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Abstract: Due to the complexity of airborne remote sensing scenes, strong background and noise
interference, positive and negative sample imbalance, and multiple ship scales, ship detection is
a critical and challenging task in remote sensing. This work proposes an end-to-end anchor-free
oriented ship detector (AF-OSD) framework based on a multi-scale dense-point rotation Gaussian
heatmap (MDP-RGH) to tackle these aforementioned challenges. First, to solve the sample imbalance
problem and suppress the interference of negative samples such as background and noise, the
oriented ship is modeled via the proposed MDP-RGH according to its shape and direction to generate
ship labels with more accurate information, while the imbalance between positive and negative
samples is adaptively learned for the ships with different scales. Then, the AF-OSD based on MDP-
RGH is further devised to detect the multi-scale oriented ship, which is the accurate identification
and information extraction for multi-scale vessels. Finally, a multi-task object size adaptive loss
function is designed to guide the training process, improving its detection quality and performance
for multi-scale oriented ships. Simulation results show that extensive experiments on HRSC2016
and DOTA ship datasets reveal that the proposed method achieves significantly outperforms the
compared state-of-the-art methods.

Keywords: anchor-free; arbitrarily oriented ship detection; deep learning; Gaussian heatmap;
multi-scale

1. Introduction

Ship detection is a highly regarded topic in remote sensing. The precise identification
of ships through remote sensing images is a crucial task in the field of target recognition.
Typically, ships are located offshore or near coasts, leading to a lot of similarities in the
imagery. Despite this, accurately determining the size, position, and orientation of ships
remains a daunting challenge due to the intricate nature of remote sensing scenarios and
the varying sizes of ships. With the development of imaging hardware, remote sensing
images have higher resolution, so the method of ship detection based on remote sensing
images has been widely studied in various fields of marine supervision [1–3], port traffic
flow [4,5], ship reconnaissance and statistics [6,7], etc.

For traditional ship detection methods [1,8], the common problems are poor system
robustness, high leakage rate in complex scenarios, and low detection accuracy. With the
development of deep learning in various applications, deep learning-based methods [9–11]
can provide automated, high-precision, and high-accuracy results for target detection
from remote sensing images. Due to the specificity of remote sensing, there are still some
open problems: (1) the bounding box may contain much background in the selected
area, and cannot accurately represent the position and direction of ships [12]; (2) false
detection because of the small and densely distributed ships [6]; (3) difficulty of recognizing
multi-scale ships [13]. Aiming at these problems, some anchor-based methods have been
developed [2,13,14]. However, to ensure satisfactory detection accuracy, these methods
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usually require the manual design of pre-selected boxes according to the actual scene,
hindering their applications in practice because of a large number of hyper-parameters and
high computational complexity.

To solve the problems of anchor-based detection methods, anchor-free methods have
been further proposed [6,15–17], which do not require the anchor parameters and can
directly predict the class and location information of objects. Thus, these methods can
avoid hyper-parameters and reduce computational processes, gradually attracting the
extensive attention of researchers. The CenterNet models [6,9,16] have been built based on
the center point of the object as a positive sample point to represent an oriented object, as
shown in Figure 1a. However, if a target is represented by only one point, or if the shape
characteristics of the oriented target are not considered. These methods fail to balance the
number of positive and negative samples well, which also causes some positive locations
to be misjudged as negative samples.

(a) AF-center methods (b) AF-multi-reference points

Figure 1. Comparison of target detection algorithms.

Aiming at the misjudgment problem of balancing the number of positive and negative
samples, dense points-based methods are further proposed to increase the number of posi-
tive samples to achieve better detection performance. Zinelli et al. [18] proposed a dense
point method to represent and predict the oriented objects, thus optimizing the imbalance
of positive and negative samples to some extent. Nevertheless, the number of dense points
is different with different scales of objects, as shown in Figure 1b. Specifically, the small
objects usually contain fewer dense points than the large ones, and the contribution of
the small objects to the loss function is small and easily ignored by the optimizer during
training. Moreover, different locations of positive sample points exhibit different effects on
the prediction results of the same object. The richer the object features extracted from the
sample points close to the object center, the greater the impact on the prediction. However,
these methods can not suppress background and noise interference well, which may result
in the same confidence level for the feature points at the target centroid and edges, thus
generating worse prediction results after non-maximum suppression (NMS), as shown
in Figure 2. Additionally, these methods do not take the shape of the target into account,
which may cause some negative locations to be misallocated as positive samples, such as
the two ends of a ship.

To tackle the misallocation problem, some methods shrink the object bounding box
to obtain the core region and take the core region as a positive location [18,19], while the
other regions of the object bounding box are the transition from the positive location to
the negative location. In this way, the problem of mislabeling can be alleviated to a certain
extent. However, it fails to reflect the shape and direction characteristics of the oriented
ships. Gaussian rotation heatmaps [6,20] have been used as the supervisory information
to distinguish the positive and negative positions of oriented ships. Ref. [20] proposed a
target detection method by adopting a Gaussian rotation heatmap as prior information
and an adaptive weight-adjustment mechanism (OWAM) algorithm to weight the positive
and negative samples at different positions. While these methods address the issue of
mislabeling and incorporate the shape and direction of oriented ships, they only assign
positive and negative labels through a continuous two-dimensional function represented
by a Gaussian heatmap. This approach has a crucial limitation, as the Gaussian heatmap
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cannot be utilized as the confidence output in the prediction stage. Additionally, the
contribution of positive samples from different locations to the object is neglected, leading
to the possibility of positive samples at the edge of the target location being overlooked
and increasing the impact of noise on accurate target detection.

Figure 2. Diagram of prediction results of different reference points of the same rotation ship.

We aim to solve the imbalance problem caused by the number of positive and negative
samples, better suppress background and noise interference, and simultaneously improve
the robustness for remote sensing multi-scale ships and the training model’s capability.
Therefore, the multi-scale dense-point rotation Gaussian heatmap (MDP-RGH) method is
proposed to overcome background and noise interference while enhancing the robustness
of multi-scale ship detection and the training model’s capabilities. The MDP-RGH is a
discrete two-dimensional function based on a Gaussian heatmap that operates on dense
points, allowing for the modeling of multi-scale oriented ships based on their shape and
direction. The positive samples are weighted using the MDP-RGH to ensure rotational
Gaussian distribution. The Gaussian heatmap confidence is used to predict whether a
target is a positive or negative sample, thereby improving detection and reducing network
computation. After that, a new anchor-free oriented ship detector network (AF-OSD) is
constructed using the MDP-RGH method to detect multi-scale oriented ships. Additionally,
a multi-task object size adaptive loss (OSALoss) function is designed to address the training
imbalance caused by varying ship sizes. The weight of this function is determined by both
the object area and the density of dense points, leading to improved ship detection accuracy.
The contributions of this work can be summarized as follows.

1. An oriented ship model based on MDP-RGH is proposed, which can balance the num-
ber of positive and negative samples, suppress the interference of negative samples
such as background and noise in the image, and improve the training accuracy.

