Imaging
Spectroradiometer (MODIS) land cover provided by the National Aeronautics and Space
Administration (NASA), GlobeLand30 provided by the National Geomatics Center of China
and recently ESRI Land Cover 2020 provided by the Environmental Systems Research
Institute (ESRI) and ESA WorldCover 2020 provided by the European Space Agency (ESA).

The ESA WorldCover 2020 product (https://worldcover2020.esa.int/downloader),
accessed on 25 September 2021, has recently been utilized in studies such as those by Ekim
et al. [45]; Salama et al. [47] and Tavus et al. [48]. The product was based on Sentinel-1 and
Sentinel-2 satellite data acquired in 2020 and derived 11 generic land-cover classes at a
10 m spatial resolution, with an overall accuracy of 74% at the global level and 81% at the
Asia level [49]. The bare/sparse vegetation land cover has producer’s and user’s accuracies
of 91% and 89%, respectively, at the Asia level [49].

Impervious surface area (ISA) refers to man-made features such as buildings, roads
and parking lots that block surface water from infiltrating into the ground [50]. The ISA and
NTL data have the common characteristic that they are both closely related to anthropogenic
activities and socioeconomic development [51], and thus they are positively correlated
to each other [52]. Moreover, NTL data have been widely utilized as a proxy to estimate
ISA [53,54]. A global ISA product called “GISD30” (https://zenodo.org/record/522081
6#.YkrYONtByUk (accessed on 4 March 2022)) [50], from 1985 to 2020, with an interval
of 5 years, was produced by Zhang et al. [50]. They reported that ISA was produced at a
30 m spatial resolution, using time-series Landsat data, and the overall accuracy and Kappa
statistic were 92% and 0.87, respectively [50]. The 2020 data were downloaded and used
here for validation.

2.2.3. Socioeconomic Data and Administrative Boundaries

Socioeconomic data for Saudi Arabia were provided by the General Authority for
Statistics (GAS), including censuses, field surveys and collections of statistical data from
other Saudi agencies. Statistical information and reports for Hajj (https://www.stats.gov.
sa/ar/28 (accessed on 5 February 2022)) and Umrah (https://www.stats.gov.sa/ar/862
(accessed on 5 February 2022)) pilgrims were downloaded from the GAS website (https:
//www.stats.gov.sa/ (accessed on 5 February 2022)) from 2016 to 2021. The monthly

https://worldcover2020.esa.int/downloader
https://zenodo.org/record/5220816#.YkrYONtByUk
https://zenodo.org/record/5220816#.YkrYONtByUk
https://www.stats.gov.sa/ar/28
https://www.stats.gov.sa/ar/28
https://www.stats.gov.sa/ar/862
https://www.stats.gov.sa/
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averaged traffic data at the entrance points for Makkah and Madinah cities were requested
from the Ministry of Transport and Logistic Services (MOT). Monthly averaged flight data in
King Abdulaziz International Airport (KAIA), the nearest airport to Makkah city, and Prince
Mohammed Bin Abdulaziz International Airport (PMBAIA), located in Madinah city, were
obtained from the General Authority of Civil Aviation (GACA). All socioeconomic data
were downloaded or obtained in Excel format. City-level and ward-level administrative
boundaries of Makkah and Madinah cities were obtained as GIS layers from Makkah and
Madinah Municipalities.

2.3. Bare Adjusted NTL Index (BANTLI)

The raw NTL (VIIRS-BNB) data effectively overcome the saturation uncertainty com-
pared with the DMSP-OLS and are able to detect the spatial heterogeneity of socioeconomic
development. However, the overglow uncertainty is still an issue. The majority of stud-
ies [11,32,33] has shown the effectiveness of NTL imagery in evaluating the socioeconomic
effects caused by the COVID-19 pandemic. However, no one has highlighted the over-
glow uncertainty of the NTL data within urban areas prior to studying the impact of the
COVID-19 virus. The overglow phenomenon comprises unpopulated lit areas that are
located both outside and within the built-up area. The former has been addressed by using
a threshold-based approach [1,30,37], whereas the latter has been addressed by utilizing dif-
ferent approaches including point of interest (POI) and land surface temperature (LST) [55],
Normalized Difference Vegetation Index (NDVI) [56], Normalized Difference Water Index
(NDWI) and Normalized Difference Built-up Index (NDBI) [57]. The widely utilized POI
dataset is collected by volunteers and can lead to uncertainties regarding data quality and
distribution. Moreover, the NDVI and NDWI are most applicable in areas with abundant
vegetation and water covers.

Lights generally reflect socioeconomic development, with a large proportion of urban,
built-up and impervious surface and a small proportion of bare land, vegetation and water
covers. In this research, a novel Bare Adjusted NTL Index (BANTLI), clarified in Section 2.5,
was constructed based on a fine bare-land-cover class to mitigate the overglow impact in
the NTL data. The rationale behind BANTLI is dependent on the intuitive fact that bare
land and nighttime lights are inversely correlated. In most arid or semi-arid regions, Gulf
countries and some developing countries, the process of urban development, as well as
the weak follow-up of urban development policies, results in the existence of bare land
within urban areas [24]. In the context of NTL data, bare land within the urban areas
(city boundary) leads to (i) a decrease in mean NTL brightness, (ii) an increase in the total
summation of NTL brightness and (iii) an exaggeration of the extent of the illuminated
urban areas when reported for any administrative boundaries. This, in turn, may influence
the results and conclusions.

