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Abstract: Land use/land cover change evaluation and prediction using spatiotemporal data are
crucial for environmental monitoring and better planning and management of land use. The main
objective of this study is to evaluate land use/land cover changes for the time period of 1991-2022
and predict future changes using the CA-ANN model in the Upper Omo-Gibe River basin. Landsat-5
TM for 1991, 1997, and 2004, Landsat-7 ETM+ for 2010, and Landsat-8 (OLI) for 2016 and 2022
were downloaded from the USGS Earth Explorer Data Center. A random forest machine learning
algorithm was employed for LULC classification. The LULC classification result was evaluated using
an accuracy assessment technique to assure the correctness of the classification method employing
the kappa coefficient. Kappa coefficient values of the classification indicate that there was strong
agreement between the classified and reference data. Using the MOLUSCE plugin of QGIS and
the CA-ANN model, future LULC changes were predicted. Artificial neural network (ANN) and
cellular automata (CA) machine learning methods were made available for LULC change modeling
and prediction via the QGIS MOLUSCE plugin. Transition potential modeling was computed, and
future LULC changes were predicted using the CA-ANN model. An overall accuracy of 86.53%
and an overall kappa value of 0.82 were obtained by comparing the actual data of 2022 with the
simulated LULC data from the same year. The study findings revealed that between 2022 and 2037,
agricultural land (63.09%) and shrubland (5.74%) showed significant increases, and forest (—48.10%)
and grassland (—0.31%) decreased. From 2037 to 2052, the built-up area (2.99%) showed a significant
increase, and forest and agricultural land (—2.55%) showed a significant decrease. From 2052 to 2067,
the projected LULC simulation result showed that agricultural land (3.15%) and built-up area (0.32%)
increased, and forest (—1.59%) and shrubland (—0.56%) showed significant decreases. According
to the study’s findings, the main drivers of LULC changes are the expansion of built-up areas and
agricultural land, which calls for a thorough investigation using additional data and models to give
planners and policymakers clear information on LULC changes and their environmental effects.

Keywords: land use/land cover; machine learning; remote sensing; random forest; MOLUSCE
plugin; artificial neural network; cellular automata

1. Introduction

Currently, the issues of land use/land cover changes have become part of a global
agenda due to their association with human and environmental aspects. In this regard, it
has attracted the attention of an enormous number of researchers and scholars throughout
the world [1]. For example, [2] examined land use/land cover changes using different
time data and revealed their impacts on the living environment and human life, thereby
pinpointing essential solutions for planners and stakeholders. The alarmingly increasing
population and attributed need for natural resources, such as agricultural land and land
required for housing, are some of the factors responsible for perpetuating LULC changes
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in all corridors of the globe [3-5]. The dynamic nature of land use/land cover (LULC)
changes [6,7] requires continuous assessment, analysis, and monitoring employing socioe-
conomic and geospatial data for integrated and more accurate results. LULC changes have
multidimensional effects on the present and future ecosystem balance [8-10].

It is obvious that the dynamics and magnitude of the change become serious in devel-
oping countries such as Ethiopia because of the lack of awareness about the utilization of
environmental resources and uncontrolled utilization of resources without taking account-
ability for future risk, which is sourced from the lack of a strong legal framework [11,12].
The dynamic nature of LULC changes has a significant effect on spatiotemporal envi-
ronmental stability [13] due to its connection to local, regional, and international climate
conditions, clean water supply, agricultural activities, stability of biodiversity, and food
security. Therefore, it is imperative to understand the change exerted from land use/land
cover dynamics and multidimensional effects either positively or negatively that should be
treated in a collaborative manner by the community and governmental and nongovern-
mental organizations to achieve improved environmental stability [14]. To this end, LULC
change analysis, monitoring, and evaluation need the integrated approach and mobilization
of local communities for active participation in soil and water conservation practices [15].

