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Abstract: Hyperspectral video with spatial and spectral information has great potential to improve
object tracking performance. However, the limited hyperspectral training samples hinder the devel-
opment of hyperspectral object tracking. Since hyperspectral data has multiple bands, from which
any three bands can be extracted to form pseudocolor images, we propose a Transformer-based
multimodality information transfer network (TMTNet), aiming to improve the tracking performance
by efficiently transferring the information of multimodality data composed of RGB and hyperspectral
in the hyperspectral tracking process. The multimodality information needed to be transferred
mainly includes the RGB and hyperspectral multimodality fusion information and the RGB modal-
ity information. Specifically, we construct two subnetworks to transfer the multimodality fusion
information and the robust RGB visual information, respectively. Among them, the multimodality
fusion information transfer subnetwork is designed based on the dual Siamese branch structure. The
subnetwork employs the pretrained RGB tracking model as the RGB branch to guide the training of
the hyperspectral branch with little training samples. The RGB modality information transfer subnet-
work is designed based on a pretrained RGB tracking model with good performance to improve the
tracking network’s generalization and accuracy in unknown complex scenes. In addition, we design
an information interaction module based on Transformer in the multimodality fusion information
transfer subnetwork. The module can fuse multimodality information by capturing the potential
interaction between different modalities. We also add a spatial optimization module to TMTNet,
which further optimizes the object position predicted by the subject network by fully retaining and
utilizing detailed spatial information. Experimental results on the only available hyperspectral
tracking benchmark dataset show that the proposed TMTNet tracker outperforms the advanced
trackers, demonstrating the effectiveness of this method.

Keywords: hyperspectral object tracking; Transformer; multimodality; Siamese network

1. Introduction

Hyperspectral object tracking is a challenging task emerging recently [1–3], which can
be applied in video surveillance camouflage targets, autonomous driving, and so on. Its
purpose is to estimate the object’s state (e.g., position, size, etc.) in subsequent frames by
that of the object in the initial frame in the hyperspectral video. Currently, most tracking
algorithms are developed for RGB video research and have made some achievements [4–6].
However, the RGB modality image has inherent limitations in describing the physical
characteristics of objects, making it easy to cause RGB-based tracker drifts in some complex
but common scenarios, such as the object and backgrounds’ colors being similar. Compared
with the RGB image that describes visual information only by red, green, and blue channels,
the hyperspectral image (HSI) with a three-dimensional structure can record the location
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of the object space and the continuous spectral information simultaneously. As shown in
Figure 1, HSI can provide additional spectral information to break through the limitations of
visual characteristics, which proves that HSI has the potential to cope with the challenges in
the tracking process. Therefore, using hyperspectral video to perform the tracking task can
offer more opportunities for achieving high-performance tracking, which has significant
research value.

(a) (b)

Figure 1. An example of the object and background colors are similar in the RGB image, but their
spectral information is inconsistent. (a) shows the relationship between the object and the background
in the RGB image, in which the object is marked with a yellow bounding box. (b) displays the spectral
response curves of two pixels from the object and the background, respectively.

Some works have preliminary explored hyperspectral object tracking methods [1,7–10]
in recent years. Similar to the RGB object tracking method, the hyperspectral object tracking
algorithm can be divided into two kinds; one is based on correlation filtering, and the
other is based on deep learning (DL) [11,12]. The MHT [1] method proposed by Xiong
et al. is a representative correlation filtering-based hyperspectral object tracking method.
MHT adopts two feature descriptors to characterize material information of HSIs and
further embeds them into the background-aware correlation filter, yielding the tracking
based on material. However, compared with the deep features obtained by deep neural
networks, the handcrafted features usually adopted by the correlation filtering method
have difficulty with fully describing hyperspectral information, which often limits the
hyperspectral object tracking performance. Therefore, applying the DL method in the
hyperspectral object tracking field is more competitive for accurately predicting the object’s
state in the tracking process.

However, the limited amount of hyperspectral image sequences cannot meet the
requirements of deep learning for large-scale training samples, which undoubtedly makes it
difficult to promote the development of DL-based hyperspectral tracking algorithms [13,14].
Compared with HSI sequences, RGB image sequences have massive labeled samples and
richer visual details (such as texture, color, and so on). Thus, the RGB object tracking
method based on DL often has higher tracking accuracy. Therefore, exploring how to
transfer the advantages of the DL-based RGB modality tracking method to hyperspectral
tracking to alleviate the problem of low model accuracy and insufficient generalization
ability caused by the shortage of training sample data in hyperspectral tracking is crucial
for effectively using the DL method to improve the performance of hyperspectral modality
object tracking.

At present, the method of successfully transferring the advantages of the RGB modality
tracking method based on DL to the field of hyperspectral object tracking is to process
hyperspectral modality data using the RGB tracking model based on DL trained by large-
scale datasets to capture robust visual-similar features from the hyperspectral modality.
These methods improve tracking performance by successfully transferring the robust RGB
modality information in the hyperspectral object tracking process [2,3,15]. The BAE-Net [2]
method proposed by Li et al. is an excellent and representative DL-based work. BAE-Net
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first introduces a band attention module to learn the relationship among hyperspectral
bands for generating band weights and divides the hyperspectral image into multiple three-
channel images according to these weights. Then, these images are input into a deep RGB
tracking model, transferring multiple visual-similar information from hyperspectral data
for the integrated prediction of the object position. Consistent with the idea of BAE-Net,
the SST-Net [3] method proposed by Li et al. also divides HSI bands and uses the depth
tracker for integrated tracking. The difference is that SST-Net considers the spatial–spectral–
temporal information in the hyperspectral video when acquiring the importance of bands,
which can model the relationship between bands of HSIs better, thus converting HSIs into
more valuable three-band images for depth tracking. Unlike the above methods, the HA-
Net [15] method proposed by Liu et al. is another meaningful and representative work of the
DL-based hyperspectral object tracking task. HA-Net leverages the dual Siamese network
framework to perform hyperspectral object tracking, using the hyperspectral information
to improve the performance of the RGB Siamese tracking network, which can make the
model more discriminative. Specifically, the RGB Siamese network is used to obtain visual-
similar features from false-color images converted from hyperspectral data and then get
classification and regression response maps of the false-color data. The hyperspectral
Siamese network is used to obtain the classification response map of the hyperspectral data.
Two classification response maps are merged to enhance the network’s ability to distinguish
the object and the background. Unfortunately, although they have achieved preliminary
success in transferring the RGB tracking advantages to hyperspectral tracking by using the
DL-based RGB tracking model to transfer the RGB modality information, they still do not
fully play the role of hyperspectral information to improve object tracking performance.

