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Abstract: The rapid and accurate extraction of wide-area coseismic landslide locations is critical
in earthquake emergencies. At present, the extraction of coseismic landslides is mainly based on
post-earthquake site investigation or the interpretation of human–computer interactions based on
remote sensing images. However, the identification efficiency is low, which seriously delays the
earthquake emergency response. On the basis of the available multisource and multiscale remote
sensing data, numerous studies have been carried out on the methods of coseismic landslide ex-
traction, such as pixel analysis, object-oriented analysis, change detection, and machine learning.
However, the effectiveness of coseismic landslide extraction was low in wide areas with complex
topographic and geomorphic backgrounds. Therefore, this paper offers a comprehensive study of
the factors influencing coseismic landslides and researches rapid and accurate wide-area coseismic
landslide extraction methods with multisource remote sensing and geoscience technology. These
techniques include digital elevation modeling (DEM) and its derived slopes and aspects. An em-
bedded multichannel spectral–topographic feature fusion model for coseismic landslide extraction
based on DeepLab V3+ is proposed, and a knowledge-enhanced deep learning information extraction
method integrating geological knowledge is formed. Using the Jiuzhaigou Ms7.0 earthquake (seismic
intensity VIII) in Sichuan Province, China, a comparison of landslide extraction models and strategies
is carried out. The results show that the model proposed in this paper achieves the best balance in the
accuracy and efficiency of wide-area extractions. Using multiple feature data of coseismic landslides,
the problem of mixed pixels is solved. The rate of the misidentification of landslides as clouds, snow,
buildings, and roads is significantly lower than in other methods. The identified landslide boundaries
are smoother and more accurate, and the connectivity is better. Compared with other methods, ours
can more accurately eliminate landslides not triggered by the Jiuzhaigou earthquake. While using
the image block strategy to ensure extraction efficiency, it also improves the extraction accuracy of
wide-area coseismic landslides in complex backgrounds.

Keywords: coseismic landslide; feature fusion; remote sensing; DEM; deep learning; DeepLab V3+

1. Introduction

Affected by topography, geological structure, and other factors, destructive earth-
quakes (magnitude 4.7) often trigger a large number of landslides. The characteristics of
coseismic landslides include wide distribution and extensive damage. The rapid assess-
ment of landslide distribution after earthquakes can provide critical support for emergency
rescue. Therefore, how to obtain coseismic landslide information quickly and accurately has
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become the focus of effective earthquake emergency rescue and post-earthquake secondary
disaster prevention.

Coseismic landslide extraction is mainly based on post-earthquake field investigation
and the visual interpretation of remote sensing data, which combines spectral features,
texture features, and professional knowledge and experience, and has high accuracy [1,2].
However, due to the lack of expert knowledge support, the extraction efficiency of wide-
area earthquake landslides is low and cannot meet the timeline requirements of earthquake
emergency response. Relevant research has been conducted over the years on accurate
automatic or semiautomatic landslide extraction methods. Several have been developed
according to the similarities and differences in the spatial and temporal characteristics,
imaging mechanism, and scene adaptability of the available data sources. Progress has
been closely related to the development of remote sensing technology, following different
stages, such as pixel analysis for low- and medium-resolution remote sensing, machine
learning for multiscale remote sensing, object-oriented methods for high-resolution remote
sensing, and deep learning methods for multisource data.

Specifically, unsupervised and supervised classification methods, such as statistical
regression, image transformation, and fuzzy C-means clustering, are mostly used to achieve
pixel-scale landslide detection based on medium- and low-resolution remote sensing im-
ages and derived remote sensing indexes [3–16]. Different machine learning methods, such
as artificial neural networks, support vector machines (SVM), and random forests, have
been applied for landslide extraction based on medium- and high-resolution multiscale
remote sensing [17–21]. In recent years, with the rapid development of high-resolution
remote sensing technology [22], object-oriented analysis methods have become more widely
used in landslide extraction research. Compared with medium- and low-resolution re-
mote sensing, landslide identification can be more refined through high-resolution remote
sensing. The object-oriented analysis method takes a homogeneous image of the object
generated by image segmentation as the basic unit of analysis. It comprehensively uses the
spectrum, texture, shape, context, and other characteristics of object segmentation to realize
automatic landslide identification. Numerous object-oriented analysis methods based on
multiscale segmentation, the level set algorithm, and other multi-feature combinations
have been used based on high-resolution remote sensing images and airborne LiDAR data
in different regions [4,23–53]. With the rapid development and extensive application of
artificial intelligence in computer image recognition, more scholars are trying to extract
landslides using semantic segmentation, unsupervised learning, and other deep learning
models and migration learning methods based on multisource data [17,54–64].