2. An AF-OSD based on MDP-RGH is designed to achieve a better prediction for oriented
ships with multi-scale attributes.

3. A multi-task OSALoss function is constructed to further overcome the training im-
balance problem caused by different ship sizes to improve the detection quality and
performance of the whole model for multi-scale ships.

The rest of the paper is organized as follows. In Section 2, the ship model based on
MDP-RGH is elaborated in detail. Section 3 describes the AF-OSD based on the MDP-RGH
ship model, which shows the detail of the network. Section 4 reports the hyper-parameter
settings. Section 5 shows the experimental results and analysis. Section 6 discusses the
experiment. Finally, Section 7 is the conclusion.

The variables themselves indicate a certain class of meaning, e.g., (x, y) for coordinate
variables, G for ground truth, F for output convolutional features, and M for masks.
The subscript of a variable indicates the qualification of the variable, indicating that the
variable belongs to the range indicated by the subscript, and the next-level subscript is the
qualification of the previous-level subscript.
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2. The Oriented Ship Model Based on MDP-RGH

To solve the problem of an unbalanced number of positive and negative samples,
predict the target using Gaussian heatmap confidence, and account for the contribution of
positive samples at different locations, a new model of the ship, MDP-RGH, is proposed to
suppress the background and noise interference, and effectively describe the characteristics
of the shape and direction of the multi-scale ship. Specifically, there are three steps to
complete the model of an oriented ship: (1) dividing the image region; (2) obtaining multi-
scale dense points by down-sampling the image; (3) weighting the dense points with a
rotation Gaussian Heatmap.

To address the issue of the imbalanced number of positive and negative samples, a
new ship model called MDP-RGH is proposed. This model incorporates Gaussian heatmap
confidence in target prediction and considers the contribution of positive samples from
different locations. MDP-RGH aims to reduce background and noise interference and
effectively describe the shape and direction of multi-scale ships, as shown in Figure 3.
The process of creating the oriented ship model involves three steps: (1) dividing the
image region; (2) obtaining multi-scale dense points through down-sampling the image;
(3) weighting the dense points with a rotation Gaussian heatmap.

Figure 3. Ship representation format based on a dense-point Gaussian heatmap. The target in the red
circle are delineated as the object regions.

2.1. Dividing the Image Region

As the shape of the ship is similar to a shuttle [6], if all the areas in the object bounding
box are divided into object regions, part of the background pixels will be included in the
object region.

To fit the shape and direction characteristics of the ship and coordinate with the
subsequent rotation Gaussian heatmap, an image region division method is designed, as
shown in Figure 3. Specifically, the shrink rotation ellipse regions are delineated as the
object regions. Other regions in the object-bounding box are regarded as ignorable regions,
while the regions not in any object-bounding box are regarded as the background regions.
In this case, we only need to determine the object regions and the ignorable regions. More
specifically, here are three steps to divide the image region.

2.1.1. Transformation the Coordinate for the Oriented Ship

To facilitate the subsequent calculation, we transform the rotating ship into an upright
ship. Therefore, as shown in Figure 4, coordinate transformation is performed. Specifically,
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we transform the points

[
xpixel

ypixel

]
in the original pixel coordinate system XOY to the new

coordinate system X′O′Y′ with the center point of the oriented ship being set as the origin,
the long axis of the ship (the line between the center points of the bow and stern) is set as
the Y′ axis, and the short axis is set as the X′ axis. The coordinates of pixel points in the
coordinate system X′O′Y′ can be expressed as[

x′pixel

y′pixel

]
=

[
cos α sin α

− sin α cos α

]([
xpixel

ypixel

]
−
[

xc

yc

])
, (1)

where

[
xc

yc

]
means the coordinates of the center point of the oriented ship in the coordinate

system XOY. α represents the counterclockwise angle between the positive half-axis of the
oriented ship (the direction from the center point of the ship to the center point of the bow
is positive) and the positive Y axis of the pixel coordinate system XOY.

Figure 4. Coordinate transformation diagram. The green rectangular box is the boundary box of the
ship. The red ellipse is a rotation ellipse with ξh as its long axis and ξw as its short axis after scaling
the boundary frame of a ship according to the scale factor ξ ∈ (0, 1], where h and w are the width and
height of the boundary frame of a ship. A and B are the two vertices of the scaled rotation ellipse.

2.1.2. Creating a Shrink Rotation Ellipse Equation for the Oriented Ship

We create a shrink rotate ellipse equation for the oriented ship to determine which
region the pixels belong to. The ellipse of the shrink rotation ship bounding box in the
coordinate system X′O′Y′ is a standard ellipse. Specifically, the ellipse equation is written as

fellipse

([
x′

y′

])
=

(x′)2(
ξw
2

)2 +
(y′)2(

ξh
2

)2 = 1. (2)

2.1.3. Identifying the Region to Which the Pixels in the Image Belong

After the above two steps, we can determine whether the pixel point

[
xpixel

ypixel

]
belongs

to the object region areaship or the ignorable region areaignore as
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[
xpixel

ypixel

]
∈ areaship, fellipse

x′pixel

y′pixel

 ≤ 1 and
∣∣∣x′pixel

∣∣∣ ≤ w
2[

xpixel

ypixel

]
∈ areaignore, fellipse

x′pixel

y′pixel

 > 1 and
∣∣∣y′pixel

∣∣∣ ≤ h
2 ,
∣∣∣x′pixel

∣∣∣ ≤ w
2 .

(3)

Particularly, a pixel point belongs to the background region when it does not belong
to any ship’s object or ignorable region.

2.2. Multi-Scale Dense Points by Down-Sampling

Considering the multi-scale attributes of different ships, as shown in Figure 5, a multi-
scale dense-point sampling method is further proposed to balance the number of positive
samples of ships of different sizes. In particular, dense points can also reduce the amount
of model computation since not all points need to be involved.

(a) Large ships (b) Medium and small ships

Figure 5. Some examples in the DOTA dataset.

Specifically, according to the different scales of the ships, the image is down-sampled
at different multiples to obtain different low-resolution images. We conduct s (s = 4, 8, 16)
down-samplings of the image with three scales. Then, the low-resolution image is mapped
to the original image to obtain a three-scale dense point matrix. The coordinate calculation
formula of dense points can be described as{

xdenps i j = (i− 1)(s) + s
2

ydenps i j = (j− 1)(s) + s
2 ,

(4)

where xdenps i j and ydenps i j denote the horizontal and vertical coordinates of the j-th row
and i-th column sample point denps i j in the original image in the dense point matrix after s
samplings, respectively.