Figure 2 shows the spatial distribution of the NTL data (Figure 2a), ESA WorldCover
2020 (Figure 2b), Sentinel-2 image (Figure 2c) and a latitudinal transect of the bare-land areas
and NTL intensity (Figure 2d). The figure covers a rectangular area (13,000 m × 500 m)
in the north part of Makkah, outlined by the bold black line. Figure 2d shows evidence
of the inverse relationship between NTL brightness and bare-land areas. For example,
in locations (6 to 10) and (23 to 25), urban areas are dominant, and bare land is sparse.
The NTL brightness in location 9 is 202 nWcm−2sr−1 associated with bare-land areas of
0.04 km2.
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2.4. Procedures of Hajj and Umrah Resumption

The Saudi government suspended Umrah rituals for nearly 8 months and significantly
restricted the number of Hajj pilgrims in 2021. An approval was issued before the end
of 2020 for the gradual resumption of religious rituals according to certain conditions.
For example, booking an appointment to perform the religious rituals required use of the
“Eatmarna Application”, a mobile application that allows pilgrims to obtain permission
for Umrah and Ziarah at a specific day and time, complying with the health instructions
and requirements, including receiving vaccination, wearing a mask, maintaining a safe
distance and not touching other people. Table 1 shows the arrangements and stages of
the gradual return of the religious rituals over various time periods. For example, D0 and
D0-2 in Table 1 refer to target and reference dates, respectively; moreover, the “0” subscript
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indicates the period number (0 to 13), and the “−2” subscript indicates an interval of two
years prior. The 2-year period was used to span the pandemic and post-pandemic periods.
The choice of specific period start and end dates reflects the start and end dates of the
Islamic months in order to achieve the goal of the study, to assess the impacts of resumption
of religious festivals. This explains the apparent mismatch between Gregorian calendar
target and reference dates. Moreover, we did not use a single reference date like other
studies have [1,30,32]; instead, different reference dates were utilized to be able to compare
pilgrimage months with pilgrimage months.

Table 1. Arrangements of the gradual resumption of the religious rituals and the different periods.

Period Target Dates Reference Dates Restrictions

P0 pre-pandemic period 10/10/2018 to
08/11/2018 (D0)

01/11/2016 to
29/11/2016 (D0-2)

P0, a pre-pandemic period with no restrictions,
was incorporated in the analysis for
comparison with the pandemic and
post-pandemic periods.

P1 pandemic period 25/03/2020 to
23/04/2020 (D1)

17/04/2018 to
15/05/2018 (D1-2)

This period was chosen to represent the
pandemic period because the curfew and city
lockdowns started at the beginning of this
period. In addition, religious rituals were
suspended throughout this period and
continued till 3 October 2020.

P2 post-pandemic
period

04/10/2020 to
17/10/2020 (D2)

26/10/2018 to
08/11/2018 (D2-2)

Permission to perform Umrah for citizens and
residents inside Saudi Arabia, starting from
4 October 2020, at a rate of 30% of capacity
(6000 pilgrims/day), subject to health
protection measures at the Holy Mosque, and
40% (starting from 30 May 2020) of the total
capacity subject to health protection measures
at the Prophet’s Mosque.

P3 post-pandemic
period

18/10/2020 to
31/10/2020 (D3)

09/11/2018 to
22/11/2018 (D3-2)

Permission to perform Umrah, Ziarah and
prayers for citizens and residents inside Saudi
Arabia, starting from 18 October 2020, at 75%
of capacity (15,000 pilgrims/day and
40,000 worshipers/day), subject to health
protection measures at the Holy Mosque, and
75% of the total capacity subject to health
protection measures at the Prophet’s Mosque
and Rawdah (garden inside the Prophet’s
Mosque that is often crowded with
worshipers).

P4 post-pandemic
period

01/11/2020 to
15/11/2020 (D4)

23/11/2018 to
07/12/218 (D4-2)

Permission to perform Umrah, Ziarah and
prayers for citizens and residents from inside
and outside Saudi Arabia, from 1 November
2020, until the official announcement of the
end of the COVID-19 pandemic, at 100% of
capacity (20,000 pilgrims/day and 60,000
worshipers/day) subject to health protection
measures. IRn addition, 100% of capacity
(45,000 worshipers/day) subject to the health
protection measures at the Prophet’s Mosque.
The Saudi government reported that the
arrival of pilgrims and visitors from the
outside of Saudi Arabia would be gradual, and
from countries where there are no health risks
related to the COVID-19 virus.
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Table 1. Cont.

Period Target Dates Reference Dates Restrictions

P5 post-pandemic
period

16/11/2020 to
15/12/2020 (D5)

08/12/2018 to
06/01/2019 (D5-2) As P4 period.