In addition, when multitemporal remote sensing images of an earthquake area are
obtained after an earthquake, change detection methods are used to identify coseismic
landslides. Because of the synthetic aperture radar’s (SAR) characteristics, such as its
all-weather operation and fast response, research on landslide detection based on multitem-
poral SAR strength data and coherence changes has also been conducted [65–68]. However,
their results differed due to the area, scatterer characteristics, and algorithm capability.
Detection accuracy is still controversial, especially in low coherence areas [69].

Image spectral information can be used to quickly classify similar pixels into one
category using pixel analysis [70]. However, because of the constraints of low and medium
spatial resolution, the extraction accuracy is usually limited, and it is difficult to accurately
identify landslides of different scales. The method does not consider the geometry, struc-
ture, texture, and other remote sensing characteristics of the target object [52], so the pixel
analysis method is affected by interference from similar types of ground objects. Since it is
difficult to distinguish ground objects with spectral characteristics similar to those of the
landslide, such as bare soil, a river course, etc., the analysis suffers from missed and wrong
classifications, which produces salt and pepper noise, reduced accuracy, and homogeneity
of the classification results [2,70]. To overcome these problems, the object-oriented analysis
for high-resolution images was subsequently widely adopted. This method improved the
accuracy of landslide recognition by employing a combination of image segmentation and
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classification rules for features such as the spectrum, texture, structure, and shape of the
landslide in the image. However, because of the complexity of the data, this method often
relies on human experience for adjusting the feature selection, setting classification rules,
and determining the threshold of segmentation parameters, such as spectral weight, homo-
geneity factor, segmentation scale, etc. Thus, this method often results in high uncertainty,
low automation, and poor timeliness during experiments [47,48,70].

The machine learning method for multiscale remote sensing relies on numerous
landslide feature samples to realize landslide recognition. The research on object-oriented
landslide recognition analysis and machine learning methods has greatly promoted the
development of computer recognition technology. However, the computer recognition-
based methods do not regard a landslide as a complex object within a specific geological
environment; it uses middle- and low-level features, such as spectrum, texture, structure,
etc., and lacks the ability to transfer the image processing and visual interpretation mode
to the computer for automatic recognition. Thus, high-level semantic image information
cannot be described accurately. Hence, the recognition accuracy and availability of this
method are limited and it is still challenging to meet the requirements for its practical
application [2].

Deep learning, such as semantic segmentation, object detection, etc., has been widely
used in computer imaging in recent years. As a data-driven method, its essence is a math-
ematical model composed of multiple nonlinear functions. Its composite processing is a
mathematical process that automatically obtains the characteristics of high-level functions
through multiple low-level features. Nonlinear composite processing with multiple func-
tions can be a more complex function correlation than manual fitting. It can extract more
useful information related to landslide from low-value density data—deep-level abstract
features—without manually designing high-level features. The cost of manual error in
its operation is greatly reduced, and the recognition is efficient and accurate [70–72]. At
present, the research on deep learning in remote sensing information extraction usually
treats remote sensing images as natural pictures. It directly transfers the successful applica-
tion of deep learning in natural pictures to remote sensing information extraction without
considering how to integrate the scientific knowledge related to the research object with
the deep learning model.

In summary, the summary of landslide remote sensing information extraction methods
is shown in Figure 1. Therefore, this study carried out research on the embedded multi-
channel spectral–topographic feature fusion method for extracting coseismic landslides.
This research aimed to effectively integrate the optical image features and the geological
condition data related to coseismic landslides into a deep learning model and establish
a knowledge-enhanced deep learning model for the extraction of coseismic landslides
in order to avoid the uncertainty of results caused by differences in coseismic landslide
characteristics and reduce the subjectivity of coseismic landslide extraction using expert
experience, thus improving the efficiency of extraction. This study will play a great role in
pre-earthquake and post-earthquake assessment. It is embodied in two aspects: accuracy
and efficiency. Specifically, through the methodology of this study, high-precision occurred
landslide data can be provided as basic data before the earthquake, and high-precision
coseismic landslide data can be provided quickly after the earthquake to assist emergency
decision-making.
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2. Methods
2.1. Research Technical Route

The research route for the rapid extraction of coseismic landslide information based on
an embedded multichannel spectral–topographic feature fusion model is shown in Figure 2.
The process includes multisource data acquisition, data processing, coseismic landslide
cataloging and feature combination, sample output and preprocessing, model training,
verification, and comparison.

(1). Multisource data acquisition. Because optical remote sensing and digital elevation
modeling (DEM) data are required for the extraction of coseismic landslides, it is
necessary to obtain multisource time series optical remote sensing images and post-
earthquake satellite stereo mapping data covering the study area. The pre- and post-
earthquake multitemporal optical remote sensing images are mainly based on China’s
land change survey, and the post-earthquake and stereo mapping satellite stereo
image pair data are based on ZY-3 DLC data, which was acquired by the ZY-3 satellite
belongs to the Ministry of Natural Resources, China.