The changes in LULC are derived from the interaction among socioeconomic, environ-
mental, and institutional phenomena occurring on the land [16]. Factors such as limited
livelihood options, limited technological approaches, and highly demanding social condi-
tions aggravate the competition on land, and due to this, the changes from land, particularly
the negative changes, for example deforestation, overgrazing, and informal settlements,
adversely affect the community in particular and the country in general [17]. Various
studies on LULC changes [18] have revealed that, in particular, highland areas are victims
of deforestation and encroachment of cultivated land into marginal areas, which causes
land degradation, soil loss through uncontrolled soil erosion, and environmental damage.
For instance, as stated in [19,20], most LULC changes resulted from the areal growth of land
for crop production and urbanization with the disbursement of forest cover in the present
study area. In Ethiopia, deforestation and expansion of urbanization are continuous pro-
cesses that cause loss of biodiversity, climate variability and change, desertification, and soil
erosion [21]. The present and expected future changes from LULC dynamics, as indicated
in [22], are analyzed using different machine learning and geospatial technologies [23]. The
advancement in these technologies and their integration with others widen the horizon of
their application by attracting many scholars and researchers globally to investigate the mul-
tidimensional effect of LULC on the environment and human life [24]. The identification of
LULC class types requires local knowledge, i.e., knowledge about the research area due
to its proximity and accessibility to the researcher, referring to topographic maps, Google
Earth maps, and published documents [25,26] if the image data required for the classifica-
tion are old images (satellite image acquired from 30 or 40 years ago). However, as stated
in [27], the identification of LULC class types requires less effort because of the presence of
high-resolution remote sensing satellite image data and globally classified LULC data pro-
vision by accredited international organizations for reference, such as MODIS global land
cover classification from NASA (https://modis.gsfc.nasa.gov/data/dataprod /mod12.php
(accessed on 15 September 2020)) and ESRI’s Global LULC classified data [28].

Recently, technologies for the analysis and evaluation of LULC have become very
advanced in terms of geospatial modeling, simulation, and prediction for future modifi-
cations [29]. The present and future determinants of LULC changes can be identified and
examined using internationally accredited models [30]. Spatially distributed models such
as CA-ANN [30], ANN-Markov Chain [31], and CLUE-S [32] have been recommended
by scholars for the analysis and prediction of LULC changes. Models have their own
specific performing capabilities and unique behavior in terms of approach and simula-
tion complexities [26]. Neural network models are frequently applied models in LULC
change analysis and prediction because they precisely represent complex geographically
heterogeneous modifications of land use and land cover [21]. Artificial neural networks in
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combination with cellular automata models can effectively realize land use systems [33].
The coupled CA-ANN model utilizes “what-if” scenarios in LULC change simulation and
modeling [34].

In this study, a QGIS plugin known as MOLUSCE (modules for land use change
simulation and evaluation) [35] was employed to evaluate the future LULC condition and
the spatial and temporal transition. The MOLUSCE plugin is a user-friendly plugin that
is compatible only with QGIS versions 2.00 to 2.99 [36]. It was developed by the Asia Air
Survey (AAS)in 2012 [37] for quick and convenient performance and analysis of land cover
changes. Various algorithms are embedded in the MOLUSCE plugin, which is essential
for a variety of techniques as necessitated in the respective objective of the study [38].
Future LULC predictions and spatiotemporal transition possibilities were simulated and
modeled for 2037, 2052, and 2067 using the coupled CA-ANN model with suitable remote
sensing data from 1991 to 2022 with seven-year intervals employing spatial variables such
as altitude and slope, which were derived from the shuttle radar topographic mission
(SRTM) 30 m DEM, and population density, distance from the urban center, distance from
major roads, and distance from streams [39].

The present study has the following objectives: to analyze LULC changes for the
period 1991-2022, identify spatial variables suitable for LULC change prediction, and
predict future LULC changes from 2022 to 2067 using a coupled CA-ANN model in the
Upper Omo-Gibe River basin.

2. Materials and Methods
2.1. Study Area

The Omo-Gibe River basin is one of the twelve river basins in Ethiopia. It covers
79,000 km? and is situated in three regional states: the Oromia regional state, Southern
Nations, Nationalities and Peoples” Region, and Southwest Ethiopia regional states. The
basin is conventionally divided into two large subbasins: the Upper Omo-Gibe River
basin and the Lower Omo-Gibe River basin. The Upper Omo-Gibe River basin (hereafter
called UOGRB) covers a total area of 34,150 km? [40]. Geographically, it is located between
6°15'00" and 9°50"00” north latitude and 35°30’00” and 38°45'00” east longitude (Figure 1).
It constitutes three hydroelectric power dams from Gilgel Gibe I to Gilgel Gibe IIL. To-
pographically, the basin is characterized by rugged terrain, mountains and valleys. The
climate in the area is subhumid, and the main rainy season is between June and September,
with a mean annual rainfall of 1300 to 2000 mm and an average temperature of 20.4 °C [41].
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Figure 1. Location map of the Upper Omo-Gibe River basin.