Thus, small-scale dense points are used to represent large ships and large-scale dense
points are used to represent small ships, which could balance the number of positive
samples of the large, medium, and small ships to a certain extent. Among them, large-scale,
medium-scale, and small-scale ships can be clustered with the k-means clustering algorithm.
To better delineate the effective area of the image, dense points in the background region
are defined as negative sample points, dense points in the ignorable region are ignorable
dense points, and dense points in the object region are positive sample points, as shown
in Figure 6a–c, respectively. Particularly, the ignorable dense points do not participate in
calculating the loss function when training the model.
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(a) Small scale represents large ships (b) Mid scale represents mid ships (c) Large scale represents small ships

(d) Large ship Gaussian Heatmap (e) Medium ship Gaussian Heatmap (f) Small ship Gaussian Heatmap

Figure 6. Schematic diagram of multi-scale dense-point sampling, in which blue points represent
negative sample points, green points represent ignorable sample points, and red points represent
positive sample points. Corresponding to (a–c) are two-dimensional rotation Gaussian heatmaps of
large, medium, and small-sized ships, where the initial Gaussian heatmap value ginit = 0.3 and the
scaling factor ξ = 0.7.

2.3. Weighting the Dense Points with Rotation Gaussian Heatmap

It has been proved that the closer the sample point is to the center of the ship, the richer
the features of the ship are extracted during model inference, obtaining more accurate
detection results. Therefore, the Gaussian weighting on the dense points with the object
region is performed, where the dense points with different positions mean the various
degrees of importance of the ship. Furthermore, the multi-scale dense-point rotation
Gaussian heatmap is obtained, as shown in Figure 6.

Specifically, the calculation method of the rotation Gaussian heatmap value of the
dense points in the ship region at each scale can be represented as

g
(

xdenps ij
, ydenps ij

)
= g′

(
x′denps ij

, y′denps ij

)
= Exp

−

(

x′denpsij

)2

2σ2
w

+

(
y′denpsij

)2

2σ2
h


, (5)

where g(·) means the rotation Gaussian heatmap function; g′(·) means the general Gaussian
heatmap function; x′denpsij

and y′denpsij
denote the horizontal and vertical coordinates of the

dense point in the coordinate system X′O′Y′, respectively; Exp(·) is the exponential function;
σw and σh are the parameters related to the width and height of the ship, respectively.

To determine the values of σw and σh, a hyper-parameter ginit ∈ (0, 1) is introduced,
which represents the value of the rotation Gaussian heatmap when the dense point is
located at the boundary of the shrink rotation ellipse. Take two points on the scaled rotating
ellipse boundary, and then the values of σw and σh can be obtained by combining the initial
Gaussian heatmap value ginit, scale factor ξ, (1), (2), and (5). For example, we take the two
vertices of this scaled rotation ellipse (e.g., the two points A and B in Figure 4) to determine
the values of σw and σh. At this point, the horizontal and vertical coordinates of these two
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points in the coordinate system X′O′Y′ can be calculated by (1) and (2). Bringing ginit, A,
and B into (5) yields 

ginit = Exp
(
− (ξh/2)2

2σ2
h

)
ginit = Exp

(
− (ξw/2)2

2σ2
w

)
,

(6)

then the values of σw and σh can be obtained.
In particular, the rotation Gaussian heatmap value of the dense points located in the

ignorable region or background region is 0. After that, the Gaussian rotation heatmap of
the ships with three scales can be generated in Figure 6d–f, respectively.

Based on the above designs, an oriented ship model based on MDP-RGH can be
obtained, which can better balance the influence of positive and negative samples of the
training dataset, and reduce the influence of noise and background on ship recognition.
The positive samples near the edge of the ship are made to conform to the rotated Gaussian
distribution by avoiding noise interference. The closer the positive sample is to the edge,
the lower its value, so our positive sample is soft. A higher positive sample score means
that the positive sample is more representative of the ship. Thus, the MDP-RGH improves
the robustness for different size targets and the calculation speed of the proposed model.
Next, we will introduce the oriented ship detection algorithm base on MDP-RGH.

3. Oriented Ship Detection Algorithm Based on MDP-RGH

Based on the proposed MDP-RGH method for training dataset improvement, an
end-to-end AF-OSD is devised to detect the multi-scale oriented ship, which is accurate
identification and information extraction of multi-scale ships, as shown in Figure 7. Pre-
cisely, the AF-OSD mainly consists of three parts: (1) label assignment based on MDP-RGH;
(2) the AF-OSD; (3) multitask OSALoss.

Figure 7. Overview diagram of AF-OSD based on MDP-RGH. (1) Label assignment based on MDP-
RGH; (2) the AF-OSD; (3) OSALoss.
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3.1. Label Assignment Based on MDP-RGH

According to Section 2, based on the MDP-RGH model, the label of supervising the
training process of the AF-OSD can be obtained. The label allocation strategy processes
the original dataset labels into three parts: (1) multi-scale dense-point rotation Gaussian
heatmap confidence label, which is the weight of dense points; (2) multi-scale dense point
category label, namely, regions divided by the image; (3) multi-scale dense point ship
bounding box corner offsets label, namely, the offsets of the four corner points of the ship
bounding box relative to the dense points in the corresponding object region.

3.1.1. Positive Sample Confidence Labels for Dense Points Based on MDP-RGH

The confidence labels of dense points based on MDP-RGH indicate the probability

that the dense points belong to a ship, which can be expressed as Gconfs ∈ R( H
s )×(

W
s )×1,

where s = 4, 8, 16 represents the sampling scales with three values over the image and each
element is a scalar.

Specifically, for the dense point denp
s ij

falling into the object region, its Gaussian

heatmap confidence label value can be calculated by (5), while its value is 0 for the dense
point outside the object region, which can be represented as

Gconfsij
=

g
(

xdenps ij
, ydenps ij

)
, denp

s ij
∈ areaship

0, otherwise,
(7)

where Gconfsij
means the label value of the Gaussian heatmap of the dense point denp

s ij
.

3.1.2. The Classification Label for Dense Points

The classification label Gclss ∈ R( H
s )×(

W
s )×Nc of dense points is a three-dimensional

matrix, which can be written as

Gclss =

[
G(1)

clssij
, . . . , G(c)

clssij
, . . . , G(Nc)

clssij

]
, (8)

where each element is a vector with size Nc (here Nc represents the number of categories, in-
cluding the background category). G(c)

clssij
denotes the score of dense point denp

s ij
belonging

to category c, which can be determined by

G(c)
clssij

=

1, denp
s ij
∈ c−th

0, otherwise,
(9)

where the dense point belongs to the c-th category. The c-th component of the above vector
is set to 1, and the others are set to 0.

3.1.3. The Corner Points offsets Label of the Ship Bounding Box of the Dense Points

We built corner point offset labels of the ship bounding box for regression when

training. The label GPoffsetss ∈ R( H
s )×(

W
s )×8 of dense points is a two-dimensional matrix,

where each element is a vector with size 8. The label represents the horizontal and vertical
coordinates of the four corner points offsets of the ship bounding box of dense point denp

s ij
,

which can be written as

GPoffsetssij
=

[
G(1)

Poffsetssij
, . . . , G(8)

Poffsetssij

]
. (10)
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If denp
s ij

does not belong to the object region of any oriented ship, all components of

GPoffsetssij
are 0. If denp

s ij
belongs to the object region of an oriented ship, the component

of GPoffsetssij
can be calculated as


G(2k−1)

Poffsetssij
=

(
xPk − xdenps ij

)
/scales

G(2k)
Poffsetssij

=

(
yPk − ydenps ij

)
/scales,

(11)

where k (k = 1, 2, 3, 4) represents the k-th corner point of the ship bounding box, xPk and
yPk are the horizontal and vertical coordinates of the k-th corner point of the oriented ship
bounding box, respectively, and scales is the normalized parameter of different scales.