Effective use of the pretrained RGB tracking model based on DL to transfer RGB
modality information in hyperspectral object tracking while fully using hyperspectral data
information is essential to achieve high-performance hyperspectral tracking. Multimodality
fusion tracking tasks have become popular recently [16–18], which can improve tracking
performance by efficiently combining the information of different modalities to supplement
the inherent defects of single-modality. It is well known that extracting any three bands
from hyperspectral data can form pseudocolor images. Therefore, the hyperspectral object
tracking task can be regarded as multimodality object tracking based on the hyperspectral
and pseudocolor video. Thus, while using the pre-trained RGB model to transfer RGB
modality information, it is worth to explore that introducing the idea of multimodality
tracking into the object tracking field based on the single hyperspectral modality, which
can realize the full utilization of hyperspectral data by effectively transferring the fusion
information of multimodality data composed of RGB and hyperspectral, thereby improving
the performance of hyperspectral tracking. In addition, the successful application of the
Transformer model in multimodality tasks [19–21] shows that the model can achieve the
purpose of information combination by efficiently capturing different modality relations
to fuse information. Therefore, it has great potential to improve the performance of the
tracking task by using the Transformer model to combine different modality information.

Based on these have been mentioned, we propose a Transformer-based multimodality
information transfer network (TMTNet) for hyperspectral object tracking, aiming to fully
transfer the information of multimodality data composed of RGB data and hyperspectral
data to enhance the object tracking’s performance based on single hyperspectral modality.
In this work, the multimodality information that needs to be transferred mainly includes
the fusion information of multimodality data composed of RGB and hyperspectral and the
RGB modality information. The information transfer is realized through the corresponding
pretrained network to alleviate the deep model’s low accuracy and insufficient general-
ization ability caused by the lack of hyperspectral training samples. The RGB pretrained
network is trained through tens of millions of RGB training samples, which can predict
the object location robustly in unknown scenes. However, relative to the RGB data scale,
no large-scale dataset containing RGB and hyperspectral video data pairs can be used to
provide the training samples required for the pretrained multimodality fusion network. To
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this end, we adopt the dual branch fusion structure, which uses the DL-based pretrained
RGB model as the RGB branch to process RGB data and uses the RGB branch to guide the
training of the hyperspectral branch to realize that modeling the general representation
ability of hyperspectral features with a small number of training samples, thus obtaining
the pretrained RGB-hyperspectral multimodality fusion model with certain generalization
ability. It is worth noting that the existing combination of RGB and hyperspectral video
data is not entirely ideal (it has some differences, such as a spatial resolution difference),
but this does not affect the construction of the relation of RGB and hyperspectral video
data using the Siamese network based on the known two modality ground truth. This is
because, in the training process, the template patch and the search region as the actual
input of the Siamese network are all clipped based on the ground truth of each modality
data, and the size of the corresponding area after the clipping of the two modality data is
fixed and the same. Therefore, even if the two modality data are not entirely matched, it
has little effect on the Siamese network-based fusion model for training the two modalities.

It is well known that multimodality fusion information not only contains the advan-
tages of each modality data but also complements the shortcomings of single-modality data,
which is conducive to improving tracking performance. To fully utilize hyperspectral infor-
mation from the perspective of multimodality fusion information transfer, we construct
a multimodality fusion information transfer subnetwork (trained by the multimodality
data composed of RGB and hyperspectral) in TMTNet, to predict the object position in
the hyperspectral video by capturing the multimodality-similar fusion information from
hyperspectral data in the testing process. The critical parts of the subnetwork include a dual
Siamese network-based branch structure and a multimodality fusion module, which are
used to process different modality data and fuse their semantic information, respectively.
Specifically, a pretrained RGB Siamese network model based on DL is used as the RGB
branch to process pseudocolor data to obtain general, robust, and descriptive visual-similar
features. Then, a Siamese 3D CNN is designed as the hyperspectral branch to process
hyperspectral data. The Siamese 3D CNN obtains the hyperspectral modality-specific
information by adopting the 3D convolution kernel to slide jointly between the spatial and
spectral dimensions of the hyperspectral data. In addition, given the Transformer model’s
advantage in combining multimodality information, the multimodality fusion module is
designed based on the Transformer model. This module (termed TIIM) adopts the self-
attention mechanism of the Transformer to interact the semantic information generated by
different modality branches adaptively to achieve multimodality information fusion. There-
fore, the constructed multimodality fusion information transfer subnetwork can obtain
multimodality-similar fusion information from hyperspectral data by effectively combining
pseudocolor and hyperspectral information based on ensuring a certain generalization
ability to achieve accurate prediction of the object location.

To further improve the tracking network’s generalization and accuracy, on the ba-
sis of the multimodality fusion information transfer subnetwork, we introduce a good-
performance RGB tracking model as the other tracking subnetwork into TMTNet, for
transferring the robust RGB modality information. The RGB modality information transfer
subnetwork maximizes the ability of the network to track objects in unknown complex
scenes by adding robust visual-similar features of the pseudocolor data to the tracking
model. Then, two sets of response maps generated by two subnetworks are employed
to jointly predict the object’s position to make the tracking results more accurate. The
mentioned above are essential components of the subject network in TMTNet. In addition,
to obtain a higher-quality estimation bounding box of object tracking, we also add a spatial
optimization module (SOM) to TMTNet, which further optimizes the object position pre-
dicted by the subject network by fully retaining and utilizing detailed spatial information.
The experimental results on the only available hyperspectral tracking benchmark dataset
currently [1] show that our method achieves leading performance, outperforming advanced
trackers. The proposed TMTNet is an extension of our previous work TrTSN [22], in which
TrTSN is the champion scheme of the Hyperspectral Object Tracking Competition 2022.
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Compared with TrTSN, TMTNet employs the independent RGB tracking model trained
by large-scale datasets as the RGB modality information transfer subnetwork and adds
a spatial optimization module to optimize the tracking performance, achieving a similar
tracking accuracy to that of TrTSN, which indicates that the hyperspectral object tracking
method designed from the perspective of multimodality information transfer is flexible,
simple, and effective. The main contributions of this paper are summarized as follows.

1. We propose a multimodality information transfer network for hyperspectral object
tracking, which improves the tracking performance based on the single hyperspectral
modality by efficiently transferring the information of multimodality data composed
of RGB and hyperspectral. This is the first time that the idea of multimodality tracking
is introduced into single-modality object tracking, which provides a new idea for
achieving high-performance hyperspectral object tracking.