2.2. Materials

2.2.1. Data Acquisition and Preprocessing

The UOGRB watershed boundary (Figure 1) was extracted from the SRTM 30 m DEM,
which was downloaded from http://earthexplorer.usgs.org/ (accessed on 17 October 2021).
Temporal satellite imagery data were obtained from Landsat satellite series for the years
1991, 1997, 2004, 2010, 2016, and 2022. Landsat-5 TM for 1991 and 2004, Landsat-7 ETM+
for 2010, and Landsat-8 operational land imager (OLI) for 2016 and 2022 were downloaded
from the USGS Earth Explorer Data Center (https://earthexplorer.usgs.gov/ (accessed
on 4 February 2022)). For compatibility issues, the data were projected to the Universal
Transverse Mercator (UTM) with data from the World Geodetic System 84 (WGS84), the
projection system zone 37 N (Table 1). The dry season (January to March) was chosen for
the data selection to obtain the image data with the lowest cloud cover.

Table 1. Landsat satellite image acquisition and description.

S.N Satellite Sensor Path Row Ground Resolution Bands Date of Acquisition
169 054/055 30 m 7 10 January 1991
o1 Landsat-5 ™* 170 054/055 30m 7 18 February1991
169 054/055 30m 7 14 January 2004
02 Landsat-5 ™ 170 054/055 30 m 7 15 February 2004
. 169 054/055 30 m 7 7 February 2010
03 Landsat-z = ETM+ 170 054/055 30 m 7 15 January 2010
04 Landsat-8 OLI *** 169 054/055 30 m 7 7 February 2016
170 054/055 30 m 7 12 January 2016
169 054/055 30m 7 31 January 2022
04 Landsat-8 OLI 170 054/055 30 m 7 22 January 2022

* Thematic Mapper, ** Enhanced Thematic Mapper+, *** Operational Land Imager.
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In this study, satellite images from different UTM zones (UTM Zone 36 N and UTM
Zone 37 N) were used. To make image data compatible with each other, images were
reprojected to the common geographic coordinate system using the world coordinate
reference system (CRS: EPSG: 4326-WGS 84). Atmospheric, geometric, and radiometric
corrections were performed in QGIS 3.22 and ERDAS IMAGINE 2014 software. To correct
the scan line error (SLE) that occurred in the Landsat 7-ETM+ image due to the SLC-off [42]
the Landsat toolbox was used.

2.2.2. Spatial Variable Identification and Preparation

Since they have a higher impact on the LULC change mechanisms, researchers pay
particular attention to the physical and socioeconomic factors that contribute to LULC
modifications [43]. It is obvious that geographical and climatic factors are thought to have
the greatest influence on how people behave. The proximity to roads makes it easier to
ascertain the motivations underlying the construction of the terrain. In this study, a variety
of proximity and physical factors were considered.

The MOLUSCE plugin in QGIS offers several well-known techniques, including
Pearson’s correlation and Cramer’s coefficient, for assessing the connection between LULC
data and geographic factors [44]. Pearson’s correlation was used in the present study to
measure the relationship between variables because the spatial variables employed were
not categorical. Pearson’s correlation, rp, is a parametric measure of the linear correlation
between two variables, which was defined as the covariance of the two variables divided
by the product of their standard deviations, as stated in [45]:

;'/’:1(3“'7 f) (yi* ,17) n ) F =

\/ LG EL O R (- PP (i 7)

where the mean of each variable is subtracted from the raw scores in the numerator, and
the cross-products of the centered variables are added up. The scales of the variables
are changed by the denominator to have equal units. As a result, r is defined as the
standardized and centered cross-product of two variables in Equation (1). Pearson’s
correlation coefficient, r, ranges from —1 to 1. A value of 0 implies no linear association
between the two variables, whereas values of 1 and —1 imply perfect positive and negative
associations between the two variables, respectively. Spatial variables chosen for this study
with reference to previous studies [46] in association with the study area existing and
potential features include altitude, slope gradient, population density, distance from the
main road, distance from the rivers, and distance from the urban center.