3.2. AF-OSD

Normally, the AF-OSD consists of two parts: (1) a multi-scale feature extraction
network (MFEN) and (2) a multi-scale oriented ship detection head (MOSDH). The MFEN
extracts the features of the oriented ship in the input image, while the MOSDH applies the
extracted features to identify and detect the oriented ship.

3.2.1. MFEN

PANet [21] is selected for the feature extraction structure of the MFEN for the fact that
the size of the ship object has a large scale range. To reduce the problem of information loss
arising from long transmission distances, the bottom-up path augmentation of the FPN [22]
structure is applied, which provides a shorter path for high-level information transmission
and effectively reduces information loss, as shown in Figure 8.

For the backbone of MFEN, ship detection is based on remote sensing data, visual
range, and complex environments to fully extract the attribute information of ships. Hence,
a relatively large feature extraction backbone network is needed to design. Because the cross-
stage partial network (CSPNet) [23] solves the problem of repeated gradient information
in the optimization process of large CNN frameworks, CSPDarknet53 is chosen as the
backbone network, which divides the feature map of the base layer into two parts and then
merges them through a cross-stage hierarchy.

Figure 8. Multi-scale feature extraction network. The red dotted line represents the transmission path
from the FPN low-level feature layer to the high-level feature layer. The dotted green line indicates
the path from the PAN low-level feature layer to the high-level feature layer.

Based on the designed MFEN, the feature extraction of the input image can be realized.
Specifically, the image I ∈ RH×W×3 (H and W are the height and width, respectively) is
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input into the MFEN EMFEN. Then, the multi-scale deep feature Fs ∈ R(H/s)×(W/s)×C can
be extracted as

Fs = EMFEN(I, s; θE), (12)

where C is the channel number, and θE is the weight parameters of the designed MFEN
EMFEN. The multi-scale deep feature Fs is fed into the subsequent MOSDH to identify and
detect the ship.

3.2.2. MOSDH

The MOSDH is used to identify and detect the oriented ships through the features
extracted by the MFEN. The output structure of MOSDH refers to the decoupling output
mode of YoloX [24]. Corresponding to the three feature layers of PANet structure, the
MOSDH contains three scales of oriented ship detection heads (OSDHs), where the small-
scale detection head predicts large ships, the medium-scale detection head predicts medium
ships, and the large-scale detection head predicts small ships.

Moreover, each OSDH has three decoupling output branches, as shown in Figure 9:
(a) Gaussian heatmap confidence output branch of dense points: to predict the score that
each dense point to be a positive sample (belonging to a ship); (b) Gaussian heatmap
classification output branch of dense points: to predict the category of each dense point;
(c) ship bounding box corner points offsets output branch of dense points: to predict the
offsets of the four corner points of the ship (which ship the dense point belongs to) relative
to the dense point.

Figure 9. Structure of OSDH.

(a) The Dense Point Gaussian Heatmap Confidence Output Branch
To suppress background and noise interference, the confidence output of the Gaussian

heatmap of dense points is designed. The multi-scale deep feature Fs is fed into the dense
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point Gaussian heatmap confidence output branch of MOSDH HMOSDH-confs , and the
Gaussian heatmap confidence output feature Fconfs ∈ R(H/s)×(W/s)×1 can be obtained as

Fconfs = HMOSDH-confs(Fs, s; θH), (13)

where θH is the weight parameters of the MOSDH. Each feature point of the Gaussian
heatmap confidence output feature layer predicts the score of the dense point corresponding
to this feature point belonging to the ship object region (areaship). When the score is greater
than the set threshold Tconf ∈ (0, 1), the dense point is judged to be a dense positive point
(belonging to the ship object region). The judgment method can be expressed asdenpsij

∈ areaship, sigmoid(Fconfsij
) ≥ Tconf

denpsij
/∈ areaship, otherwise,

(14)

where Fconfsij
means the eigenvalue of the j-th row and the i-th column of the Gaussian

heatmap confidence output feature layer, the activation function of the confidence output
uses the sigmoid(·) function, and Tconf represents the confidence threshold.

Suppose that the dense point is determined to be a positive dense point. In that case,
the category of the oriented object to which the dense point belongs and the coordinates
of the four corner points of the oriented ship can be determined. Otherwise, it is directly
judged that the dense matter belongs to the background (dense negative point), and no
further discrimination and calculation will be carried out.

(b) Dense Point Classification Output Branch
We design the dense point classification output branch to determine the category of

dense points. When a dense point is determined as a positive sample point, the dense point
classification output branch HMOSDH−clss is used to predict the category of the dense point.

Specifically, the multi-scale deep feature Fs is input into the classification output branch
of the MOSDH HMOSDH-clss , and the classification output feature Fclss ∈ R(H/s)×(W/s)×Nc

is obtained as

Fclss = HMOSDH-clss(Fs, s; θH). (15)

Each feature point with size Nc of the feature layer of the category output predicts the
score of each category that the corresponding dense point is, which can be written as

denpIDsij
= argmax

(
so f tmax

(
Fclssij

))
, (16)

where denpIDsij
denotes the category number of the dense point denpsij

, and Fclssij
repre-

sents the Nc dimension feature vector of the j-th row and the i-th column of the output
feature layer of the category.

Therefore, the output feature vector of the category is first converted into the score of
each type by the so f tmax(·) function, and then the category ID number of the highest cate-
gory score is calculated by argmax(·) function to obtain the category of the oriented object.

(c) The Corner Point offsets Output Branch
To determine the position of the bounding box, the corner points to offset the output

branch are further built. When a dense matter is judged as a dense positive point, the
corner point offset output branch of the dense points predicts the offsets of the four corner
points of the ship bounding box relative to the dense point.

Specifically, Fs is input into the corner point offset output branch of the dense points of
the MOSDH HMOSDH-Poffsetss , and the output of offsets feature FPoffsetss ∈ R(H/s)×(W/s)×8

is calculated as

FPoffsetss = HMOSDH-Poffsetss(Fs, s, θH). (17)
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Each feature point with size 8 of the output feature layer predicts the offsets of the
four corner points of the ship bounding box relative to the dense point corresponding to
the feature point. Therefore, the coordinates of the four corner points are the offsets plus
the coordinate of the dense point, which can be expressed as

xPk = x∆Pk + xdenps ij
= F(2k−1)

Poffsetssij
× scales + xdenps ij

yPk = y∆Pk + ydenps ij
= F(2k)

Poffsetssij
× scales + ydenps ij

,
(18)

where xPk and yPk are the horizontal and vertical coordinates of the k-th corner point
Pk of the ship bounding box, respectively, x∆Pk and y∆Pk represent the offsets of the k-th
corner point Pk of the ship bounding box relative to the dense point denp

s ij
, respectively,

and F(2k−1)
Poffsetssij

is the (2k− 1)-th value of the j-th row and i-th column feature vector of the

output feature.
Multiple dense points may simultaneously predict the same ship object, or output lay-

ers of different scales may predict the same object. Therefore, after decoding all prediction
boxes, it is necessary to use the NMS technology to filter out the redundant oriented object
bounding boxes, obtaining the final detection result of the oriented ship.