(2). Data processing. Data processing includes the synthesis of cloudless optical remote
sensing images before and after earthquakes and the generation of DEM data after
earthquakes. The former is based on pre- and post-earthquake multitemporal remote
sensing images through the cloud mask and mosaic. The latter is based on the post-
earthquake ZY-3 DLC data and is completed using the methods of “multi class image
pair combined DSM extraction” and “median synthesis filtering”. The above work is
completed using the flow data processing tools provided by PCI.

(3). Coseismic landslide cataloging and feature combination. According to the data results
obtained in (1) and (2), the remote sensing interpretation and cataloging of coseis-
mic landslides are carried out using multitemporal and multisource remote sensing
data. Simultaneously, the spectral band combination and topographic feature data,
including optical remote sensing images, DEM, and its derived data are determined
using consistent resampling, band registration, and combination methods to form a
feature dataset.

(4). Sample output and preprocessing. Sample size (256 × 256) and sample format (PAS-
CAL format) are determined using the cataloging data and coseismic landslides
feature dataset from (3) on the basis of the analysis of the spatial distribution, scale,
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and model input requirements. The sample data are formed containing label masks
and feature data slices, and the radiation consistency and diversity of samples are
improved through sample standardization and sample enhancement processing.

(5). Multichannel spectral–topographic feature fusion model experiment. The sample
data from (4) are randomly divided into the training set, test set, and verification set
in a 6:3:1 proportion. Using a different number of channels, models, and backbone
networks, a multichannel spectral–topographic feature fusion training and testing
model for detecting the same earthquake landslide is obtained. Precision, mIou, F1
score, and other precision evaluation indicators are selected for comparative analysis
of the results, and the embedded multichannel spectral–topographic feature fusion
model proposed in this study is objectively evaluated.
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2.2. Embedded Multichannel Spectral–Topographic Feature Fusion Model

Landslides are affected by many physical factors, including topography and geolog-
ical conditions, as well as natural and human forces. Coseismic landslides are disasters
associated with earthquakes. The micro geomorphic conditions of the hillside before the
landslide are particularly important [49,73], especially the elevation, slope, and aspect of
the natural hillside, which play an important role in triggering the coseismic landslide.

To fully use the features of the coseismic landslide in the optical remote sensing image
and topography, this study proposes an embedded multichannel spectral–topographic
feature fusion coseismic landslide extraction model based on DeepLab V3+. The model is
constructed through the optimization and adjustment of the multichannel feature fusion
and backbone network and is mainly composed of three parts: embedded multichannel
feature fusion, ResNet with atrous convolution, and the encoder–decoder composed of
atrous spatial pyramid pooling (ASPP). The encoder–decoder structure is consistent with
the DeepLab V3+ model structure. The overall structure of the optimized and improved
embedded extraction model is shown in Figure 3.
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based on DeepLab V3+.

2.2.1. Multichannel Spectral–Topographic Feature Fusion Input

To make full use of the multiple features affecting landside extraction, such as im-
ages and topography, we carried out a targeted optimization and improvement of the
conventional DeepLab V3+ model for natural images so that it could realize the integrated
input of multiple features of the target object. The model input was optimized using data
normalization and feature fusion.

Specifically, we first normalized the spectral–topographic features of each band ac-
cording to the following formula:

(PixValue − PixValuemin)/(PixValuemax − PixValuemin) × 255 (1)

Normalized multichannel feature data were then combined with the band combination
method to form a multiband spectral–topographic feature dataset. To ensure that the multi-
band spectral–topographic data could be input to the DeepLab V3+ for feature learning,
we added an embedded pre-convolution operation prior to the DeepLab V3+; we used
three 3 × 3 convolution kernels, the convolution operators with string = 1, and padding = 1
to obtain a feature fusion dataset with channel 3 and constant size. The principle is shown
in Figure 4.
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2.2.2. DeepLab V3+ Model

DeepLab V3+ combines the advantages of the spatial pyramid module and the encoder–
decoder structure. On the one hand, the spatial pyramid module explores multiscale context
information by using multi-sampling rate expansion convolution, multi-receiving field
convolution, or pooling on the input features. On the other hand, DeepLab V3+ introduces
the decoder module, which further integrates the low-level detail features with high-level
semantic features. The encoder–decoder structure captures clearer object boundaries by
gradually recovering spatial information and improving the accuracy of segmentation
boundaries [74].