2.3. Methods
2.3.1. Land Use/Land Cover Classification

After the data were preprocessed and the quality enhancement techniques were
conducted, LULC classification (Figure 2) was performed using seven land use/land cover
classes. LULC classes were categorized as forest (riparian vegetation, deciduous woodlands,
dense forest, woodland, mixed forest, open forest, evergreen broad leaved forests, evergreen
needle leaved forests, deciduous forest, and afro-alpines), agricultural land (cropland,
farmland, plantation, and fallow land), water bodies (rivers, ponds, swamps, wetlands,
and reservoirs), built-up areas (infrastructures include asphalt roads, houses, buildings,
and urban areas), shrubland (open and closed shrublands), grassland (range land, open
areas with vegetation less than 2 m in height, and savannas), and bare land (bare soil with
no vegetation or plantation, silt, gravel, degraded hillsides, rock outcrops, and open lands
without natural forests or crops) (Table 2).
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Table 2. LULC classes and description.

Land Use/Land Cover Type Description

Evergreen broad-leafed and evergreen needle-leafed forest,
Forest deciduous, woodland, open forest, dense forest,
and afro-alpine.
Lands occupied by crops, farmland, plantation, and fallow
land.

Waterbody Rivers, ponds, swamps, and reservoirs.
Infrastructures include houses, asphalt roads, buildings, and
urban areas.

Shrubland Include open and closed shrublands.

Open grass lands, vegetation less than 2 m height, and
range lands.

Bare land Lands without vegetation, crops or grasses, and barren soils.

Agricultural land

Built-up area

Grassland

2.3.2. Change Evaluation and Modeling Transition Potential

In this study, the MOLUSCE plugin in QGIS was utilized to simulate the LULC
transition between LULC classes and estimate spatiotemporal changes for the five time
periods (1991-1997, 1997-2004, 2004-2010, 20102016, and 2016-2022), and five LULC maps
were produced. Area change and transition probability matrixes were generated using
2010 and 2016 LULC. The artificial neural network (ANN) multilayer perception strategy
was employed. Elevation, slope gradient, population density, distance from the main roads,
distance from the urban center, and distance from streams were considered in the study as
the determinant factors for future land use/land cover change prediction. In LULC change
analysis and prediction, these variables are frequently used because they provide verifiable
information on the impact of anthropogenic and natural factors on LULC dynamics [48].

3. Results
3.1. LULC Classification

Based on the classes identified prior to the classification process, LULC for the years
1991, 1997, 2004, 2010, 2016, and 2022 was performed using the random forest classification
algorithm [49] and (Figure 3). The LULC classification method has advanced over time
by employing various machine learning algorithms, such as random forest (RF) [50] sup-
port vector machine (SVM) [51] maximum likelihood classifier (MLC) [17], and kNN [52].
Among the machine learning approaches, random forest is preferable for various reasons:
better capability of handling outliers and data noises, better performance with multidi-
mensional datasets from different sources, relatively better accuracy than other commonly
used classifiers, such as kNN, SVM, and MLC [53], and optimized processing speed due
to selection of effective variables [50]. In the random forest classification method [49]
the number of trees (Ntree) and individual split-based features (Mtry) are needed. Many
studies have stated that the random forest classifier is effective in LULC classification [37],
resulting in accurate classification output. According to [19] a large number of trees can
provide a sound result for variables. Various studies [54,55] have stated that better results
can be obtained with the default number of trees (Ntree = 500) as in the QGIS random
forest classifier, which works in combination with Sentinel Application Platform (SNAP)
software integrated into the classification algorithm.
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Figure 3. Land use/land cover (1991-2022): (a) LULC of 1991, (b) LULC of 1997, (c) LULC of 2004,
(d) LULC of 2010, (e) LULC of 2016, and (f) LULC of 2022.

3.2. Classification Accuracy Assessment

After the images were classified using the random forest classification algorithm,
the next step employed was image classification accuracy assessment [56]. Accuracy
assessment is considered a component of the image classification method that enables
the researcher to check whether the classification result has a strong, medium, or poor
agreement with the ground truth [57]. It helps assess the classification methodology and is
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crucial for identifying any potential errors. In the form of a confusion matrix, the classifier’s
accuracy was evaluated (Table 3). The accuracy evaluation of each classification generated
by the random forest-based classification was performed in the present study utilizing
random points extracted using the classification and segmentation toolsets in the Spatial
Analyst tools of ArcGIS and verified using historical Google Earth images.