2. We construct two subnetworks in the subject network of TMTNet to transfer the
semantic information of multimodality data from different angles in the hyperspectral
tracking process, thus improving the network’s ability to predict the object’s location.
Among them, one subnetwork is used to improve the tracking performance by trans-
ferring the multimodality fusion information containing the complementary features
of RGB and hyperspectral data. The other subnetwork is used to enhance the tracking
network’s generalization and accuracy by transferring robust RGB visual features
using the deep-learning-based RGB model trained by large-scale datasets.

3. We design an information interaction module based on Transformer (TIIM) in the mul-
timodality fusion subnetwork of the subject network, which uses the Transformer’s
self-attention mechanism to adaptively capture the potential interactions between
the semantic information generated by different modality branches to achieve mul-
timodality information fusion. As far as we know, this is the first application of the
Transformer model to combine different semantic information in hyperspectral object
tracking.

The rest of this paper is organized as follows. In Section 2, we describe the Transformer-
based multimodality information transfer network in detail. The experimental detail is
presented in Section 3. In Section 4, we present the experimental results and analysis, and
finally, in Section 5, we conclude the paper.

2. Methods
2.1. Network Architecture

The proposed Transformer-based multimodality information transfer hyperspectral
object tracking network (TMTNet) transfers the information of multimodality data com-
posed of RGB and hyperspectral to hyperspectral tracking by using the corresponding
network model, which can fully use hyperspectral information from different angles to
achieve accurate prediction of object location. The network not only contains a subject
network part to predict the object’s primary location but also a spatial optimization module
(SOM) to optimize the quality of the object bounding box. The subject network contains a
multimodality fusion information transfer subnetwork and an RGB modality information
transfer subnetwork, which are used to obtain multimodality-similar fusion information
and visual-similar information from hyperspectral data, respectively, aiming to achieve the
tracking performance improvement by fully using hyperspectral data. In addition, this
network has an anchor-free architecture, making the tracking network more concise. The
architecture of the TMTNet is introduced in Figure 2.
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Figure 2. The proposed TMTNet’s architecture. The part with the blue border box describes the
structure of the subject network. The modules connected by orange arrows in the subject network are
components of the multimodality fusion information transfer subnetwork. The remaining modules
are components of the RGB modality information transfer subnetwork. The yellow module is related
to processing hyperspectral data, whereas the purple module is related to processing pseudocolor
data. TIIM is the Transformer-based information interaction module,⊕ represents the merge operator
and SOM describes the spatial optimization module. ’BP’ represents the object’s bounding box
predicted by the subject tracker.

In this work, the hyperspectral data are regarded as the multimodality data composed
of the hyperspectral data (with 16 bands) and pseudocolor data (consisting of 3-band hyper-
spectral data). As we can see, the subject network in TMTNet mainly includes three Siamese
network branches, an information interaction module based on Transformer (TIIM), and
two sets of prediction heads. Each set of prediction heads consists of a classification predic-
tion head and a regression prediction head. Among them, the Siamese 3D CNN branch,
the Siamese 2D CNN branch, the TIIM, and a set of prediction heads are components in
the multimodality fusion information transfer subnetwork. The rest parts belong to the
RGB modality information transfer subnetwork. The overall input of the network is the
hyperspectral data and pseudocolor data formed by the hyperspectral data. First, three
Siamese network branches are adapted to process the hyperspectral and pseudocolor data
to generate three different semantic information. The Siamese 3D CNN branch is used to
process hyperspectral data, while the other two are applied to process pseudocolor data.
Second, the TIIM is adopted to integrate the semantic information obtained by Siamese
3D CNN and Siamese 2D CNN branches adaptively to generate the multimodality-similar
fusion feature that includes the information of the hyperspectral data and pseudocolor
data. Finally, two sets of prediction heads are used to predict the multimodality-similar
fusion feature obtained by the second step and the visual-similar feature obtained from the
Siamese Transformer branch. The response-level fusion method is used to merge the gener-
ated two sets of response maps to obtain the final response maps. The final classification
and regression response maps are employed to jointly predict the object’s primary location.
TMTNet also contains a spatial optimization module, which is used to optimize the object’s
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primary location predicted by the subject tracker, thereby achieving higher-performance
object tracking.

2.2. The Subject Network of TMTNet

The subject network is vital to ensure the tracking accuracy of TMTNet. The subject
network consists of a multimodality fusion information transfer subnetwork and an RGB
modality information transfer subnetwork. From the perspective of multimodality fusion
information transfer, the multimodality fusion information transfer subnetwork obtains
multimodality-similar fusion information of hyperspectral data to improve tracking per-
formance. From the standpoint of RGB modality information transfer, the RGB modality
information transfer subnetwork gets robust visual-similar features of hyperspectral data
to improve the ability of the network to predict the object position in unknown complex
scenes accurately. Specifically, the multimodality fusion information transfer subnetwork
includes two Siamese network branches, a TIIM, and a set of prediction heads. The RGB
modality information transfer subnetwork has a Siamese network branch and another set
of prediction heads. The hyperspectral video data is processed by two subnetworks and
generates two response map sets. Then, the response-level fusion method is used to merge
them as the final response maps for predicting the object position. The details are described
as follows.

2.2.1. Three Siamese Network Branches

Fully obtaining the hyperspectral semantic information is the basis for enhancing the
network’s ability to accurately predict the object’s location in the hyperspectral tracking
process. Given the Siamese trackers’ exemplary performance in RGB object tracking [23–26],
we employ the Siamese network to extract hyperspectral data features. We construct three
Siamese network branches (Siamese 3D CNN, Siamese 2D CNN, and Siamese Transformer)
to fully get the hyperspectral semantic information from different angles. The hyperspectral
data is first regarded as the multimodality data composed of the hyperspectral data (with
16 bands) and pseudocolor data (consisting of 3-band hyperspectral data) and then input
into the network.

Hyperspectral data and pseudocolor data need to be preprocessed before inputting
Siamese network branches. Generally, the first frame of the video data containing the object
ground truth is selected as the template image, and the rest of the frames are the search
images. In the template image, the region extending from the object’s center to twice the
side length is viewed as the template patch, which contains information about the object
and its local surrounding scene. In the current frame, the search region is the area that
extends from the object center in the previous search image to four times the length of the
side. The search region typically covers the object’s possible range. The template patch and
search region are then sent to the Siamese branch for processing.

Each Siamese network branch has the backbone and information transmission parts.
The backbone is applied to extract the template patch and search region features. The
information transmission part is utilized to transmit the template information to the search
region. The Siamese network’s structure is shown in Figure 3. Each Siamese network has
two backbones with shared parameters and the same structure. The structure or parameters
of the backbone in the three Siamese branches are inconsistent.