3.3. Multi-Task Object Size Adaptive Loss (MOSALoss)

The multi-task OSALoss function, as the target function of the optimizer in the training
stage, guides the optimization of the weight parameters of the proposed AF-OSD.

3.3.1. OSALoss Weight

The multi-scale structure of the AF-OSD network has been designed to solve the
unbalanced training of different sizes of ships due to the other numbers of positive dense
points. Specifically, three detection heads are designed to detect oriented ships of various
sizes. However, since the object size is approximately continuous from small to large, the
predicted objects of a certain output scale are large or small. The loss function model [25]
focuses more on a small target with only one best anchor as a positive sample paired with it.
Different from [25], we design the loss function OSALoss suitable for the MDP-RGH-based
multi-scale directional ship detection in this paper.

To further solve the training imbalance caused by different object sizes, increasing the
number of output characteristic layers at different scales will not only fail to completely
solve this problem but also increase the amount of calculation, as shown in Figure 10.
As such, an OSALoss weight (OSAWeight) is further designed, which can be adaptive to
ship size.

Figure 10. The relationship between the scale size of the target and the model output.

Specifically, if the dense point denpsij
belongs to the object region of a ship Shipssn

,
the weight of the sample point Wadap-denpsij

is obtained as
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Wadap-denpsij

=
ddenps√
AShipssn

, denpsij
∈ areaship

Wadap-denpsij
= 1, otherwise,

(19)

where Shipssn
represents the n-th ship on the down-sampling scale of s times, AShipssn

is the
area of the ship, and ddenps

is the distance between two adjacent dense points. According
to (19), the weight of this dense point is inversely proportional to the square root of the
area of the ship in a dense point matrix of the same scale. When the shipping area is large,
the weight is small, while the weight is significant when the shipping area is small.

The difference in object size directly affects the difference in the number of positive
sample points, which affects the loss related to positive sample points, leading to the
problem of training imbalance. Therefore, the OSAWeight will be introduced into the loss
function related to positive sample points to eliminate the influence caused by different
object sizes.

3.3.2. Multi-Task OSALoss

In order to solve the situation of easy sample imbalance during training, the multi-task
OSALoss Lossadap-multi consists of the Gaussian heatmap confidence loss
GHCLosss = Loss

(
Fconfs , Gconfs

)
of dense points, the category prediction loss CPLosss =

Loss
(
Fclss , Gclss

)
of dense points, and the corner points offsets prediction loss OPLosss =

Loss
(
FPoffsetss , GPoffsetss

)
of the ship bounding box. Then, the proposed multi-task OSALoss

can be written as

Lossadap-multi =
1
3 ∑

s∈(4,8,16)
(GHCLosss + γCPLosss + λOPLosss), (20)

where Gconfs , Gclss , and GPoffsetss represent the confidence ground truth of Gaussian
heatmap, the classification ground truth of dense points and the corner offsets ground truth
of ship bounding box, respectively. γ and λ are the weight parameters, which are adaptive
with the training.

Next, we will introduce the Gaussian heatmap confidence loss, the category prediction
loss, and the corner points offset prediction loss in detail.

(a) The Gaussian Heatmap Confidence Loss:
Adaptive wing loss [26] is used for the GHCLosss, which can be represented as

GHCLosss = AWingLoss
(
Fconfs , Gconfs

)
. (21)

Since the GHCLosss adopts the relatively mature adaptive wing loss, we do not
introduce the OSAWeight into this loss function.

(b) The Category Prediction Loss:
The cross-entropy function is used for the CPLosss. Particularly, the CPLosss is com-

posed of positive CPLosss and negative CPLosss, which can be written as

CPLosss = CPLossPos
s + CPLossNeg

s , (22)

where the positive category prediction loss CPLossPos
s can be given as

CPLossPos
s =

H/s

∑
j=1

W/s

∑
i=1

Wadap-denps ij
×Mobjs ij

×
Nc

∑
c=1

(
Gc

clss ij
log
(

Sc
clss ij

)
+
(

1−Gc
clss ij

)
log
(

1− Sc
clss ij

))
, (23)
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where Mobjs ij
is the positive dense point mask. Sc

clss ij
is the score when the dense point

denpsij is the c-th category. Gc
clss ij

is the ground truth of whether the dense point denpsij is
the c-th category.

Mobjs ij
can be written asMobjs ij

= 1, denpsij
∈ areaship

Mobjs ij
= 0, otherwises

(24)

and Sc
clss ij

can be expressed as

Sclssij
= so f tmax

(
Fclssij

)
. (25)

For negative dense point category prediction loss, to further solve the imbalance
between the number of positive and negative samples, the hard negative example mining
technique is applied. Specifically, the negative dense category prediction loss for each
dense point can be written as

Lossneg

(
Fclssij

, Gclssij

)
=

Nc

∑
c=1

(
Gc

clss ij
log
(

Sc
clss ij

)
+
(

1−Gc
clss ij

)
log
(

1− Sc
clss ij

))
×Mbgs ij

, (26)

where Mbgs ij
is a negative sample mask, which can be written asMbgs ij

= 0, denpsij
∈ areaship

Mbgs ij
= 1, otherwise.

(27)

Then, the negative sample category prediction loss of dense points is sorted from
the largest to the smallest, and the ranked negative sample category prediction loss
Lossnegsorted

(
Fclssl

, Gclssl

)
can be obtained, where l denotes the serial number of the l-

th dense point after the negative dense category prediction loss ranking of dense points.
Finally, only the sum of the negative sample category prediction loss of the top L is taken
as the negative sample category prediction loss. The category prediction loss CPLossNeg

s
can be represented as

CPLossNeg
s =

L

∑
l=1

Lossnegsorted

(
Fclssl

, Gclssl

)
. (28)

In particular, if the number of negative samples is greater than twice the number of
positive samples, L takes two times the number of positive samples. Otherwise, L is equal
to the number of positive samples.