Table 3. Confusion matrixes for LULC classification (i) 1991, (ii) 1997, (iii) 2004, (iv) 2010, (v) 2016,
and (vi) 2022.

(@)

Reference Data

LULC Cat. Forest AgrL WB BuA ShLL GrL BrnL RTotal UA
Forest 69 0 0 0 2 1 0 72 0.97
. AgrL 5 64 0 0 1 1 0 71 0.90
— 5 WB 29 8 34 0 1 0 0 72 0.47
& g BuA 5 0 0 65 0 1 1 72 0.92
U £ ShL 7 1 2 0 63 0 1 74 0.85
5 B GrL 1 2 0 1 0 68 0 72 0.94
— & BrnL 4 4 0 0 4 2 57 71 0.80
CTotal 120 79 36 66 71 73 59 504
PA 0.58 0.82 0.94 0.98 0.9 0.93 0.97
(ii) Reference Data
LULC Cat. Forest AgrL WB BuA ShL GrL BrnL Total UA
Forest 57 14 0 0 2 0 0 73 0.79
X £ AgrL 0 69 1 0 1 1 0 72 0.96
= _QG WB 22 3 46 0 0 0 0 71 0.65
s 3 BuA 0 2 1 69 0 0 0 72 0.96
Y 3 ShL 0 6 0 0 66 0 0 72 0.92
= & GrassL 0 7 0 0 0 65 0 72 0.90
BarrenL 0 8 0 0 0 0 64 72 0.89
Total 79 109 48 69 69 66 64 504
PA 0.72 0.63 0.96 1 0.97 0.98 1 0 0.87
(iii) Reference Data
LULC Cat. Forest AgrL WB BuA ShL GrL BrnL Total UA
. Forest 72 0 0 0 0 0 0 72 1
g 5 AgrL 3 67 0 0 1 0 0 71 0.94
§ g WB 6 13 53 0 0 0 0 72 0.74
S £ BuA 0 2 0 70 0 0 0 72 0.97
S 7 ShL 0 0 0 1 71 1 0 73 0.99
2 g GrL 0 0 0 0 0 72 0 72 1
BrnL 3 0 0 0 0 0 69 72 0.96
Total 84 82 53 71 72 73 69 504 0
PA 0.86 0.82 1 1 1 0.99 1 0 0.94
(iv) Reference Data
LULC Cat. Forest AgrL WB BuA ShLL GrL BrnL Total UA
Forest 66 4 1 0 2 0 0 73 0.90
. AgrL 3 67 0 0 1 0 0 71 0.94
o 5 WB 17 0 54 0 1 0 0 72 0.76
S _DG BuA 1 2 1 68 1 0 0 73 0.93
U £ ShL 1 1 0 1 71 0 0 74 0.96
5 3 GrL 0 0 0 0 0 71 0 71 1
— & BrnL 0 0 0 0 0 0 70 70 1
Total 88 74 56 69 76 71 70 504
PA 0.77 0.91 0.96 1 0.93 1 1
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Table 3. Cont.

9

Reference Data

LULC Cat. Forest AgrL WB BuA ShL GrL BrnL Total UA
m Forest 66 6 0 0 0 0 0 72 0.92
© & AgrL 0 69 0 1 1 1 0 72 0.96
§ % WB 3 3 66 0 0 0 0 72 0.92

U & BuA 0 0 0 72 0 0 0 72 1
5 7 ShL 0 4 0 0 68 0 0 72 0.94
— 6’ GrL 0 5 0 1 0 66 0 72 0.92
BrnL 12 0 0 0 0 0 60 72 0.83

Total 81 87 66 74 69 67 60 504 0
PA 0.81 0.79 1 0.97 0.99 0.99 1 0 0.93

(vi) Reference Data

Forest AgrL WB BuA ShL GrL BrnL Total UA

FRST 71 0 0 0 0 0 0 71 1
. AGRL 2 68 0 0 1 1 0 72 0.94
o & WB 2 0 74 0 1 0 0 77 0.97
§ 'Qo BUA 0 10 0 58 2 1 0 71 0.82
U & SHL 2 0 0 0 70 0 0 72 0.97
S @ GL 0 2 0 0 0 69 0 71 0.97

— 6’ BL 0 0 0 0 0 0 70 70 1

Total 77 80 74 58 74 71 70 504
PA 0.93 0.85 1 1 0.96 0.97 1

AgrL = agricultural land, WB = waterbody, BuA = built-up area, ShL = shrubland, GrL = grassland, BrnL = barn
land, PA= producer’s accuracy, UA = user’s accuracy.