In the multimodality fusion information transfer subnetwork, inspired by [27], we
design the 3D convolution neural network as the backbone in the Siamese 3D CNN branch.
The spatial–spectral joint information of hyperspectral data can be extracted by utilizing
the 3D convolution kernel naturally and elegantly, as shown in Figure 4. The kernel size in
the backbone of the Siamese 3D CNN branch is listed in Table 1. In addition, in the Siamese
2D CNN branch, the pretrained ResNet-50 is exploited in [28] as the backbone to obtain the
visual-similar feature of pseudocolor data.
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Table 1. The convolutional layers’ parameter in the Siamese 3D CNN’s backbone.

Block Name Kernel Name Kernel Number Kernel Size (H,W,B)

Block #1
conv1 256 7,7,5

conv1_1 256 3,3,3
conv1_2 256 3,3,1

Block #2 conv2_1 256 1,1,1
conv2_2 256 1,1,3

Block #3 conv3_1 256 1,1,1
conv3_2 256 1,1,3

Kernel size represents the kernel size in the backbone of the Siamese 3D CNN branch.

In this subnetwork, the cross-correlation operation is adopted to transmit the template
patch information and the search region information in Siamese 3D CNN and Siamese
2D CNN branches. Notably, the Siamese 3D CNN branch adopts two cross-correlation
operations to calculate the depth-correlation of features obtained by Block #2 and Block #3
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of the HSI backbone. In addition, the Siamese 2D CNN branch uses three cross-correlation
operations to perform depth-correlation calculations of the RGB backbone’s features. A
total of two depthwise cross-correlation features (transmitted features) are generated by
Siamese 3D CNN and Siamese 2D CNN branches, which need to be further input into the
TIIM to fuse different modality information.

In the RGB modality information transfer subnetwork, the pretrained ResNet-50 is
also employed as the backbone of the Siamese Transformer branch to process pseudocolor
images. In addition, this branch introduces the Transformer’s attention module into the
information transmission part (termed TIT), which can fully transmit the information of
pseudocolor data by considering the nonlinear interaction between the global information
of the template patch and the search region. TIT is the significant component of the Siamese
Transformer branch, composed of four feature transmission layers and a separate feature
transmission part. The structure of TIT is shown in Figure 5. Each feature transmission
layer includes two Feature Self-Augment (FSA) modules and two Feature Cross-Augment
(FCA) modules. The FSA module is used to enhance the template patch and search region’s
features, and the FCA module plays the role of transmitting both pieces of information.
Spatial position coding adds position information to the FSA and FCA modules. The FSA
module and the FCA module’s structure are shown in Figure 6.
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Figure 5. The structure of TIT. FSA represents the Feature Self-Augment module, and FCA means the
Feature Cross-Augment module.
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Figure 6. The structure of TIT. (a) shows the FSA structure, and (b) displays the FCA structure.

From Figure 6a, the FSA module has one input and one output. In the FSA module,
the features are enhanced using the multiheaded self-attention with the residual form. This
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module achieves image feature enhancement by better associating the semantic information
of the image, which can be described as

XSA = X + Multi_Head(X + Px, X + Px, X), (1)

the symbol Px ∈RHW×C indicates the spatial position coding, and XSA ∈RHW×C represents
the enhanced features.

Figure 6b shows the FCA module has two inputs and one output. The features of the
template patch and the search region are enhanced by the FSA module and then used as the
input of the FCA module, which can use the multihead cross-attention in the FCA module
to achieve the object information transmission better. In addition, a Feedforward Network
(FFN) is added to the FCA module to increase the model’s fitting ability. The FCA module
can be described as

X̃CA = Xq
SA + Multi_Head(Xq

SA + Pq
SA, Xkv

SA + Pkv
SA, Xkv

SA), (2)

XCA = X̃CA + FFN(X̃CA). (3)

The symbol Xq
SA ∈ RH1W1×C is one branch’s input feature, and Xkv

SA ∈ RH2W2×C stands
for that of the other. Correspondingly, Pq

SA ∈ RH1W1×C is the spatial position coding of
Xq

SA, and Pkv
SA ∈ RH2W2×C is that of Xkv

SA. XCA ∈ RH1W1×C represents the output of the
FCA module.

More details can be found in the literature [29].

2.2.2. Transformer-Based Information Interaction Module

The Transformer model [30] is constructed based on the attention mechanism, which
makes a good performance in multimodality fields, such as image–text conversion [31],
video retrieval [32], and multimodality detection [33]. Therefore, the Transformer model
has great potential in capturing the relationship between different modality information.
Therefore, we design an information interaction module based on Transformer (TIIM) to
fuse multimodality information. The module utilizes the Transformer’s self-attention mech-
anism to adaptively capture the potential interactions between the semantic information
obtained from Siamese 3D CNN and Siamese 2D CNN branches to achieve multimodality
information fusion. The structure of TIIM is shown in Figure 7.
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Figure 7. The structure of TIIM.

First, two features obtained by different Siamese branches, T1 ∈ RHTWT×C and
T2 ∈ RHTWT×C, are concatenated to get TIIM’s input T ∈ R2HTWT×C:

T = Concat(T1, T2). (4)
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Then, the input information is adaptively and fully integrated by the mechanism of
multihead self-attention with the residual’s form:

T̃ = T + Multi_Head(T + Pt, T + Pt, T), (5)

where Pt ∈ R2HTWT×C encodes the spatial position of T.
In addition, an FFN module is used for this module, and finally, the output Y can be

described as
Y = T̃ + FFN(T̃). (6)

2.2.3. Response-Level Fusion

Like most anchor-free Siamese trackers, the proposed TMTNet tracker uses classifica-
tion and regression response maps to predict the object’s location. Two sets of prediction
heads (each set of prediction heads includes a classification prediction head and a regression
prediction head) are used to process the multimodality-similar fusion feature of hyperspec-
tral data generated by TIIM and the visual-similar feature of hyperspectral data obtained
by the Siamese Transformer branch, respectively, to get two sets of response maps. We
adopt the response-level fusion method to integrate two sets of response maps into a set
of average response maps and use the merged response maps to predict the object in the
hyperspectral tracking process. The final response maps R is shown as follows:

R =
1
N

N

∑
i=1

Ri, (7)

where N represents the total number of interactive features, and Ri represents the response
map of the ith interactive feature.

Compared with the decision-level fusion method that needs to directly integrate the
final prediction results (the object bounding box predicted by the sub-network) of the two
sub-networks, the classification and regression maps of the transferred multi-modality
features of two sub-networks are fused at the response-level, which not only reduces the
excessive dependence on the prediction results but also uses the information of different
transferred features effectively, improving the tracking network’s performance.