Specifically, the encoder of DeepLab V3+ comprises the atrous spatial pyramid pooling
(ASPP) module and the backbone network. The atrous convolution is essential to the model
because it reduces the downsampling rate while the receptive field can be guaranteed. The
resulting feature map is not only rich in semantics but also relatively fine, and the original
resolution can be directly restored through interpolation. By modifying the block behind
the backbone network, the ASPP module replaces the lower sampling layer with atrous
convolution and uses it at different rates to control the receptive field without changing the
feature image size to extract multiscale information. ASPP uses multiple parallel atrous
convolutions combined with image-level features (i.e., global average pooling). It can be
seen from Figure 3 that the ASPP module mainly consists of a 1× 1 convolution layer, three
3 × 3 atrous convolutions, and an image-pooling layer. The convolution layer can extract
local features, and the image-pooling layer can extract global features.

Five different-scale features are fused using the concatenation method. After 1 × 1
convolution, high-level semantic features are obtained. The structure of the decoder is
relatively simple. First, the features obtained by the encoder are sampled four times using
bilinear interpolation. The features are fused with the low-level features of the correspond-
ing size in the encoder through the concatenation method. Next, 3 × 3 convolution is
used to further fuse the features, and, finally, bilinear interpolation is used to obtain a
segmentation prediction of the same size as the original image. All upsamples in the
decoder adopt the bilinear interpolation method.

DeepLab V3+ is a model of encoder–decoder architecture that uses the encoder as the
downsampling module and DeepLab V3 to extract features. The decoder is an upsampling
module that uses a simple but effective module to recover the boundary details of an object
by interpolation and other methods and can use expansion convolution to control the
resolution of a feature under the specified computing resources.

2.2.3. Backbone Network Selection

The backbone network of DeepLab V3+ can be any DCNN classification network.
ResNet has been widely used in various feature extractions, and it is used in this study.
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When the deep learning network has deeper layers, the theoretical expression ability will
be stronger. However, when the CNN network reaches a certain depth, the classification
performance will not improve, but will instead result in slower network convergence and
lower accuracy. Even if the dataset is increased and the problem of overfitting is solved,
the classification performance and accuracy will not improve. In response to the above
problems, ref. [75] proposed a residual network to make the model easier to optimize by
adjusting the model structure.

The stacked layer is called a block by the residual network. For a block, the function
that can be fitted is F(x). If the expected potential mapping is H(x), instead of letting F(x)
directly learn the potential mapping, it is better to learn the residual H(x) − x, that is,
F(x) = H(x) − x, so that the original forward path becomes F(x) + x, and F(x) + x is used to
fit H(x). Compared with learning that F(x) is an identity map, it is easier to learn that F(x)
is 0; the latter can be easily realized through L2 regularization. In this way, for redundant
blocks, identity mapping can be obtained by F(x)→ 0 with no performance degradation.
A block composed of F(x) + x is called a residual block. As is shown in Figure 5, several
similar residual blocks are connected in a series to form the ResNet [76].
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ResNet has five main networks with different depths: ResNet18, ResNet34, ResNet50,
ResNet101, and Resnet152. These five networks are divided into five parts: Conv1_x,
Conv2_x, Conv3_x, Conv4_x, and Conv5_x. They are all built according to the above
structure. The differences between networks are mainly due to the differences in block
parameters and the number of intermediate convolutions [75]. ResNet18 and ResNet34
belong to small networks, and ResNet50, ResNet101, and ResNet152 belong to large net-
works. Reference [75] has compared the structure, parameters, accuracy, and computational
complexity (FLOPs) of five networks. According to the results, with an increase in net-
work depth, the computational complexity also increases, e.g., when the network depth
is between 50 and 101 layers, the computational complexity increases from 3.8 × 109 to
7.6 × 109. To balance the image segmentation effect and calculation efficiency of the model
and realize the rapid and accurate extraction of coseismic landslide information after an
earthquake, ResNet50 is preferred as the backbone network in terms of network layers
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and calculation complexity. In the follow-up experiment, the model validation results for
U-Net, ResNet18, ResNet34, and ResNet50 were compared and analyzed.