The accuracy for LULC classification was assessed using the statistical tool known
as the Kappa coefficient, as shown in Table 4. According to [58], a classification has low
agreement if the kappa coefficient value is less than 0.4, medium agreement if it is between
0.4 and 0.8, and good agreement if it is over 0.8. For the LULC classification in 1991, the
kappa coefficient was 0.83 (83%) in 1997, 0.87 (87%) in 2004, and 0.94 (94%); in 2010, it
was 0.93 (93%) in 2016 and 0.93 (93%); and in 2022, it was 0.95 (95%). According to the
classification results, the 2022 LULC classification had the highest degree of agreement
(95%), while the 1991 LULC classification had the lowest degree of agreement. The quality
of the data was what caused the disparity. Comparatively, the 1991 Landsat-5 TM (Thematic
Mapper) image has lower quality than the 2022 Landsat-8 (OLI) image, which influences
the quality of LULC classification.

Table 4. Classification degree of agreement.

Year Over All Accuracy (%) Kappa Coefficient Degree of Agreement (%)
1991 82 0.81698 Almost perfect agreement
1997 87 0.85296 Almost perfect agreement
2004 94 0.94348 Almost perfect agreement
2010 93 0.93179 Almost perfect agreement
2016 93 0.914352 Almost perfect agreement
2022 95 0.94825 Almost perfect agreement

3.3. LULC Change Analysis and Evaluation

After the accuracy assessment was conducted and the classification status was evalu-
ated based on the kappa value for each year, change detection for 1991-1997, 1997-2004,
2004-2010, 2010-2016, and 2016-2022 was performed using QGIS 3.22 software. Change
detection, as shown in Figure 4, was presented using maps and bar graphs. From 1991 to
1997, forest and agricultural land showed a high increase in area, and built-up area and
shrubland showed less change in area coverage (Tables 5 and 6). Between 2016 and 2022,
the forestland showed a dramatic change (decreased) in area, and the built-up area greatly
increased (Table 6).
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(d) LULC Change (2010 - 2016)
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Figure 4. Change map from (1991-2022), (a) LULC changes (1991-1997), (b) LULC changes
(1997-2004), (c) LULC changes (2004-2010), (d) 2010-2016, and (e) LULC changes (2016-2022).

Table 5. LULC area (km?2) from 1991 to 2022.

1991 1997 2004 2010 2016 2022
LULC Area Area Area Area Area Area Area Area Area Area Area Area
Cat. (km?) (%) (km?) (%) (km?) (%) (km?) (%) (km?) (%) (km?) (%)

Forest 5026 15 9372 27 6028 18 6483 19 9768 28 5004 15
AgrL 12,032 36 15,736 46 18,275 53 21,219 62 19,536 57 22,147 65
WB 729 2 567 257 1 652 2 281 277 1
BuA 1776 5 2037 1812 5 1529 4 2025 2559 7
ShL 6255 18 2476 4841 14 1632 5 1791 2398 7
3 3

5 3

GrL 6629 19 2091 2903 8 981 772 859
BrnL 1515.87 4 2007 172 1 1791 113 1044

NN
O N U1\
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Table 6. LULC change analysis in 7-year intervals from 1991 to 2022.

1991-1997 1997-2004 2004-2010 2010-2016 2016-2022

LULC Area Change Area Change Area Change Area Change Area Change
Cat. (km?) (%) (km?) (%) (km?) (%) (km?) (%) (km?) (%)
Forest 12,717 37 —3344 —10 456 1 3285 10 —4764 —14
AgL 13,197 38 2539 7 2945 9 —1684 =5 2611 8
WB 878 3 —311 -1 395 1 129 0 112 0
BuA 263 1 1775 5 —284 -1 497 1 1544 5
ShL 111 0 2365 7 —3209 -9 159 0 607 2
GrL 1279 4 812 2 —1922 —6 —209 -1 87 0
BrnL 3841 11 —1835 -5 1619 5 —1678 -5 931 3

3.4. Spatial Variables

The spatial variables selected for the current study are altitude, slope gradient, distance
from the main roads, distance from the streams, population density, and the distance
from the urban centers based on previous studies [59]. After relevant spatial variables
(Figure 5) were selected and factor maps were created, geometry matching was conducted,
which included the cell size of the raster data, NoData value, data extent, dimension, and
coordinate reference system. The cell size, NoData value, and coordinate reference system
are 30 m, 0, and WGS_1984_UTM_Zone_37 N, respectively, for all spatial variables.