P6 post-pandemic
period

16/12/2020 to
13/01/2021 (D6)

07/01/2019 to
05/02/2019 (D6-2) As P4 period.

P7 post-pandemic
period

14/01/2021 to
12/02/2021 (D7)

06/02/2019 to
07/03/2019 (D7-2) As P4 period.

P8 post-pandemic
period

13/02/2021 to
13/03/2021 (D8)

08/03/2019 to
05/04/2019 (D8-2) As P4 period.

P9 post-pandemic
period

14/03/2021 to
12/04/2021 (D9)

06/04/2019 to
05/05/2019 (D9-2) As P4 period.

P10 post-pandemic
period

13/04/2021 to
12/05/2021 (D10)

06/05/2019 to
03/06/2019 (D10-2)

Increasing the capacity of the Holy Mosque to
50,000 pilgrims, and 100,000 daily.

P11 post-pandemic
period

13/05/2021 to
10/06/2021 (D11)

04/06/2019 to
03/07/2019 (D11-2) As P10 period.

P12 post-pandemic
period

11/06/2021 to
10/07/2021 (D12)

04/07/2019 to
01/08/2019 (D12-2) As P10 period.

P13 post-pandemic
period

11/07/2021 to
08/08/2021 (D13)

02/08/2019 to
22/08/2019 (D13-2)

Restriction of the number pilgrims in Hajj
ritual to 60,000 pilgrims.

2.5. Data Processing

(1) High-quality nighttime pixels: Various factors such as clouds, moonlight, stray
light and other ephemeral lights impact the actual amount of artificial light that is reflected
from the earth’s surface [44], causing the light to increase, decrease, disappear or blur [58].
Thus, the raw NTL data need to be processed prior to the analysis. These challenges were
addressed by using the BNB_BRDF-Corrected_NTL layer included in the VNP46A2 product
and enhanced using the Mandatory_Quality_Flag (MQF) layer to retrieve only high-quality
nighttime pixels (coded as 00). Then high-quality NTL pixels that covered more than or
equal to 25% of the periods in Table 1 were extracted and referred to as effective high-quality
NTL pixels [33]. The mean was then calculated for each month (Figure 3).

(2) Low mean brightness: The unpopulated areas located outside urban areas are
mainly represented by vegetation cover (e.g., in Europe countries) and bare land cover (e.g.,
in Gulf countries). Logically, these areas should not reflect any light. However, this is not
the case because low-mean brightness values are reflected from these areas. Although the
mean brightness values are low, when they are summed up over extensive administrative
zones, statistical calculations such as sum, mean or standard deviation give inaccurate
results. Thus, unpopulated areas located outside urban areas are a source of uncertainty.
A threshold approach [31,37] has been shown to be efficient in tackling this uncertainty.
Therefore, different thresholds were examined, and a threshold value of <10 nWcm−2sr−1

was chosen as most appropriate to exclude the NTL pixels with low-mean brightness
values. Three binary on–off masks (M1, M2 and M3; see Table 2) were created based on
the assumption that (i) unpopulated NTL pixels at a later period (i.e., October 2018) would
not have been populated at an earlier period (i.e., October 2016) prior to the pandemic and
during the post-pandemic periods and (ii) unpopulated NTL pixels immediately prior to
the pandemic would not alter much during the pandemic. M1 was produced based on
D0 to eliminate all unpopulated NTL pixels in D0 and D0-2 NTL imagery, whereas M2
was created based on a month just before the COVID-19 pandemic and used to remove all
unpopulated NTL pixels in D1 and D1-2. M3 was produced dependent on D13 to exclude
all unpopulated NTL pixels in D2 to D13 and D2-2 to D13-2.
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Table 2. The date ranges of the masks and the corrected dates.

Mask Dates Corrected Dates (Month)

M1 10/10/2018 to 08/11/2018 D0 and D0-2.
M2 26/01/2020 to 24/02/2020 D1 and D1-2.
M3 11/07/2021 to 08/08/2021 D2 to D13 and D2-2 to D13-2.

(3) Implementing BANTLI: As a result of the rapid development in satellite technolo-
gies, satellite data are available with different spatial, temporal, spectral and radiometric
features, each with certain advantages and disadvantages. Using only one type of satellite
data may not be sufficient to achieve a specific goal; thus, remote-sensing data fusion (RSDF)
may be helpful. RSDF is a powerful technique that aims to maximize the advantages of
various satellite data in order to derive a new product (fused data) that provides more
useful detailed information than the individual input data sources [59]. In this research,
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NTL and ESA WorldCover 2020 satellite data were utilized, having different spatial resolu-
tions. To facilitate the integration of these data, the 500 m NTL data spatial resolution was
resampled, using the nearest neighbor algorithm, and aligned to the 10 m spatial resolution
of ESA WorldCover 2020. The ESA WorldCover 2020 was then reclassified into unpopu-
lated areas (bare-land class) and populated areas (the remaining classes). The reclassified
ESA WorldCover 2020, unpopulated and populated areas (coded as 0 and 1 respectively),
was overlaid with the NTL data to derive a new product named Bare Adjusted NTL Index
(BANTLI). BANTLI solves the overglow uncertainty of the NTL data inside the urban
areas through (i) excluding the unpopulated lit areas that are completely covered by the
bare-land class and (ii) reducing the size (number of NTL pixels) of the unpopulated lit
areas that are partly covered by the bare-land class. On the other hand, the BANTLI does
not address the overglow effect within one NTL pixel (500 m).