(c) The Corner Points Offsets Prediction Loss:
The ship bounding box corner point offset prediction loss uses the object size adaptive

weighted Smooth-L1 error loss. Specifically, we first use the Smooth-L1 loss to predict each
dense point of the ship bounding box corner point offsets as

Loss
(

Fclssij
, Gclssij

)
=


∑8

m=1 0.5× (Fm
Poffsetss ij

−Gm
Poffsetssij

)2, i f
∣∣∣∣Fm

Poffsetss ij
−Gm

Poffsetssij

∣∣∣∣ < 1

∑8
m=1

(∣∣∣∣Fm
Poffsetss ij

−Gm
Poffsetssij

∣∣∣∣− 0.5
)

, otherwise.
(29)
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Then, the target-scale adaptive weighted summation of the predicted losses for all
positive dense points ship target frame corner point offsets is performed. The total loss
OPLosss can be written as

OPLosss =
H/s

∑
j=1

W/s

∑
i=1

Wadap-denps ij
×Mobjs ij

× Loss
(

Fclssij
, Gclssij

)
. (30)

Using the above label assignment strategy, network design, and loss function, we
can train the deep learning network of the AF-OSD through the Adam optimization
method [27], as summarized in Algorithm 1.

Algorithm 1: Training AF-OSD based on Adam optimization

INPUT: Image data set I =
{

I(1), I(2), . . .
}

, and the corresponding labels

Y =
{

Y(1), Y(2), . . .
}

OUTPUT: The trained AF-OSD with fixed neural network parameters θE and θH
Construct AF-OSD
Initialize θE, θH randomly
for k to iterations do

Select randomly minibatch Ik ⊂ I,Yk ⊂ Y
Label assign as Section 3.1 : Gk ← Yk
Fk = AF-OSD(Ik; θEk, θHk)
Lk = Lossadap-multi(Fk,Gk)
θEk+1, θHk+1 ← OptimizerAdam(Lk; θEk, θHk)

end for
Freeze θE, θH

4. Experimental Conditions

In this section, experiments on two public-oriented ship datasets are conducted to
quantitatively and qualitatively evaluate the proposed AF-OSD. A series of experiments
are conducted using the DOTA ship dataset [28] and HRSC2016 dataset [29]. Next, we
will introduce the experimental conditions, including experimental platforms, datasets,
evaluation metrics, and implementation details.

4.1. Experimental Platforms

All the experiments are implemented on a desktop computer with an Intel Core i7-9700
CPU, 32 GB of memory, and a single NVIDIA GeForce RTX 3090 with 24 GB GPU memory.

4.2. Dataset
4.2.1. DOTA Ship Dataset

DOTA is a large-scale aerial image dataset containing 2806 images, with 15 categories
labeled with oriented boxes and image sizes ranging from 800× 800 to 1600× 1600. We se-
lect 434 images containing ships (including 37,028 ships), where 90% of them are randomly
selected as the training set, and the other 10% are as the validation set. The size distribution
of ships is not uniform, and there are few large-scale ships. So, we enhance and expand the
large ships in the dataset (rotation and flip enhancement), and the size distribution of the
original dataset and the enhanced dataset is shown in Figure 11a, and the rotation angle
distribution is shown in Figure 11b.
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(a) Size distribution (b) Rotation angle

Figure 11. Size and rotation angle of ship targets in the DOTA dataset.

4.2.2. HRSC2016 Dataset

HRSC2016 is a remote sensing image dataset containing ship targets labeled as arbi-
trary orientations. It consists of 1061 images (436 images are the training set, 181 images are
the validation set, and 444 images are the test set), whose spatial sizes range from 300× 300
to 1500× 900. We use the training set to train the model and the validation set to test
the model. The size and rotation angle distributions of ships are illustrated in Figure 12,
and the ship sizes and angles are more uniformly distributed. Therefore, we do not target
special scale ships when we perform enhancement expansion (flip enhancement).

(a) Size distribution (b) Directional distribution

Figure 12. Size and directional distributions of ship targets in the HRSC2016 dataset.

4.3. Evaluation Metrics

In this article, the widely used metrics in object detection are adopted to measure the
detection performance, i.e., precision, recall, and average precision (AP) (IOU threshold set
to 0.5). Moreover, we use the number of parameters (Params) and average running time to
evaluate the complexity and speed of the model, respectively.

4.4. Implementation Details

Due to the large size of the original input image, we cut it before network training.
Specifically, the input resolution is set to 800× 800. As such, the original image and the
corresponding labels are first preprocessed, where the cut image is uniform 800× 800 in
size (if the image is smaller than 800× 800, the padding operation is applied). To avoid
the situation that an object is cut into two halves and disappears, an overlapping area of
200 pixels is set in the experiments. Of course, there will be some cases where only a part
of the object is in the cropped image.

If this happens, we will judge the ratio of the area of the target on the cropped image
to the area of the target itself. If this ratio is greater than the set threshold (taken as 0.6), the
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label information of the object will be kept. The judgment method of whether to keep or
discard the target on the cropped picture is represented asKeep,

A(boxObject∩boxCropimage )

A(boxObject)
> Threshold

Discard, otherwise,
(31)

where A(·) denotes the function of the area and boxObject ∩ boxCropimage means the intersec-
tion of the target box and the cut picture box to be calculated. If it is determined that the
target needs to be retained, its coordinates on the cut image are calculated as

pO∗ = pO∗
i = pO

i − pCrop
1 , i ∈ 1, 2, 3, 4 (32)

where pO∗ is the new coordinate of the target frame in the cropped picture, pO
i denotes the

i-th coordinate point of the target frame in the original picture, and pCrop
1 denotes the first

coordinate point of the cropped picture frame in the original pictures. The image cutting
schematic is shown in Figure 13.

Figure 13. Image cutting schematic.

During the training process, the Adam optimizer is used to optimize the weight
parameters of our AF-OSD, and the initial learning rate is set to 0.001 with an exponential
decay of 5%. The batch size is set to 10, and all networks are trained for 200 epochs.

During the testing process, since the image size of HRSC2016 is not very large, before
input to the model, we resize the image and then pad its size to 800 × 800. For the test
images of DOTA, we used the same processing method as the training data. The confidence
threshold scoret is set to 0.1 and the NMS threshold is set to 0.6.

5. Experimental Results

To verify the rationality and advantages of the proposed AF-OSD, some comparison
experiments are implemented to study the performance differences between the proposed
oriented ship detector and other state-of-the-art (SOTA) oriented-object detection methods.
Moreover, some ablation experiments are conducted to analyze the effects of each part on
the performance of the proposed oriented ship detector.
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5.1. Ablation Experiments

To testify to the necessity of the oriented ship detector proposed, three sets of ablation
comparison experiments are designed: (1) comparing the performance of a multi-scale
network structure and a single-scale network structure for detecting oriented ships; (2) com-
paring the performance of a network without MDP-RGH confidence output branch and a
network with MDP-RGH confidence output branch for detecting oriented ships; (3) com-
paring the performance of the AF-OSD trained with the traditional multi-task loss function
and the AF-OSD trained with multi-task OSALoss function.

All the ablation comparisons of DNN networks are trained using the HRSC2016 train-
ing set, parameter settings, and training algorithms mentioned in the previous section. They
are then tested in the HRSC2016 validation set for measuring their detection performance.

5.1.1. Ablation Experiment on Different Scales

To verify the effect of multi-scale detection head on model enhancement, three single-
scale models and multi-scale models were compared in terms of detection accuracy on
the HRSC2106 dataset. Single-scale oriented ship detection network contains different
detection scales, including 50 × 50, 100 × 100, and 200 × 200, and the multi-scale oriented
ship detection network has three detection scales output.