The ResNet50 network structure is shown in Figure 3 and will not be repeated here.
The literature [76] shows the composition of two important basic blocks in the residual
network structure, namely, the convolution block and the identity block, presented in
Figure 6. The dimensions of the input and output of the convolution block are different and,
therefore, cannot be connected in series; its role is to change the dimensions of the network.
The identity block has the same input and output dimension, which can be concatenated to
deepen the network.
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3. Experiments
3.1. Study Area

Landslides and other secondary earthquake disasters brought on by strong earth-
quakes have caused severe casualties and posed a serious challenge to timely emergency
rescue response [77–83]. On 8 August 2017, a strong earthquake of Ms7.0 magnitude oc-
curred in Jiuzhaigou County, Aba Prefecture, Sichuan Province, with a focal depth of 20 km.
The epicenter elevation was more than 3500 m, and it was 35 km from Jiuzhaigou County
and 210 km from Aba Prefecture. The Jiuzhaigou earthquake occurred in the transition
area between the Qinghai Tibet Plateau and the Sichuan Basin, at the intersection area
of the Huya fault at the east boundary of the Bayan Hara block and the Tazang fault at
the east section of the East Kunlun fault zone. The topography varied, with the elevation
decreasing from 4500 m to 1000 m west to east, and the slope was generally above 30◦. The
geomorphic features mainly included high mountains, deep valleys, slopes, and mountains.
A topographic map of the study area is shown in Figure 7.

All strata in the study area are distributed. Among them, Cambrian and Ordovician
systems are not completely developed and are only sporadically exposed. The late Paleo-
zoic strata are relatively complete and are mainly Devonian, Carboniferous, and Permian.
The Triassic strata of the Mesozoic era are the most widely distributed, lacking the Jurassic
system and scattered in the Cretaceous system. The Cenozoic–Quaternary is less developed
and scattered in basins, valleys, and gullies [77,78,84,85]. A basic geological map of the
study area is as shown in Figure 8. Because of the area’s unique topographic and geomor-
phic makeup and its complex geological background, free conditions have developed at
the front edge, with poor slope stability and susceptibility to landslide formation at the
slope. In addition, because of the amplification effect of the peak acceleration generated by
the ground motion on the seismic action and the degree of damage caused by the change
in the rock mass and slope structure, this strong earthquake produced a large number of
landslides and collapses.
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According to the literature [78], data on the Jiuzhaigou peak ground motion accelera-
tion and seismic intensity released by the China Seismological Bureau and the interpretation
results on the Jiuzhaigou earthquake coseismic landslides show that Jiuzhaigou earthquake-
triggered landslides were essentially distributed in areas with seismic intensity greater
than VIII, and almost all the interpretable seismic landslides occurred in areas with seismic
acceleration greater than 0.15 g. Coseismic landslides in areas with seismic intensity greater
than VIII accounted for about 80% of the total number of Jiuzhaigou earthquake-triggered
landslides. Therefore, the area of the Jiuzhaigou earthquake identified by the China Seis-
mological Bureau in which seismic intensity was greater than VIII is taken as the study
area. This includes the IX degree area of Zhangzha Town, Jiuzhaigou County, Aba Tibetan,
and Qiang Autonomous Prefecture, Sichuan Province, covering an area of 139 km2, and the
VIII degree area of Zhangzha Town, Dalu Township, Heihe Township, Lingjiang Township,
and Ma Hometown, Jiuzhaigou County, Aba Tibetan, and Qiang Autonomous Prefecture,
Sichuan Province, covering an area of 778 km2. The total study area size is 917 km2.

3.2. Dataset

According to the research method determined in Section 2.1, this study collected
multisource data, including pre- and post-earthquake multi temporal remote sensing data,
post-earthquake ZY3 stereo mapping satellite data and its derived data, and seismic related
data, as shown in Table 1. High-precision interpretations of coseismic landslides in the
study area were obtained using the time series comparison method. DSM/DEM data
extraction based on a stereo mapping satellite was also carried out to provide a timelier
high-resolution DEM for the input of topographic features. A list of specific datasets used
in this study is shown in Table 1.

Table 1. List of data used in the study.

Data Type Spatial Resolution Time Data Source

Post-earthquake optical remote
sensing image 5 m After 8 August 2017 Ministry of Land and

Resources, China

Pre-earthquake optical remote
sensing image 2 m/5 m Before 8 August 2017 Ministry of Land and

Resources, China

ZY3 DLC stereo mapping satellite
raw data 2.5 m October 2017–January 2018

Land Satellite Remote Sensing
Application Center, Ministry
of Natural Resources, China

DEM extracted from ZY3
DLC data 5 m October 2017–January 2018 Data processing

Slope 5 m October 2017–January 2018 Data processing

Aspect 5 m October 2017–January 2018 Data processing

Coseismic landslide cataloguing
data based on pre-earthquake and
post-earthquake multi temporal

optical images

— — — — Human–computer interaction
interpretation

Jiuzhaigou seismic intensity data — — 12 August 2017 China Seismological Bureau

Monitoring data of Jiuzhaigou
Seismic Peak Acceleration Station — — 21:19:59, 8 August 2017 China Seismological Bureau