(4) Spatial analysis: In this research, city and ward administrative boundaries are
used as the units of spatial analysis. Most socioeconomic activities and inhabitants are
concentrated in city centers and decrease as we move away from the center [60]. Therefore,
it is useful to investigate the socioeconomic variations in relation to the center of the city.
Thus, in addition to analyzing the BANTLI data at the city and ward levels, concentric-ring
analysis, which aims to partition the study area into multiple rings with increasing distance
from the city center, was also used [61]. In Makkah and Madinah, the Holy Mosque and
the Prophet Mosque were selected as the city-center points, respectively. Concentric rings
were created from these points with an incrementing radius of 2 km until the whole city
boundaries were covered. This results in 17 rings in each city. Figure 4 shows the 2 km
concentric rings in Makkah and Madinah.
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(5) Statistical calculation: Different statistical calculations were implemented. The total
mean values of BANTLI were computed at the city-level and ward-level administrative
boundaries before, during and after the COVID-19 pandemic. The percentage difference of
the BANTLI radiance was calculated as follows:

Pi =

(
BANTLItarget − BANTLIreference

BANTLIreference

)
× 100 (1)

where Pi denotes the percentage difference of the BANTLI radiance at the different admin-
istrative boundaries; BANTLItarget and BANTLIreference refer to the sum mean values of
BANTLI during or after (target) and before (reference) the COVID-19 pandemic, respec-
tively; and ith represents the different zones. The smaller (negative) the value of P, the
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higher the deterioration in the socioeconomic activities during the COVID-19 pandemic or
the higher the challenge of recovery during the COVID-19 post-pandemic.

Furthermore, the mean (D) and standard deviation (σ) of the BANTLI brightness differ-
ences were computed at the concentric rings in order to construct the error bar as follows:

Dm = BANTLItarget − BANTLIreference (2)

D =
1
n

n

∑
m=1

Dm (3)

σ =

√√√√ n

∑
m=1

(
Dm −D

)2

n
(4)

where Dm is the BANTLI brightness difference of pixel m, and n denotes the number of
pixels in each ring.

3. Results
3.1. BANTLI vs. NTL

The ISA is used to evaluate BANTLI in two different ways. First, the NTL and BANTLI
products are visually compared with the Landsat OLI and the ISA data in Makkah and
Madinah (Figure 5). The NTL data indicate the general boundaries of the cities (Figure 5b,f);
however, unpopulated areas exist within the built-up areas, and some of these are indicated
as black dots (samples) in Figure 5a (1 to 4 samples) and Figure 5e (5 to 8 samples). These
unpopulated areas appear to be lit in the NTL product when they should not be. On the other
hand, these areas are eliminated in the BANTLI product (Figure 5c,g) in both cities, and,
hence, true city structures and street networks are discernible. In addition, it is observable
that the spatial extent of the ISA (Figure 5d,h) is more similar to BANTLI than NTL.
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Second, further quantitative comparisons are conducted using Spearman’s correlation
(R), as the data are not normally distributed between (i) the ISA area, sum of NTL and
BANTLI radiances and (ii) sum of ISA, NTL and BANTLI pixels in Makkah (Figure 6a–d)
and Madinah (Figure 6e–h) at the ward level. Figure 6a,b show that the sums of NTL
and BANTLI radiances are correlated with the ISA area. with R values of 0.79 and 0.81,
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respectively, with a slightly higher correlation for BANTLI in Makkah. Similarly, the
relationship between the ISA area and BANTLI in Madinah (R = 0.83) is slightly higher
than the NTL (R = 0.81). This indicates that excluding the unpopulated lit areas slightly
improves the relationship between ISA and BANTLI compared with the NTL. Moreover,
there is a larger linear correlation between the sum of ISA pixels and sum of BANTLI pixels
in Makkah and Madinah (Figure 6d,h), with R estimates of 0.87 and 0.92, respectively,
compared with R estimates of 0.47 and 0.44 (Figure 6c,g), respectively, for the sum of
NTL pixels.
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Figure 6. Relationship between ISA areas and sum of NTL and BANTLI radiances in Makkah
(a,b) and Madinah (e,f), respectively, and between sum of ISA, NTL and BANTLI pixels in Makkah
(c,d) and Madinah (g,h), respectively.