2.3. The Spatial Optimization Module

Inspired by [34], to further obtain a higher-quality estimation bounding box of object
tracking, a spatial optimization module (SOM) is introduced in the tracking framework,
which further optimizes the object position predicted by the subject tracker by fully re-
taining and utilizing detailed spatial information, thereby achieving higher performance
object tracking.

The SOM’s structure is also designed based on the Siamese network, as shown in
Figure 8. Unlike the information transmission part mentioned above, the module uti-
lizes pixelwise correlation operations to transmit features for preserving spatial detail
information better. In addition, to fully use spatial information, the module adopts the
corner prediction head and the auxiliary mask prediction head to predict object position
for obtaining a more accurate object bounding box.

Specifically, the template branch of the SOM is initialized in the same way as the
subject tracker, which is initialized by the template frame with ground truth. In each
subsequent frame, the search branch of SOM predicts the object position further based on
the concentric search region extended twice of the object bounding box indicated by the
subject tracker, to obtain a more accurate object bounding box.

It can be noted that the SOM’s search region is about twice the object’s size, which is
smaller than that of the subject tracker. There are two main reasons for choosing a smaller
search region. One reason is that a smaller search region suppresses cluttered backgrounds
and enables the model to be more concerned with detailed spatial information, facilitating
precise positioning. The other reason is that the smaller search region also reduces the
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computational cost so that the optimization module can improve the tracking performance
of the subject tracker with almost no speed loss.
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Figure 8. The structure of the SOM. Among them, ‘GT’ represents the groundtruth of the object, and
‘BP’ represents the object’s bounding box predicted by the subject tracker.

2.3.1. Pixelwise Correlation

For the SOM with the Siamese structure, preserving the spatial detail information in the
information transmission part between the template patch and the search region as much
as possible is critical for optimizing the tracking results effectively. Most methods with
the Siamese structure utilize single cross-correlation [35] or deep cross-correlation [28,36]
operations for information transmission at present. However, the naive correlation operator
or the depth correlation operator uses the entire template patch feature as the kernel of the
search region feature to calculate the correlation and transmit information, which blurs the
spatial information to some extent. Therefore, information transmission should be carried
out in a way that is more beneficial to preserve spatial details in SOM.

In this work, SOM adopts the pixelwise correlation [37] operation to transmit the
template patch and search region’s information, to form feature representations with rich
spatial detail information. The schematic diagram of pixel-level correlation operation is
shown in Figure 9. Pixelwise correlation is used to achieve information transmission be-
tween pixels in the template patch and search region. Denote the template patch and search
region’s features extracted from the optimization module’s backbone as Ft ∈ RC×Ht×Wt and
Fs ∈ RC×Hs×Ws , respectively. Among them, C is the feature channels’ number, Ht (Wt) and
Hs (Ws) are the height (width) of the template patch and the search region’s feature map.
To calculate the pixelwise correlation, first, the template patch features are divided into
Ht ×Wt small kernels Fti ∈ RC×1×1, and the template patch features set can be expressed
as Ft = {Fti|i = 1, 2, ..., Ht × Wt}. After that, the correlation between each element Fti in
the template feature set Ft and the search region feature Fs is calculated separately. After
correlation, Ht ×Wt correlation maps Ci ∈ RH×W with the size of H ×W can be obtained,
and the set of correlation maps can be denoted as C = {Ci|i = 1, 2, ..., Ht ×Wt}. The process
can be described as follows:

C = {Ci|Ci = Fti ? Fs}i=1,2,...,Ht×Wt , (8)

where ? represents the naive correlation operator.
Pixelwise correlation ensures that each pixel in the template frame feature is associated

with a correlation map, which can fully preserve the spatial detail information of the object
and avoid the feature blurring caused by the large correlation window that results in
insufficient utilization of spatial information. Therefore, using the pixelwise correlation
operation in the information transmission part to transmit information is beneficial for
further optimizing the object position predicted by the subject tracker.
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Figure 9. The schematic diagram of pixel-level correlation operation. The yellow star symbol denotes
the naive correlation operator.

2.3.2. Corner Prediction Head

In the optimization module, selecting the prediction head that can fully use spatial
information to estimate the object bounding box is important for successfully optimizing
the object position predicted by the subject tracker. Many deep-learning-based Siamese
trackers [28,35] employ a two-stage strategy to predict the current frame object state.
Generally, the two-stage strategy is achieved by two prediction heads. First, a prediction
head is used to locate the object roughly, and then the other head is utilized to refine
results from the previous coarsely position. However, the use of the optimization module
is under the condition that the primary position of the object is known (which is obtained
by the subject tracker). Therefore, the prediction head required by the optimization module
does not need to have the function of coarse positioning but needs to have a higher fine
prediction function.

There are two common Siamese tracking refinement prediction heads: the RPN style
refinement prediction head and the RCNN style refinement prediction head. The RPN style
refinement prediction head mainly uses each feature point in the feature map to predict
the four-dimensional coordinates of the bounding box. Each feature point encodes spatial
information into the channel, so a single feature point can be used to predict the object
boundary box. However, the spatial information of the object described by the feature
points at different positions is inconsistent. The RPN-style method does not consider the
relationship between the feature points at different positions, ignoring the information
in the spatial distribution of the feature map. Therefore, the RPN-style method is not
conducive to improving the prediction accuracy of the object’s bounding box. The RCNN
style refinement prediction head converts the feature map into the feature vector, then uses
the fully connected layer to estimate the object’s bounding box. Although this method
utilizes the whole feature map to predict the object’s position, it will destroy the spatial
information when the feature map is transformed. Thus, the RCNN style refinement
prediction head is unsuitable for optimizing the object boundary.

Compared to refinement prediction methods that have been mentioned (direct regres-
sion box coordinates), predicting two corners of an object from two heat maps is more
competitive for refining the object’s spatial position [34]. Therefore, SOM adopts a cor-
ner prediction head to predict the object’s top-left corner and the bottom-right corner for
obtaining the object’s rectangular bounding box.