As shown in Table 1, the comparison results show that the detection accuracy of the
multi-scale oriented ship detection network is better than that of any single-scale detection
network. Since it is difficult for a single-scale detection head to cover the remote sensing
oriented ship with a large scale range, the multi-scale detection head can solve this problem
well. So, compared with the AF-OSD network that does not use the multi-scale detection
head structure, the performance of the whole model can be improved by 1.31–2.69% by
introducing this structure.

Table 1. Ablation study of the multi-scale structure of the AF-OSD. The!means network with the
structure. The#means network without the structure. The bold results mean the best performance.

Single Head Multi Head Recall Precision AP

50 × 50 # 0.9020 0.8761 0.8789
100 × 100 # 0.9020 0.7948 0.8700
200 × 200 # 0.9039 0.8180 0.8833
# ! 0.9068 0.8963 0.8969

5.1.2. Ablation Experiment on MDP-RGH

To ensure the MDP-RGH confidence is favorable for the system, the comparison of the
detection accuracy of the oriented ship detection network without the MDP-RGH confi-
dence output branch and the oriented ship detection network with this branch is designed.

As shown in Table 2, the comparison results show that the detection accuracy of the
oriented ship detection network with the MDP-RGH confidence branch is better. Compared
with the AF-OSD without the MDP-RGH structure, the performance of the whole frame-
work can have achieved 4.75% AP improvement by introducing this structure on HRSC2016.

Table 2. Ablation study of the MDP-RGH confidence output branch of the AF-OSD.

FPN PAN MDP-RGH Recall Precision AP

! ! # 0.8854 0.8615 0.8494
! ! ! 0.9068 0.8963 0.8969

5.1.3. Ablation Experiment on Multi-Task OSALoss

To demonstrate the effectiveness of the OSAloss designed in this paper, the detec-
tion accuracy between the AF-OSD trained with the traditional multi-task loss (TMLoss)
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function and the network trained with the multi-task OSALoss (MOSALoss) function on
HRSC2016 is compared.

As shown in Table 3, comparison results show that our AF-OSD trained with the
MOSALoss function has better detection accuracy. The OSALoss weight in the MOSALoss
function is proportional to the distance between the dense points and inversely proportional
to the square root of the ship area. Therefore, the MOSALoss function can be adjusted
adaptively with the different ship sizes. So, compared with the AF-OSD network trained
with TMLoss, the performance of the model which trained through MOSAloss can be
improved by 4.56%. Therefore, the AF-OSD network with the MOSALoss function can
effectively solve the training imbalance caused by the different scales of oriented ships.

Table 3. Ablation study of the multi-task OSALoss function.

TMLoss MOSALOSS Recall Precision AP

! # 0.8595 0.9082 0.8513
# ! 0.9068 0.8963 0.8969

Based on the ablation experiments, the three parts of the AF-OSD are fully proven
effective in remote sensing ship detection.

5.2. Comparisons with SOTA

To demonstrate the effectiveness of the method in this paper, the AF-RPN [18] is used
as a baseline method, and the anchor-based methods RRPN [30], ROI-Transformer [31],
ref. [20], and R3Det [32] are compared with our method. The anchor-free methods IENet [33],
GGHL [20], and GRS-DET [6] are also used for the comparison. The baseline method shrinks
the object bounding box to obtain the core region and takes all the core region points as
positive. The proposed method utilized the MDP-RGH to model a ship compared to the
baseline method. We can compare the benefits of MDP-RGH through experiments.

Repeatability experiments on the DOTA dataset by the proposed method in this paper
yield better results on the DOTA test dataset, as shown in Figure 14. The first row in the
figure is the ground truth of the dataset. From Figure 14a,b, we can find that the proposed
method has a high recognition rate for small targets in remote sensing images in the DOTA
dataset. From Figure 14a,c, it can be seen that our method can achieve a good result
both for large and dense small-oriented ships at the same time. Moreover, AF-OSD can
accurately identify the small targets in the ground truth that are not completely labeled in
the ground truth, as shown in Figure 14a. However, the missed detection phenomenon of
the method proposed is significantly less than the ground truth. Meanwhile, it can be seen
that the bounding box accuracy of the detection algorithm in this paper is high, as shown
in Figure 15, in which the green bounding box is our method and the red bounding box is
the ground truth.

5.2.1. Results on the DOTA Ships Dataset

Table 4 further shows the quantitative comparison results between the proposed AF-
OSD and the SOTA-oriented ship detection algorithms on the DOTA ship dataset. Among
these methods, the R3Det method has the highest accuracy among anchor-based methods.
Compared with the highest accuracy of the anchor-based method R3Det, our method has
improved by 0.32%. Moreover, among anchor-free methods, the experimental results
show that the GRS-DET achieves about 2.36% AP improvement compared to the baseline
method because of the Gaussian mask and selective concatenation module (SCM) structure.
Compared to the GRS-DET, the proposed MDP-RGH can better suppress the interference
of negative samples such as background and noise in the image, and the OSALoss function
can further overcome the training imbalance problem caused by the different ship sizes, so
our method outperforms the GRS-DET with 3.39% AP improvement on the DOTA ship
dataset. The positive and negative sample distribution of GGHL is based on Gaussian
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prior and is adjusted during the training process, making it applicable to remote sensing
targets of any shape, but it will have some impact on regular symmetrical targets (the
distribution of positive samples in symmetrical rules will change to some extent after
adjustment), resulting in its AP value being 2% lower than the proposed method on the
DOTA ship targets.
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SD

(a) Image1 (b) Image2 (c) Image3 (d) Image4

Figure 14. Detection comparisons of different test images on the DOTA ships dataset (red box: ground
truth bounding box; red point: ship central points of proposed method; green box: proposed method
bounding box).

(a) image3 Local area (b) image4 Local area

Figure 15. Comparison of AF-OSD bounding box on DOTA dataset.
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Table 4. Comparison results on the DOTA ship dataset.

Methods Anchor-Free Backbone AP

RRPN # ResNet-101 0.4454
ROI-Transfomer # ResNet-101 0.8359

R3Det # ResNet-152 0.8784
IENet ! ResNet-101 0.7161

AF-RPN ! CSPDarkNet53 0.8241
GRS-DET ! ResNet-101 0.8477

GGHL ! DarkNet53 0.8616
AF-OSD (Ours) ! CSPDarkNet53 0.8816

5.2.2. Results on the HRSC2016 Dataset

For the HRSC2016 test dataset, we directly resize and pad the image to
800 × 800 pixels, and then input it into the model for processing. Based on the quali-
tative comparison of the detection effectiveness of the proposed AF-OSD and the baseline
method (AF-RPN) under the HRSC2016 dataset, it can be seen that our method tends to use
the point near the center of the ship to predict the ship’s bounding box. The point marked
red means it had the highest score to predict the ship. This indicates that the proposed
MDP-RGH can overcome the interference of negative samples such as background and
noise in the image by using the center point to detect the ship. Thus, a better result can be
realized by our method, as shown in Figure 16. From Figure 16b, it can be obtained that
the proposed method effectively reduces the false detection rate of the ships. Moreover,
AF-OSD can accurately identify the small targets in ground truth that are not completely
labeled in the ground truth, as shown in Figure 16a,d.