3.2. Change of BANTLI Radiances at the City Level

The COVID-19 pandemic not only posed a threat to human life and a challenge to
the health sector, but it greatly affected socioeconomic and religious activity globally. For
example, the rituals of Hajj, Umrah and Ziarah were suspended for nearly 7 months. On
4 October 2020, the Saudi government lifted these suspensions and allowed a gradual
return, subject to certain conditions. The impact of the resumption of religious rituals
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on socioeconomic recovery was measured by computing the percent change of BANTLI
between pairs of images (e.g., D9 and D9-2, as explained in Table 1) during pre-pandemic
(P0), pandemic (P1) and post-pandemic (P2 to P13) periods. Change in BANTLI is thus
used as a proxy for change in levels of socioeconomic activity.

Figure 7 shows the percentage change of BANTLI brightness in Makkah (Figure 7a)
and Madinah (Figure 7b) over the different periods. For example, the value at P8 indicates
the percentage difference of the BANTLI radiance between D8 (mean target image) and D8-2
(mean reference image), using equation [1], and similarly for the other periods. Generally,
it is clear that the preventative measures (P1) caused a drastic increase in the BANTLI
percentage difference, reaching −22% and −32% in Makkah (Figure 7a) and Madinah
(Figure 7b), respectively. Moreover, the BANTLI percentage difference during the post-
pandemic periods (P2 to P13) fluctuated in both cities, and most periods were lower than
the pre-pandemic period (P0). For instance, the BANTLI percentage differences during
the post-pandemic periods ranged from 9% to −28% (Figure 7a) and from 4% to −32%
(Figure 7b) in Makkah and Madinah, respectively. P2 in both cities showed the greatest
recovery of all the post-pandemic periods. The BANTLI percentage differences in P12
and P13 (−25% and −28%) in Makkah (Figure 7a) were greater than during the pandemic
period (−22%).
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pandemic (P1) and post-pandemic (P2 to P13) periods at the city level.

Numerous studies have found significant impacts of socioeconomic activity on the
transportation system [62,63]. Vehicle and flight information can be used to validate the
BANTLI results at the city level. Figure 8 illustrates the percentage differences of some
transport indicators among the different periods in Makkah and Madinah. As expected, the
implementation of the curfew, city lockdowns and suspension of religious rituals (P1) had
a drastic impact on the percentage change in vehicles entering the cities, with a reduction of
nearly −80% in both (Figure 8a,b). However, when the suspension of religious rituals was
eased in October 2020, the percentage change in vehicles showed a recovery in both cities,
but still to below the pre-pandemic level. For instance, the percentage-difference value of
cars in Makkah during P0 (pre-pandemic) was 40%, changing to −80% in P1 (pandemic)
and −21% in P2 (Figure 8a). A noticeable decrease in the percentage difference of cars
compared with the pandemic period occurred in P13 (Makkah, Figure 8a) and P6, P7, P8,
P12 and P13 (Madinah, Figure 8b), while P8 is the only period that significantly recovered
(22%) almost to the pre-pandemic level (25%).

The percentage differences of flights at King Abdulaziz International Airport (KAIA),
close to Makkah (Figure 8c), and Prince Mohammed Bin Abdulaziz International Airport
(PMBAIA), in Madinah (Figure 8d), show decrease in flight numbers, ranging between
−47% and −58% at KAIA and between −66% and −79% at PMBAIA for the post-pandemic
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periods compared with−100% in the pandemic period, although we would expect pandemic-
induced variations in load factors to have impacted on passenger numbers [64].
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(d) PMBAIA.

These government-collected mobility data provide valuable corroborative evidence
of pandemic effects, but they are only available for a small number of point locations
and regular temporal divisions. By contrast, NTL data can be selected and aggregated
to key pandemic and religious festival dates, to the ward boundaries of most interest to
city administrators and to concentric zones which help understand the spatial structure of
the cities.

Hajj and Umrah pilgrims and Ziarah are the main source of socioeconomic activ-
ity in Makkah and Madinah, as millions of Muslims travel to these cities for religious
purposes [65]. Figure 9 shows the monthly temporal profile of Umrah pilgrims, and it
is evident that Ramadan is the peak month. The number of Umrah pilgrims exceeded
7 million in Ramadan from 2016 to 2019, compared to less than 2.5 million in other months.
Unfortunately, due to the suspension of Umrah rituals, the number of Umrah pilgrims
was zero from May 2020 to October 2020. There was an increase in the number of Umrah
pilgrims during the post-pandemic periods, but it was still below the pre-pandemic level.
Figure 10 shows the annual (sum) temporal profile of Hajj pilgrims, with growth in the
number of Hajj pilgrims from 2016 to 2019. This growth significantly decreased in 2020
and 2021 as a result of the COVID-19 pandemic, when the number of Hajj pilgrims was
controlled to be 10,000 and 60,000, respectively.
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3.3. Change of BANTLI Radiances at the Ward Level

Figure 11 shows the spatial distribution of the BANTLI percentage changes during
the different periods in Makkah, categorized into eight classes. Positive values are color-
coded by a blue gradient, suggesting stability or an increase in socioeconomic activities,
whereas negative values are color-coded by a red gradient, indicating a decrease in the
socioeconomic activities. In the discussion section, we consider the relevance of natural
variation in mean brightness and the relevance of other moments of brightness in addition
to the mean value.