The corner prediction head is designed based on keypoint detection. Inspired by
CornerNet [38], the corner prediction head adopts the CNN to learn the heat map that
includes the paired key points information of the object bounding box and then utilizes
the Soft-argmax function to calculate the corner coordinates to obtain the object bounding
box. Two convolution layers with the same structure are used to obtain the heat map
containing the two corners’ information of the object. Each convolutional layer includes
the structure of four stacked Conv-BN-ReLU layers. Then, the Soft-argmax function is used
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to process the heat map to make the heat map can describe the corners’ position accurately.
Specifically, the function first normalizes the heat map by the Softmax function and then
calculates the expected value. The resulting normalized heat map can be viewed as a
probability map of the corner at position (x, y). The expected value of the corner position is
followed as

E = (
W

∑
a=1

H

∑
b=1

amb,a,
H

∑
b=1

W

∑
a=1

bmb,a), (9)

where m is the normalized heatmap with size W × H and E = (ex, ey) is the corner position.
The corner prediction head encodes the object bounding box estimation into the

normalized heat map distribution by retraining the natural spatial structure of the feature
map, which can avoid encoding the spatial information into the channel to minimize the
loss of spatial information. Therefore, using the corner prediction head in SOM is beneficial
to improve the object bounding box’s accuracy.

2.3.3. Auxiliary Mask Prediction Head

Given the beneficial performance of mask prediction for improving tracking perfor-
mance in some tracking tasks [36,39], adding the additional detailed information of the
object shape to the SOM facilitates accurate estimation of the object bounding box. There-
fore, SOM adds an auxiliary mask prediction head in a position parallel to the corner
prediction head, introducing pixel-level supervision into the training to facilitate the opti-
mization module’s utilization of more detailed spatial information, further improving the
bounding box estimation ability.

The auxiliary mask prediction head needs the strong ability to use spatial detail
information. Since the image segmentation task is the pixel-level computer vision task,
and U-Net [40] is the most classic algorithm in the segmentation field, the auxiliary mask
prediction head is designed based on the U-Net. Specifically, this prediction head is
implemented as the U-Net style decoder. First, the feature map containing the template
patch and the search region information is upsampled layer by layer. Then, in each layer,
the upsampled results are combined with low-level features obtained from the backbone
(using stitching and convolution operations) until the feature map has the same resolution
as the input image. Finally, the acquired last layer feature map predicts the mask. In
particular, to speed up the inference, the mask prediction head is disabled in the test phase
to advance the spatial optimization process. More details can be found in the reference [34].

3. Experiments
3.1. Implementation Details

In this work, all experiments were performed using a desktop computer equipped
with NVIDIA RTX 3090 GPU and Intel Xeon Silver 4210R CPU. The public hyperspectral
dataset provided by Xiong et al. [1] was used for training and testing. The stochastic
gradient descent (SGD) method is utilized for training the proposed network. Twenty
epochs were trained in total. The learning rate increased linearly from 0.005 to 0.01 in the
first 5 epochs and decreased exponentially to 0.0005 in the remaining 15 epochs. We used
the multimodality video data composed of RGB and hyperspectral in the training sets as
input for the training network. We only adopted the hyperspectral video data of the testing
set as the network’s input in the testing process. During the testing process, we used the
full-band hyperspectral data as the input of the hyperspectral branch in the multimodality
fusion information transfer network and the pseudocolor data synthesized by the [1, 8, 16]
bands of hyperspectral data as the input of the rest of TMTNet. In addition, we utilized the
success plot, the precision plot, the area under the curve (AUC) score of the success rate
plot, and the precision rate at the threshold of 20 pixels (DP_20) value of the precision rate
plot to evaluate the tracker performance.
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3.2. Dataset

The dataset used in this work is proposed in [1], which contains three types of video
data, including hyperspectral video data, false-color video data synthesized from hyper-
spectral video sequences, and RGB video data taken at the same time from almost the same
perspective as hyperspectral video. It is worth noting that to make the RGB sequence and
the hyperspectral sequence describe almost the same scene, Xiong et al. [1] carried out a
simple coregistration on them. Among them, the labels of hyperspectral and RGB videos
are marked separately. In addition, the false-color video data is obtained by converting the
hyperspectral video data using the CIE color matching method, which is spatially aligned
with the hyperspectral video data, so the label of the false-color video is the same as that of
the hyperspectral video. There are eleven challenging factors in the dataset, consisting of
low resolution (LR), illumination variation (IV), scale variation (SV), background clutters
(BC), occlusion (OCC), motion blur (MB), in-plane rotation (IPR), out-of-plane rotation
(OPR), out-of-view (OV), fast motion (FM), and deformation (DEF). The dataset has 40
training set videos and 35 testing set videos in total.

4. Results and Analysis
4.1. Comparison with State-of-the-Art Trackers

In this section, we compare and analyze the performance of the TMTNet tracker with
that of the advanced depth color tracker and hyperspectral tracker using the AUC score
and the DP_20 value.

Comparison with State-of-the-art Depth Color Trackers. The performance of the
TMTNet tracker is compared with that of some advanced color trackers based on deep
learning, including TransT [29], SiamCAR [23], SiamGAT [25], and ECO [41], to evaluate
the influence of hyperspectral data on tracking performance and the effectiveness of the
TMTNet tracker. The TMTNet tracker was run on the hyperspectral video, and the color
tracker was run on the false-color video. As shown in Figure 10 and Table 2, the TMTNet
tracker’s performance is significantly better than that of the compared color tracker and
reaches the highest AUC score of 0.699. In addition, Table 3 shows that the TMTNet
tracker achieves the best AUC performance compared with the depth color tracker in most
challenging scenarios, such as OCC, LR, and BC. In particular, the AUC score of TMTNet is
10.0% higher than that of the best comparative depth color tracker in the BC scenario. It
exhibits that hyperspectral data can offer more robust features for the tracking process and
also proves that the proposed TMTNet can effectively use hyperspectral data to enhance
the ability to cope with challenging scenarios, which indicates the TMTNet’s effectiveness.
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Figure 10. Comparison of success plot and precision plot of tracking results. (a) Overall precision
plot; (b) Overall success plot.
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Table 2. AUC score, DP_20 value, and FPS of 7 trackers. The best result is labeled in red.

TMTNet TransT SiamCAR SiamGAT ECO BAE-Net MHT

AUC 0.699 0.641 0.605 0.591 0.577 0.614 0.592
DP_20 0.928 0.884 0.874 0.835 0.863 0.876 0.882

FPS 12.6 36.7 32.2 20.5 16.8 0.9 1.5

Table 3. The AUC score of 7 trackers in eleven challenging scenarios. The best result is labeled in red.