Table 5 further shows the quantitative comparison results between the proposed AF-
OSD and the SOTA-oriented ship detection algorithm on the HRSC2016 dataset. Among the
anchor-based methods, the R3Det method has the highest accuracy. Compared with R3Det,
the accuracy can be improved by 0.43% by our method. Moreover, among anchor-free
methods, the experimental results show that the GRS-DET [6] achieves about 4.63% AP
improvement compared to the baseline method. Due to the scale of ships in the HRSC2016
dataset being more uniform, our method, with the help of the MDP-RGH and the OSALoss
function, outperforms the GRS-DET with 0.12% AP improvement on the HRSC2016 dataset.

Table 5. Comparison results on the HRSC2016 dataset.

Methods RRPN ROI-Transformer R3Det IENet AF-RPN GRS-DET AF-OSD (Ours)

AP 0.7905 0.8620 0.8926 0.7501 0.8494 0.8957 0.8969

The results proved that the proposed AF-OSD based on MDP-RGH can achieve SOTA
through qualitative and quantitative comparative experiments.

5.3. Network Complexity Analysis

Based on the experimental process analysis, considering the network model’s com-
plexity and the computational effort, the proposed AF-OSD based on MDP-RGH in this
paper is compared with the anchor-based and anchor-free models, as shown in Table 6. The
comparison of results is based on the amount of computation and computing time within
the corresponding methods’ articles.
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Figure 16. Detection comparisons of different test images on HRSC2016 (red box: ground truth
bounding box; blue box: baseline method bounding box; green box: proposed method bounding box).

Table 6. Comparison of different networks on HRSC2016.

Methods AP Params GPU Speed

RRPN 0.7905 181 MB GTX 1080TI 0.2857 s
ROI-Transformer 0.8620 273 MB RTX 3090 0.1282 s

R3Det 0.8926 227 MB RTX 3090 0.0950 s
IENet 0.7501 212 MB GTX 1080TI 0.0592 s

AF-RPN 0.8494 189 MB RTX 3090 0.0109 s
GRS-DET 0.8957 200 MB GTX 1080TI 0.0729 s

AF-OSD (Ours) 0.8969 192 MB RTX 3090 0.0162 s

The network parameters of our proposed AF-OSD are significantly less, and its param-
eters are 35 MB less than those in the R3Det method. Moreover, compared to the anchor-free
method, the parameters of our method are 3 MB more than the baseline, 20 MB less than
IENet, and 8 MB less than GRS-DET. Based on the analysis of the toxic network model, the
computational complexity of this paper is 136 G FLOPS.

6. Discussion

In this paper, in order to solve the sample imbalance problem and suppress the
interference of negative samples such as background and noise, the oriented ship is modeled
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via the proposed MDP-RGH according to its shape and direction to generate ship labels
with more accurate information, which can predict the target for the contribution of positive
samples at different positions to judge the target. Additionally, we designed an end-to-
end anchor-free oriented ship detector (AF-OSD) net based on MDP-RG and validate its
detection performance.

For the necessity study of network modules, the ablation experiment includes three
parts: multi-scale structure, MDP-RGH-based label confidence, and MOSA loss. It has
been proved that the framework with a multi-scale structure can extract the features of the
oriented ship with different scales better. Multi-scale-based detection head setup enhances
the robustness of the model. Therefore, the design of the multi-scale structure of the
oriented ship detection network is reasonable. We use MDP-RGH to weight the positive
samples so that the samples are rotationally Gaussian distributed and have values closer
to the edge. The positive samples of our method are soft. As the result of the ablation
experiment, the output can use the Gaussian heatmap confidence to predict whether the
target is a negative sample or a positive one. A higher positive sample score means that
the sample is more representative of the ship. Therefore, the MDP-RGH confidence can
better suppress the interference of negative samples such as background and noise in the
image, so the detection performance has improved. The improved loss function comparison
experiments can prove that the weight can better solve the loss imbalance caused by the
large and small ships. The larger the target, the higher the number of positive sample
densities included; the smaller the target, the lower the number of positive sample densities
included. The ablation experiment shows that the weight can adaptively solve the situation
of sample imbalance that easily occurs during training.

Based on the test results on the DOTA ship dataset and HRSC2016 dataset, one can
reach that the proposed AF-OSD has the best target recognition effect in remote sensing
images with multi-scale ships, complex scenes, and positive and negative sample imbalance.
The AF-OSD has features of high accuracy, few parameters of the network model, and high
robustness. Due to the complexity of airborne remote sensing scenes, strong background
and noise interference, positive and negative sample imbalance, and multiple ship scales,
ship detection is a key and challenging task in remote sensing. The proposed method
in this paper can better solve the above challenges. In summary, the proposed AF-OSD
has a low number of parameters and higher model accuracy, detection accuracy, and
computational speed.

As our main research object is ship targets. Most ships in the HRSC2016 and DOTA
ship datasets have the characteristic of being narrow at both ends and wide in the middle,
and their external contours are similar to rectangles. Therefore, the proposed method in
this paper can be extended to the detection of remote sensing targets with similar external
contours as rectangles (such as vehicles and stadium-like remote sensing targets) in any
orientation, and even be possibly applied to symmetrical targets. However, AF-OSD is
not an optimal solution for irregular and asymmetrical remote sensing targets (such as
port-like targets). The application of the method in this paper to the detection of irregular
targets is somewhat affected by the poor matching of the Gaussian heatmap. Therefore, the
detection of full targets will be developed in the subsequent work. Moreover, to improve
recognition speed and increase detection accuracy by decoupling the scale and task, the
channel and spatial attention mechanism need to be considered in the design. However,
the results showed that the inclusion of the attention mechanism actually led to a decrease
in the detection accuracy of the network, which means that aspect requires further research
and study in future work.

7. Conclusions

This paper presents the AF-OSD (anchor-free oriented ship detector) based on the
MDP-RGH (multi-scale dense-point rotation Gaussian heatmap), which is designed for
detecting arbitrarily oriented ships. The AF-OSD adopts a PANet structure for multi-
scale feature extraction and a decoupled detection head for predicting the rotate Gaussian
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heatmap confidence, class, and location information of the oriented ship. The AF-OSD is
capable of handling ships of different sizes, whose bounding boxes can be of any shape
that fits the target. Experiments on two commonly used oriented ship datasets demonstrate
the superiority of the AF-OSD over other state-of-the-art methods. These results showcase
the high robustness of the AF-OSD in remote sensing ship identification applications and
its ability to balance the number of positive and negative samples of various scale targets
unsupervised while reducing the impact of noise and background on target identification.
As a result, the proposed model has achieved state-of-the-art performance.
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