In general, the percentage differences in BANTLI brightness are not uniform across
wards over all periods in Makkah (Figure 11). In the pre-pandemic period (P0), most wards
had positive BANTLI values, indicating normal socioeconomic development. In contrast,
the COVID-19 pandemic greatly reduced socioeconomic activity in most wards located
in the north, east, west and middle of the city. The majority (27) of these wards showed a
percentage difference of BANTLI brightness values below −20% (Figure 11, P1). However,
80% (22 out of 27) of the most affected wards in P1 recovered in the first post-pandemic
period (P2), mostly located in the east, are shown by a transfer from dark red (decrease) to
red, bright red and blue colors.
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Unfortunately, instead of continuing to recover, socioeconomic conditions gradually
weakened in P3 to P11 in comparison with P2, as indicated by the spread of the red areas in
the ward map. The poorest performance is seen in P12 and P13 when BANTLI radiance
had fallen to pandemic levels and lower. The impact of COVID-19 on socioeconomic
activity in Madinah (Figure 12) is similar to Makkah. For example, the recovery in the
post-pandemic periods (P2 to P13) had not reached the pre-pandemic level (P0), and P2
showed the strongest recovery compared with the other post-pandemic periods. Moreover,
during P12 and P13, some wards in the south and east were more affected than during the
pandemic period (P1).
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3.4. Change of BANTLI Radiances at the Concentric-Ring Level

The BANTLI difference, (i.e., D9–D9-2, Equation (2)), was also investigated using the
concentric rings, clarifying the influence of COVID-19 at a finer scale compared with the
city and ward boundaries. Figure 13 shows the mean BANTLI brightness difference (black
line) and standard deviation (error bar) for each ring in Makkah during each period.

In general, it is clearly seen that the mean of BANTLI intensity differences fluctuated
most in the rings less than 22 km from the city center during the different periods, whereas
peripheral rings at distances of 22 km and greater exhibited relative stability. In addition,
the majority of rings less than 22 km did not fully recover during the post-pandemic periods.
For example, the means of the BANTLI radiance change were 12 and 5 nWcm−2sr−1 at
the 2 km and 28 km rings in the pre-pandemic period (P0), respectively. These values
declined during the pandemic period (P1) to −32 and −3 nWcm−2sr−1 and then recovered
to −23 and 7 nWcm−2sr−1 during the post-pandemic period (P3) for the same zones.
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Similar to the city and ward level, the first post-pandemic period (P2) revealed the
highest level of recovery compared with the other post-pandemic periods at the ring
level. More importantly, P12 and P13 were the only periods for which the mean BANTLI
brightness change was greater than in the pandemic period, particularly in rings at less
than 20 km. The large error bar indicates that the impact of COVID-19 on a ring is more
varied between the BANTLI pixels, and the reverse is true.

Figure 14 presents the same information for each ring in Madinah. Similar to Makkah,
all rings less than 20 km from the center were more affected by the COVID-19 pandemic
than rings more than 20 km from the center. Interestingly, during P2, the mean BANTLI
brightness difference in rings less than 18 km from the center did not reach the level of
P0, whereas zones further than 18 km did so. Unlike Makkah, there is a clear recovery in
Ramadan (P10) compared with the other post-pandemic periods. Moreover, the recovery
level in zones less than 20 km during P12 and P13 was obvious compared with P1.
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3.5. Change of BANTLI Radiances at the Pixel Level

The BANTLI brightness changes were mapped at the pixel level for six periods and
they were selected for the following reasons: P0 and P1 were selected as the benchmark in
the pre-pandemic and pandemic periods. P2 represents the largest increase in the BANTLI
values compared with P1. Ramadan (P10) and Dhu al-Hijjah (the month of Hajj, P13) were
selected as socioeconomic activity increased in these months (and the pattern of P11 and
P12 is similar to P10). Lastly, P6 represents the middle period between P2 and P10.

Figure 15 shows the spatial distribution of BANTLI differences, with negative values
coded red, and positive values coded blue. It is clear that most of the BANTLI pixels in
Makkah (Figure 15a) and Madinah (Figure 15b) are blue, indicating brightened areas during
the pre-pandemic period (P0). On the other hand, the COVID-19 pandemic (P1) dimmed
the lights in most parts of both cities. With the beginning of the easing of Umrah and
Ziarah restrictions, an increase was noticed in BANTLI in the first post-pandemic period
(P2) of both cities. After, that the BANTLI brightness differences gradually decreased in
post-pandemic periods such as P6 and P10 compared with P2. It is evident that the BANTLI
brightness was significantly decreased in the month of Hajj (P13), particularly in Makkah
(Figure 15a), as the decline in the light exceeds the pandemic period (P1).
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4. Discussion

Different studies showed the capability of the Soumi-NPP in monitoring the anthro-
pogenic activities during the pandemic period [30–34], despite the overpass time (01:30 am),
a period when many socioeconomic activities are reduced. However, Makkah and Mad-
inah are religious, dynamic and special cities due to the presence of the Holy Mosque
and Prophet Mosque, respectively. The Holy Mosque is open 24 h a day for pilgrims
and worshipers, and most of the commercial activities, such as hotels, restaurants, stores
and transportation are working 24 h a day in Makkah. However, this is not the case in
Madinah, as the Prophet Mosque is closes at 00:30, but Quba Mosque is open 24 h a day,
and the restaurants and coffee shops close at around 02:00. This indicates that Makkah is
not affected by the Soumi-NPP overpass time, whereas Madinah is relatively it. Moreover,
the peak hours of the socioeconomic activities during Ramadan in both cities are from 20:00
to 03:00.