TMTNet TransT SiamCAR SiamGAT ECO BAE-Net MHT

BC 0.722 0.622 0.615 0.609 0.606 0.656 0.617
LR 0.619 0.573 0.575 0.487 0.491 0.494 0.481

OCC 0.639 0.628 0.586 0.558 0.537 0.534 0.547
DEF 0.753 0.729 0.642 0.600 0.595 0.681 0.654
IV 0.585 0.558 0.492 0.476 0.547 0.512 0.498
SV 0.677 0.621 0.600 0.587 0.543 0.604 0.570
FM 0.715 0.689 0.704 0.609 0.566 0.612 0.546
IPR 0.782 0.695 0.653 0.643 0.598 0.703 0.643
OPR 0.768 0.700 0.652 0.639 0.601 0.704 0.643
MB 0.672 0.707 0.722 0.604 0.572 0.598 0.565
OV 0.675 0.707 0.696 0.636 0.478 0.605 0.427

Comparison with Hyperspectral Trackers. We also compare the performance of TMT-
Net with some new hyperspectral object trackers to further verify the proposed method’s
effectiveness. MHT [1] and BAE-Net [2], excellent hyperspectral trackers, are chosen for
comparative experiments. It can be observed from Figure 10 and Table 2 that compared
with other hyperspectral trackers, the TMTNet tracker obtained the highest AUC score and
DP_20 value. In addition, the AUC score of the TMTNet tracker is also higher than that of
the HA-Net tracker (68.7%) [15] that won the Hyperspectral Object Tracking Challenge 2020.
Besides, Table 3 also shows that the AUC score of the TMTNet tracker outperforms that of
the comparative hyperspectral trackers in 11 challenging scenarios. The results show that
the proposed TMTNet can better leverage hyperspectral data to provide robust features un-
der these challenges in the tracking process, enhancing the tracking performance. Moreover,
TMTNet is also an extension of our previous work TrTSN [22], the champion scheme of the
Hyperspectral Object Tracking Competition 2022, and has achieved similar performance
to TrTSN, indicating that the hyperspectral object tracking method designed from the
perspective of multi-modality information transfer is flexible, simple, and effective.

Table 2 also shows the FPS of various trackers. It can be found that the proposed
tracker’s speed is relatively the fastest among the hyperspectral trackers, which can also
prove the superiority of the proposed hyperspectral tracker. In addition, Figure 11 shows
the qualitative tracking results of some trackers on the sequences of pedestrian2, student,
car3, and fruit, which can intuitively compare the tracking performances. These sequences
mainly involve the challenging scenes of OCC, IV, SV, DEF, BC, and LR. The above examples
show that the proposed TMTNet provides the most accurate boundary frame, which fully
demonstrates the TMTNet tracker can effectively deal with various challenging scenarios,
proving its effectiveness in hyperspectral tracking.
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Figure 11. Qualitative result comparison of some trackers on sequences of pedestrian2, student, car3,
and fruit.

4.2. Effectiveness of the Transferred Multi-Modality Information

In this work, we propose a Transformer-based multimodality information transfer
network (TMTNet) for hyperspectral object tracking, aiming to fully transfer the informa-
tion of multimodality data composed of RGB data and hyperspectral data to enhance the
hyperspectral tracking performance. The transferred multimodality information includes
the fusion information of multimodality data composed of RGB and hyperspectral and the
RGB modality information. The multimodality fusion information is transferred by the
multimodality fusion information transfer subnetwork, which can obtain multimodality-
similar fusion information of hyperspectral data to improve tracking performance. The
RGB modality information is transferred by the RGB modality information transfer subnet-
work, which is used to get robust visual-similar features of hyperspectral data to improve
the network’s ability to predict the object location in unknown complex scenes. Then, the
transferred multimodality fusion information and the RGB modality information are used
to predict the object’s position jointly.

To prove that the network performance of transferring the multimodality information
consisting of the multimodality fusion information and the RGB modality information
(achieved by two subnetworks) is better than that of transferring the multimodality fusion
information or RGB modality information (using only one subnetwork), we design two
TMTNet models without the multimodality fusion information transfer subnetwork or
the RGB modality information transfer subnetwork and compare their performance with
that of the TMTNet model with two subnetworks (TMTNet). Among them, the TMTNet
model that lacks the multimodality fusion information transfer subnetwork but contains the
RGB modality information transfer subnetwork is termed as TMTNet_RGB, and the other
TMTNet model that does not include the RGB modality information transfer subnetwork
but has the multimodality fusion information transfer subnetwork is called TMTNet_fusion.

The experimental results are listed in Table 4. It can be found that the AUC score of the
TMTNet tracker (69.9%) is higher than that of the TMTNet_RGB tracker (68.0%) by 1.9%,
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and the DP_20 value of the TMTNet tracker (92.8%) is more than that of the TMTNet_RGB
tracker (88.7%) by 4.1%. It also can be seen that the AUC score and the DP_20 value of
the TMTNet tracker outperform these of the TMTNet_fusion tracker. The above results
show that using the transferred multimodality information composed of the multimodality
fusion information and the RGB modality information (achieved by two subnetworks) to
predict the object’s position jointly is conducive to the improvement of the performance of
hyperspectral tracking, indicating that the transferred multimodality information in the
hyperspectral object tracking is effective.

Table 4. The AUC score and DP_20 value of the TMTNet tracker, TMTNet_RGB tracker, and TMT-
Net_fusion tracker.

AUC ∆(AUC) DP_20 ∆(DP_20)

TMTNet_RGB 68.0% - 88.7% -
TMTNet 69.9% ↑ 1.9% 92.8% ↑ 4.1%

TMTNet_fusion 66.2% - 88.5% -
TMTNet 69.9% ↑ 3.7% 92.8% ↑ 4.3%

4.3. Effectiveness of the Transformer-Based Information Interaction Module

Fully fusing different modality information is the key to effectively using the trans-
ferred multimodality fusion information to improve the hyperspectral tracking perfor-
mance. To achieve the multi-modality information fusion, we design an information
interaction module based on Transformer (TIIM) in the multimodality fusion information
transfer subnetwork to combine the semantic features obtained from Siamese 3D CNN
and Siamese 2D CNN branches, which can utilize the Transformer’s self-attention mech-
anism to adaptively obtain the relationship between different modality data for fusing
mutimodality information.

To further verify the effectiveness of TIIM, we use the concatenation-based fusion
method proposed by Zhu et al. [42] and the cross-based fusion method proposed by
Zhang et al. [43] to replace the TIIM in the multimodality fusion information transfer
subnetwork respectively and test their performance. The concatenation-based fusion
method combines multimodality information by concatenating different modality features,
denoted as TMTNet_concat. The cross-based fusion method gets more compact feature
representations of multimodality by interactively connecting the depth features from
different modalities, termed TMTNet_cross.

In Table 5, the AUC score of the TMTNet tracker (69.9%) outperforms that of the
TMTNet_concat tracker (67.6%) and the TMTNet_cross tracker (68.3%) after using the
TIIM, while the DP_20 value of the TMTNet tracker (92.8%) is more than that of the
TMTNet_concat tracker (88.9%) and the TMTNet_cross tracker (89.5%) by 3.9% and 3.3%,
respectively. Experimental results show that the proposed TIIM can effectively fusion
different modality information.