The cloud cover area in the image after the Jiuzhaigou earthquake is relatively large
and had a certain impact on the integrity of the landslide interpretation. However, there is
less cloud cover in the IX and VIII intensity areas, i.e., the study area, especially along the
long axis of seismic intensity, as is shown in Figure 9. The image of the study area meets
the needs of remote sensing interpretation of landslides triggered by this earthquake.
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This study uses the method of comparison of remote sensing images acquired be-
fore and after the earthquake to determine whether the landslide was triggered by the
Jiuzhaigou earthquake. If the landslide is present in the image taken before the Jiuzhaigou
earthquake, and the shape of the image after the earthquake remains unchanged, then
the landslide is considered to predate the Jiuzhaigou earthquake. If the landslide is
not present in the image taken before the earthquake, or exists in the image before the
earthquake but changes in those taken after the Jiuzhaigou earthquake, it is considered
a Jiuzhaigou earthquake-triggered landslide. With this understanding, 937 Jiuzhaigou
earthquake-triggered landslides were determined to have occurred in the study area. They
were mainly small and medium-sized landslides distributed in strips along both sides of
the extension line at the north end of the Huya fault, mostly along roads and valleys [78].

3.3. Evaluating Indicator

In order to quantitatively evaluate the performance of the models, this study used
Precision, Recall, F1 Score, and mIoU to compare the recognition accuracy of the differ-
ent models.

Precision refers to the proportion of the predicted positive and true positive cases,
which accounts for all the predicted positive cases. It mainly refers to the number of targets
that were accurately identified. The calculation formula is as follows:

Precision = TP/(TP + FP) (2)
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Recall refers to the proportion of the parts predicted as positive and actually positive.
It accounts for the proportion of all positive cases, indicating how many correct targets
have been identified. The calculation formula is as follows:

Recall = TP/(TP + FN) (3)

The F1 Score is the harmonic average of the accuracy rate and recall rate. It combines
the accuracy and recall rate results and belongs to a comprehensive evaluation index. When
the F1 value is high, it indicates that the method is effective. The calculation formula is
as follows:

F1 − Score = 2/((1/Precision) + (1/Recall)) = 2TP/(FP + 2TP + FN) (4)

where mIoU calculates the ratio of the intersection and union of the “predicted border”
and “real border”. In image segmentation, this index is usually lower than calculating
the correct classification probability of each pixel directly and is more sensitive to error
classification. FP is a false positive example, FN is a false negative example, TP is a real
example, and TN is a true negative example. Table 2 gives the relevant definitions.

Table 2. Relevant definitions.

Predictive Value = 1 Predictive Value = 0

True Value = 1 TP FN
True Value = 0 FP TN

4. Result

To fully understand the impact of feature input, model selection, and training strategy
on landslide identification, different semantic segmentation models were trained and
tested according to the research methods presented in Section 2. All involved DNNs
were implemented with an NVIDIA Tesla V100 graphics processing unit (GPU), Compute
Unified Device Architecture (CUDA) 10.1, and CUDA DNN library (CuDNN) 10.1.

The feature input of this study included the single-feature optical remote sensing image
and multichannel spectral–topographic fusion features. The model was selected as U-Net
and DeepLab V3+ composed of different backbone networks. The training strategy was
based on the convergence of the loss function of the training set and the verification set dur-
ing the model training process, and the parameters were constantly optimized and adjusted
to avoid overfitting and underfitting and obtain a model with strong generalization ability.

Table 3 lists the experiments carried out with the different models. According to the
differences in the number of input features and considering the differences between the
models (backbone network) and the training strategies, the experiments carried out were
uniformly numbered for subsequent comparative analysis. Among them, 1-1 to 1-5 are
single-image feature inputs (three-band input features), and 2-1 to 2-5 are multichannel
spectral–topographic feature fusion inputs (six-band input features).

Table 3 gives the quantitative accuracy evaluation of the different models for all the
experiments. The evaluation indicators are the Precision, mIoU, Recall, and F1 Scores
discussed in Section 3.3.

It can be seen from the precision evaluation results in Table 4 and Figure 10 that under
the same feature input conditions, the precision evaluation index values of DeepLab V3+ are
higher than those of U-Net. For DeepLab V3+, the accuracy evaluation index is improved
partially with the increase in the depth of the backbone network. The increase in the
number of training epochs also improves the accuracy of the model to a certain extent when
the model continues to converge. Compared with the single-feature input of an optical
image, the increase in feature dimension can significantly improve the model accuracy.
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Table 3. List of experiments carried out in the study.