NTL data do not reflect the exact distribution of socioeconomic activity due to the
overglow uncertainty, whereas BANTLI provides a more precise measure, being based on
the logical absence of NTL from genuinely bare land. This was confirmed by validation
of BANTLI with a finer, more accurate external source (ISA) that has a strong positive
relationship with socioeconomic activity. Spatially, the BANTLI product substantially
mitigates the overglow effect by excluding most of the unpopulated lit areas and thus
represents the real city structure better than NTL data. Higher correlations were obtained
between the ISA and BANTLI than with NTL in Makkah and Madinah. For example, the
R values were 0.83 and 0.92 (Figure 6f,h) for the BANTLI compared with 0.81 and 0.44
(Figure 6e,g) for the NTL radiances in Madinah.

The impact of the resumption of religious rituals on socioeconomic activity as indicated
by BANTLI was quantified by computing the percentage difference between multiple
BANTLI composites before, during and after the COVID-19 pandemic. In general, the
BANTLI percentage changes at the different spatial levels were varied and decreased during
the post-pandemic periods in Makkah (P2 to P11) and Madinah (P2 to P13) compared with
the pandemic period (P0) but still did not fully recover. For example, decreases during
P1 of −22% and −32% in Makkah and Madinah, respectively, at the city level, indicate
that socioeconomic activity was significantly affected. However, the decision to gradually
resume religious rituals led to a recovery in transportation, retail trade, hotels, restaurants,
shopping sectors, etc. This is reflected in the BANTLI percentage change during the post-
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pandemic periods. The large recovery in P2 in Makkah and Madinah at the different scales
compared with the other post-pandemic periods may be attributed to the arrival of many
pilgrims and worshipers to the Holy Mosque and Prophet’s Mosque without permission,
after hearing the news of the gradual return of religious rituals. In response, the Saudi
government took strict measures during the other post-pandemic periods. The patterns of
BANTLI percentage change at the city level were in line with the numbers of cars entering
the cities and the numbers of flights in KAIA and PMBAIA (Figure 8). The percentage
changes of cars and flights recovered during the post-pandemic periods compared with
the pandemic period but still did not reach pre-pandemic levels. P13 (Figure 8) is the Hajj
month, when there is an official holiday in Saudi Arabia of 10 days. Employees, originally
from Makkah and Madinah and working outside these cities, usually visit their families
during this time. This could explain the marked change in the percentage difference of the
number of cars during P13 in Makkah and Madinah compared with the preceding periods.

Ramadan month (P10) is one of the post-pandemic periods that saw a decrease in
BANTLI percentage change compared with the pandemic and some of the post-pandemic
periods at all spatial scales examined (Figures 11, 12, 14 and 15). This can be explained by
(1) the celebration of this month through increased lighting inside and outside people’s
homes and (2) the increased number of Umrah pilgrims in Ramadan compared to other
months, whether before or after the COVID-19 pandemic. Unlike all the post-pandemic
periods, particularly in Makkah, BANTLI percentage changes in P12 and P13 were greater
than during the pandemic period (Figures 7a, 11 and 13). These findings were expected
because P12 is “Dhu Alqadah” month, when some Hajj pilgrims arrive, and the government
prepares for the Hajj ritual. In addition, P13 is “Dhu Alhijjah” month, when the Hajj ritual is
performed. In 2021, the Saudi government allowed only 60,000 Muslims to perform the Hajj
ritual compared with 2.5 million in 2019. Findings at the ward and concentric-ring levels in
Makkah and Madinah indicate that not all wards and rings were affected equally during
the pandemic and post-pandemic periods. This emphasizes the spatial heterogeneity of the
impact of COVID-19 on socioeconomic activity. Most wards located in or near to the city
center were significantly affected by the COVID-19 pandemic and slowly recovered during
the post-pandemic periods compared with the peripheral wards. All rings that are within
22 km from the center were more affected than distant zones in Makkah and Madinah.
This is mainly due to the relative concentration of population, hotels, shops, restaurants,
etc., in these areas (both wards and rings). The consequence of the limited number of Hajj
pilgrims (P13) in 2021 was the main reason for the dimming of the lights across most pixels
in Makkah and Madinah (Figure 15).