Table 5. The AUC score and DP_20 value of the TMTNet tracker, TMTNet_concat tracker, and
TMTNet_cross tracker.

AUC ∆(AUC) DP_20 ∆(DP_20)

TMTNet_concat 67.6% - 88.9% -
TMTNet 69.9% ↑ 2.3% 92.8% ↑ 3.9%

TMTNet_cross 68.3% - 89.5% -
TMTNet 69.9% ↑ 1.6% 92.8% ↑ 3.3%

4.4. Effectiveness of the Response-Level Fusion Method

In the hyperspectral tracking process, selecting an appropriate method to use the
multimodality-similar fusion information and visual-similar information obtained from
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hyperspectral data to predict the object location jointly is important for effectively utilizing
the transferred multimodality information to improve the tracking performance. In this
work, we adopt the response-level fusion method to integrate the two sets of response
maps obtained by the multimodality-similar fusion information and the visual-similar
information into a set of average response maps to predict the object position by using the
transferred multimodality information jointly.

To prove the effectiveness of the response-level fusion method, we use the decision-
level fusion method, which needs to directly average the final prediction results of the
two subnetworks to replace the response-level fusion method in TMTNet to combine the
multimodality-similar fusion information and visual-similar information and compare
its performance with that of using the response-level fusion method. Among them, the
TMTNet model with the decision-level fusion method is termed TMTNet_dec, and the
TMTNet model with the response-level fusion method is termed TMTNet_res, which is
the actual TMTNet model. The performance of the TMTNet model with different fusion
methods is shown in Table 6.

Table 6. The AUC score and DP_20 value of the TMTNet_res tracker and TMTNet_dec tracker.

AUC ∆(AUC) DP_20 ∆(DP_20)

TMTNet_dec 68.0% - 90.7% -
TMTNet_res 69.9% ↑1.9% 92.8% ↑ 2.1%

It is evident that the AUC score of the TMTNet_res tracker (69.9%) is over than that of
the TMTNet_dec tracker (68.0%) by 1.9%, and the DP_20 value of the TMTNet_res tracker
(92.8%) is higher than that of the TMTNet_dec tracker (90.7%) by 2.1%. Experimental
results show that using the response-level fusion method in TMTNet to combine the
transferred multimodality fusion information and the RGB modality information can
effectively improve the tracking network’s performance.

4.5. Ablation Study

In this work, the proposed multimodality information transfer network for hyper-
spectral object tracking mainly includes the subject network and the spatial optimization
module, which are adopted to transfer multimodality information and optimize object
boundary estimation. There are two subnetworks in the subject network, including the
multimodality fusion information transfer subnetwork and the RGB modality information
transfer subnetwork, which are used to obtain multimodality-similar fusion information
and visual-similar information from hyperspectral data, respectively, and then use the in-
formation mentioned above to predict the object location jointly. In this section, we validate
the impact of each critical component of TMTNet on final performance. Among them,
the multimodality fusion information transfer sub-network is labeled as MFIT, the RGB
modality information transfer subnetwork is labeled as RMIT, and the spatial optimization
module is marked as SOM. The ablation study results are listed in Table 7. The model
contains MFIT, RMIT, and SOM in Table 7 is the complete TMTNet model.

Table 7. The AUC score, DP_20 value, FLOPs, Params, and FPS about the ablation study of each
critical component in TMTNet.

AUC ∆(AUC) DP_20 ∆(DP_20) FLOPs (G) Params (M) FPS

MFIT 65.4% - 89.2% - 1595.2 235.2 16.9
MFIT+RMIT 67.7% ↑ 2.3% 92.7% ↑ 3.5% 1843.0 292.6 13.7

MFIT + RMIT + SOM 69.9% ↑ 4.5% 92.8% ↑ 3.6% 1846.6 333.4 12.6

The symbol MFIT represents the multimodality fusion information transfer subnetwork, RMIT denotes the RGB
modality information transfer subnetwork, and SOM is the spatial optimization module.
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It can be seen that the TMTNet model with MFIT and RMIT that adds the RGB
modality information based on the transferred mutimodality fusion information, is 2.3%
higher than the TMTNet only with MFIT, which only transfers the multi-modality fusion
information in terms of the AUC score and 3.5% higher in terms of the DP_20 value. The
AUC score of the TMTNet model that is adding SOM to the TMTNet model with MFIT
and RMIT (69.9%) outperforms the AUC score of the TMTNet model with MFIT and
RMIT (67.7%) by (2.2%), and the DP_20 value of the TMTNet model with MFIT, RMIT
and SOM (92.8%) is more than the DP_20 value of the TMTNet model with MFIT and
RMIT (92.7%) by (0.1%).

The results show that the proposed TMTNet model with the multimodality fusion
information transfer subnetwork, the RGB information transfer subnetwork, and the spatial
optimization module can effectively transfer the multimodality information in the hyper-
spectral tracking task and optimize object boundary estimation, indicating the designed
critical components in the TMTNet model are useful for achieving the performance of the
hyperspectral tracking improvement. Although adding components to the tracking model
increases the computational complexity of the model and reduces the FPS, it is worth sacri-
ficing a certain amount of calculation and running speed to achieve the model’s accuracy
improvement in the preliminary exploration stage of hyperspectral object tracking. In the
future, we will further explore hyperspectral tracking methods that reduce the model’s
computational complexity while improving the algorithm’s accuracy performance, thus
promoting the vigorous development of hyperspectral object tracking.

5. Conclusions

We propose a Transformer-based modality information transfer network for hyper-
spectral object tracking in this paper, termed as TMTNet, aiming to achieve tracking
performance improvement by efficiently transferring the information of multimodality
data composed of RGB and hyperspectral. Within this network, two Siamese subnetworks
are constructed to transfer the multi-modality fusion information and the robust RGB visual
information in the hyperspectral tracking process, respectively, which can improve the abil-
ity to predict the object’s position accurately by obtaining the multimodality-similar fusion
information and the robust visual-similar information from hyperspectral data. Specifically,
a Transformer-based information interaction module is designed in the multimodality
fusion information transfer subnetwork to fuse multimodality information adaptively by
using the Transformer’s self-attention mechanism. In addition, a spatial optimization mod-
ule is added to TMTNet, which further optimizes the object position by fully retaining and
utilizing detailed spatial information. The comparison of experimental results with some
advanced trackers on the only available hyperspectral benchmark dataset demonstrates
the effectiveness of the proposed method.
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