Experiment Number

Experiment

Feature Input Model
(Backbone Network)

Training Epochs
Feature Selection Number of Bands

1-1

Image (RGB) 3

U-Net 50

1-2 DeepLab V3+
(ResNet18) 50

1-3 DeepLab V3+
(ResNet34) 50

1-4 DeepLab V3+
(ResNet50) 50

1-5 DeepLab V3+
(ResNet50) 100

2-1

Image (RGB)
DEM
Slope

Aspect

6

U-Net 50

2-2 DeepLab V3+
(ResNet18) 50

2-3 DeepLab V3+
(ResNet34) 50

2-4 DeepLab V3+
(ResNet50) 50

2-5 DeepLab V3+
(ResNet50) 100

Table 4. Evaluation indicators of different experiments.

Num Precision mIou Recall F-1 Score

1-1 0.660389 0.708744 0.566244 0.609704
1-2 0.632827 0.717469 0.620872 0.626793
1-3 0.631112 0.724469 0.648415 0.639647
1-4 0.717093 0.747202 0.641909 0.677421
1-5 0.749731 0.750279 0.683364 0.715011
2-1 0.643282 0.713783 0.597672 0.619639
2-2 0.692092 0.73331 0.619586 0.653835
2-3 0.664166 0.740159 0.668856 0.666503
2-4 0.728748 0.750367 0.641902 0.682574
2-5 0.796203 0.760474 0.672002 0.728404
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With the above understanding, we focus on the qualitative comparison of the ex-
perimental results numbered “1-1”, “1-5”, “2-1”, and “2-5” in terms of missed and false
judgments and spatial matching degree of recognition range. Figure 11 shows the identifi-
cation results of the same earthquake landslide from four different model methods with
experiment numbers of “1-1”, “1-5”, “2-1”, and “2-5”.
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We compared the qualitative results from two dimensions. First, when the feature
inputs were consistent (both were single-feature inputs of optical images or multichannel
spectral–topographic fusion features), DeepLab V3+ showed fewer false positives and
a more accurate recognition range than U-Net. In particular, the experiment “2-5”, that
is, the verification results of the embedded multichannel spectral–topographic feature
fusion coseismic landslide extraction model proposed in this study, had a higher degree
of discrimination for mixed pixels, better recognition results for landslide perimeter, and
the rate of its misidentification of clouds as well as buildings, roads, and other ground
objects was significantly lower than that of other methods. Second, compared with the
single-feature input of an optical image, when multichannel spectral–topographic fusion
feature was used as the feature input, whether U-Net or DeepLab V3+ was used, the
model recognition results showed a better recognition effect. According to the verification
results, experiment “2-1” was more accurate than experiment “1-1”; that is, the U-Net
model with geosciences knowledge features was relatively more accurate in identifying
the boundary. The slight spot noise was relatively reduced, but there were some missing
judgments and misjudgments of roads and buildings, which are problematic for identi-
fying large landslides. There were also non-Jiuzhaigou earthquake-triggered landslides.
Compared with “1-5”, the landslide boundary identified by the DeepLab V3+ model with
geoscientific knowledge features in experiment “2-5” was more accurate and smooth, with
better connectivity. Cloud, building, and road misjudgments were less frequent than in
other methods, which helped it to more accurately eliminate landslides not triggered by
the Jiuzhaigou earthquake.

5. Discussion
5.1. The Importance of Multisource Data Feature Fusion

By comparing experimental results, it can be seen that integrating DEM, slope, aspect,
and other known geological features related to the landslide is very helpful in improving
the accuracy of landslide extraction. The multichannel spectral–topographic feature fusion
model, which integrates geological knowledge and optical image features, increases the
feature input dimensions related to landslides on the one hand, and on the other hand,
through deeper backbone networks and training epochs, obtains a more generalized model
for extracting coseismic landslides. As is shown in Figures 12 and 13, the multichannel
spectral–topographic feature fusion model supported by multi feature data has better
capability in boundary accuracy and missed or misjudged landslide identification results.
Moreover, the addition of geosciences knowledge features has the effect of more reliably
excluding buildings, roads, and other features that are easily misjudged as earthquake
landslides. This is consistent with the research conclusions of [58,61] and other studies.
Therefore, the increase in feature dimensions brought about by multisource data fusion
related to the occurrence of coseismic landslides plays an important role in the identification
accuracy of the model.
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5.2. Applicability of the Model for Earthquake Emergency Scenarios

After an earthquake, the extraction of coseismic landslides based on multisource data,
such as multi temporal optical remote sensing images, DEM, and its derived data, is needed
for the multichannel spectral–topographic feature fusion model. Therefore, the applicability
of the post-earthquake coseismic landslide extraction model is largely constrained by the
availability of data. The more data are required, the lower the availability. For example, in
the case of the Jiuzhaigou earthquake, the weather conditions after the earthquake were
poor, and the complete and available optical remote sensing image data for the earthquake
area could not be obtained for a long time. This affected the timeliness of the landslide
detection data acquisition and the response time of the earthquake emergency services.
According to the quantitative and qualitative evaluation results of Section 4, the iterative
extraction of coseismic landslide information can be continued by adjusting and supple-
menting the data input of the multichannel spectral–topographic feature fusion coseismic
landslide extraction model following the order of post-earthquake data acquisition, en-
abling the provision of different levels of coseismic landslide extraction data at different
times for the post-earthquake emergency.