A further important consideration is the extent of natural variation in brightness that
could serve to obscure the strong pandemic impacts observed here. Elvidge et al. [66–68]
argued that there is additional information to be gained by examining all four moments
of mean, variance, skewness and kurtosis in NTL brightness. Their analysis is based on
annual and multiyear reprocessing of Earth Observation Group (EOG) VIIRS nighttime
lights, and they found particular utility in the variance vs. mean relationship, proposing
the reprocessing of the annual global VIIRS data series to add the additional moments.
They identified five distinct zones in the variance vs. mean scatter graph, demonstrating,
for example, areas with similar means but quite different levels of variance due to differing
ground illumination conditions. It is not feasible to reprocess the entire workflow within the
context of the present study based on the Black Marble product, but we undertook an initial
exploration of all four moments for selected sample areas (not included here) of Makkah
and Madinah for the pre- (4 April 2018 to 22 August 2019) and post-pandemic (4 October
2020 to 8 August 2021) periods. Broad patterns are observable which are consistent with
those seen in Elvidge et al. [68]; however, it appears that a different zonation of the variance-
mean scatterplot would need to be developed. A reanalysis which takes into account all
four moments would be an important direction for further studies which seek to interpret
pandemic changes or other long-term changes in NTL.
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BANTLI was developed using freely accessible VIIRS/DNB and ESA WorldCover 2020
data, and it therefore can be applied in other regions. However, the BANTLI product had
some limitations. Firstly, BANTLI was constructed using a bare-land-cover class to reduce
the overglow uncertainty within the populated areas in the NTL product; thus, it will not
perform well in regions that are mainly covered by vegetation, with little bare-land surface
within the populated areas. Secondly, the effective number of high-quality NTL pixels
is uneven for each composite, and this may be a source of uncertainty when computing
the sum for any administrative boundary. Thirdly, regions that are usually cloudy and
rainy will face challenges in obtaining effective high-quality NTL pixels. Fourthly, the
VIIRS DNB is unable to detect light less than 500 nm (LED lights). This is known as “blue
blindness”, and it will underestimate the NTL brightness [69,70]. Fifthly, the time of the
Suomi-NPP overpass (01:30 a.m.) could be a source of uncertainty in most cities, as many
of the socioeconomic activities are reduced at this time. Lastly, the overall accuracy, as well
as commission and omission errors of the ESA WorldCover 2020 and GISD30, may be an
additional source of uncertainty when other land-cover classes are misclassified. In spite
of these challenges, this research exemplifies the usefulness of the new BANTLI product
to quantify change in socioeconomic activity through the various stages of the pandemic,
here reflecting resumption of religious rituals. Thus, the findings of this research could be
compared with other areas associated with different socioeconomic characteristics.

5. Conclusions

VIIRS-DNB nighttime satellite data have been widely used to monitor various aspects
of the impact of natural, man-made or public health crises. However, most applications
were implemented in developed countries and China. Moreover, the overglow uncertainty
within the populated areas was not addressed. In this research, the overgrow uncertainty
of the NTL product was minimized by deriving an index called the Bare Adjusted NTL
Index, BANTLI, through fusing the VIIRS-DNB nighttime and fine bare-land-cover (10 m)
data. The BANTLI product substantially diminished most of the unpopulated lit pixels.
Thus, BANTLI more accurately demarcates city structure compared with the original NTL.
Moreover, BANTLI is more strongly correlated with ISA than NTL. BANTLI was used
to spatially and temporally evaluate the impact of the resumption of religious rituals on
socioeconomic activity during the post-pandemic periods at different spatial scales in
Makkah and Madinah.

The research outputs demonstrate that BANTLI is an efficient proxy for spatiotemporal
changes in socioeconomic activity in Makkah and Madinah. The large decline in the
BANTLI radiances at the different spatial scales gives us a clear indication of the disruption
and damage to socioeconomic life during the COVID-19 pandemic. Overall, the percentage
differences of the BANTLI brightness decreased with varying percentages during the
post-pandemic periods compared with the pandemic period, but they were still below
pre-pandemic levels, suggesting that socioeconomic activities had not fully recovered in
Makkah and Madinah. This is consistent with the analysis of vehicle and flight numbers.
The socioeconomic situation recovered at the beginning of the return of religious rituals (P2)
and then began to recover slowly during the other post-pandemic periods and this may be
explained the arrival of pilgrims and worshipers, after a suspension of 7 months, whether
with or without permission during P2. This research also demonstrates heterogeneity in
terms of (i) time, as BANTLI brightness change during Hajj (P13) was extremely increased
than other periods; and (ii) location, as the central wards and the rings less than 20 km
from the center were much more affected than peripheral wards and rings.

In the absence of detailed data about individual-level socioeconomic activity, this kind
of research provides valuable insights to policymakers for evaluation of plans and policies
that aim to mitigate the consequences of COVID-19 and future pandemic scenarios. Future
work may make use of additional information such as electricity consumption, water
consumption, social media and traffic with the daily nighttime data and should include
the exploration of all four statistical moments of NTL brightness. This may lead to further
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precision in understanding the impact of the COVID-19 pandemic on socioeconomic life
and contribute to the assessment of the corrective steps implemented by the government.
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