Although we can improve the prediction efficiency of the model by image segmenta-
tion, the prediction efficiency of coseismic landslides will be different in different models
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because of different data feature input dimensions and network depths. Figure 14 focuses
on the time taken by four different models with experiment numbers “1-1”, “1-5”, “2-1”,
and “2-5” to extract the coseismic landslide in the verification area of 142.5408 km2 under
the same hardware and software conditions. U-Net is slightly more efficient than DeepLab
V3+ when feature inputs are consistent. For the same model, when the feature inputs are
different, the feature inputs are positively correlated with the prediction time consumption.
However, in general, the experiment time does not change significantly because of the in-
crease in input features and network layers. Compared with simple models, the embedded
multichannel spectral–topographic feature fusion model of coseismic landslide extraction
shows no dramatic increase in computational complexity when extraction accuracy is
improved. Therefore, in order to ensure the extraction accuracy of wide-area coseismic
landslides, and on the premise that the timeliness of multisource data feature acquisition
is guaranteed, the embedded multichannel spectral–topographic feature fusion model
of wide-area coseismic landslide extraction can be preferentially selected for earthquake
emergencies. However, when multisource data features are difficult to obtain because of
poor weather after the earthquake, satellite transit time, and other reasons, the DeepLab
V3+ with single-image feature input, that is, the model used for experiment No. 1-5 to
extract the wide-area coseismic landslide in the earthquake area, is preferred.
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6. Conclusions

Guided by post-earthquake emergency demands and taking coseismic landslides as
the research object, this study proposed an embedded multichannel spectral–topographic
feature fusion model for the rapid and accurate extraction of wide-area coseismic landslides
that integrates geosciences knowledge and optical images. The model was mainly com-
posed of three parts: embedded multichannel spectral–topographic feature fusion input,
ResNet with cavity convolution, and encoder and decoder composed of atrous spatial
pyramid pooling. Through the improvement and optimization of the network structure,
the model effectively integrated the multiscale features and context information in the
deep learning model while fully utilizing the optical image spectral and texture features
of the coseismic landslide, as well as DEM, slope, aspect, and other topographic and ge-
omorphic features. A knowledge-enhanced deep learning model for coseismic landslide
extraction was constructed, integrating scientific knowledge of research objects. Because
the model adopts separable depth convolution, it reduces the parameter sequence and
ensures computational efficiency.

Based on the Jiuzhaigou earthquake coseismic landslide cataloging data in the study
area, the comparison of the different model experiment results shows that, compared
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with the coseismic landslide identification results of U-Net, DeepLab V3+, and other
classic semantic segmentation networks, the embedded multichannel spectral–topographic
feature fusion model for the rapid and accurate extraction of wide-area coseismic landslides
proposed in this study integrates geological knowledge and optical images and realizes a
more accurate identification, at both the quantitative and qualitative levels. In particular,
the division of mixed pixels effectively alleviates the problem of missed or incorrectly
judged coseismic landslides caused by complex scenes including features such as buildings,
roads, cloud and snow cover, shadows, etc. The research shows that with a wide-area
complex background, the coseismic landslide extraction model provides the following
verified accuracy scores: Precision—0.796203; Recall—0.672002; F1 score—0.728404. This
method realizes the accurate extraction of coseismic landslides in “big background and
small target” scenes to a certain extent, greatly reduces labor costs, saves time, and can
meet the needs of a post-earthquake emergency by obtaining timely, high-precision, and
wide-area coseismic landslide data.

With the development of remote sensing technology, the abilities of multisource data
support and information extraction has been improved. The deep learning method has
replaced shallow features, such as spectral texture, with high-level semantic information,
improving recognition accuracy. However, because the triggering conditions of coseismic
landslides differ from those of other types of landslides, they often show irregular shapes
caused by the impact of ground motion without obvious texture characteristics. Mixed
pixels and background noise pose a serious problem. The high-precision extraction of
coseismic landslides depends on high-quality and robust coseismic landslide data. In the
future, the training dataset will be further expanded by integrating the scientific knowledge
of the research object, including multisource remote sensing images, quantitative indexes,
and topographic and geomorphological data, grounded in in-depth research on the trigger-
ing mechanisms of coseismic landslides, in order to build a better knowledge-enhanced
deep learning model for coseismic landslide extraction.
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