600E s0°007E so0E 00'E 3000k s W00E
Elevation Slope Gradient N Distance from Main Road N
Sy High: 3613 s A [ 0-100 |Z
H ) s
Ml o sae e [ <00 - 200 <
[ J12-19 [ 200 - 500
—_ P I oo 1000
£ 7
: {J 5 &
(@ e by 3
g (c) £
B = i L Y 60 30 0 60 120 180

Legend N Population Density N Distance from Urban Center N
2| [ 300 - 600 [ Jssa-1.308 [ ] 2s50-500 p H

I 00 - 500 [0 1.308- 4543 . [ ] s00-1000

[ 500 - 1200 I 454312122 é I 1000 - 1500
z | [ >1200 I 2122 - 2358367 f [ >1500 7
H - H

i 2l
© (0
£ M/L/ £
60 30 0 60 120 180 L 50 120 i) 60 300 60 120 180
) Kitomet —
Sﬂ“ﬂl'ﬂ"li S7“ﬂl'ﬂ"]3 SB“[II'H"]E Sﬁ“ﬂl'ﬂ"li S7“ﬂl'ﬂ"li Sﬂ“ﬂl'ﬂ"]i M“ﬂl'ﬂ"li S7“ﬂl'ﬂ"li SB“HI'H"E

Figure 5. Spatial variables (explanatory variables): (a) elevation (b) slope gradient (c) distance
from the main road, (d) distance from the streams, (e) population density, and (f) distance from the
urban center.

In this study, Pearson’s correlation was used to measure the correlation between vari-
ables. The MOLUSCE plugin in QGIS provided three options for correlation measurement:
Pearson’s correlation, Cramer’s coefficient, and joint information uncertainty [60]. Pearson
correlation was chosen because the variables used in this study are not categorical. Table 7
indicates that elevation, distance from the main road, and distance from the urban center
are more strongly correlated than other variables, so these variables were selected for LULC
change simulation and prediction.
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Table 7. Evaluation of the correlation between variables using Pearson’s correlation method.

Spatial Variables Elev Dmrd SIpGt DStr Pdsty DUC
Elevation (Elev) 0.038 0.005 0.525* 0.037 0.109
DistMainRoad (Dmrd) 0.153 —0.025 0.045 0.609 *
Slope Gradient (SlpGt) 0.084 0.026 0.059
DistStreams (DStr) 0.031 0.016
Population Density (Pdsty) 0.072

DistUrbanCenter (DUC)

Change Map (2010-2016)

DistMainRoad = distance from the main road, DistStreams = distance from the streams, DistUrbanCenter = dis-
tance from the urban center. * Are strongly correlated variables.

3.5. LULC Change Simulation and Prediction Using the CA-ANN Model

The QGIS MOLUSCE plugin provided artificial neural network (ANN) and cellular
automata (CA) machine learning algorithms for LULC change simulation and prediction.
ANN follows the nonparametric, nonlinear, and stochastic approach in LULC change
simulation and prediction, which processes the potential to solve problems emanating
from different variables [61]. Using its capacity to learn from a large number of datasets,
ANN enabled the model to manage complex conditions during simulation. ANN basically
uses the multilayer perception (MLP) approach [62] considering previously recorded
LULC changes and spatial variables (explanatory variables) for LULC modification. In
this study, the LULC of 1991, 1997, 2004, 2010, 2016, and 2022 (Table 8) and six spatial
variables, including altitude, slope gradient, distance from the main road, distance from
the streams, population density, and distance from the urban center, were considered as
inputs for model simulation using the MOLUSCE plugin in QGIS. The initial and final
rasters were the LULC maps of 2010 and 2016, respectively, to simulate 2022 LULC. The
simulation model was constructed, and verification was performed for 2022. A change
map was created using 2010 and 2016 LULC maps (Figure 6).

50 100 150

| Kilometers

Legend

Il Forest Unchanged

|:| Forest to Agricultural Land
Il Forest to Water Body
[[] Forest to Built-up area
[[] Forestto Shrub Land

[ ] Forestto Grassland

Il Forest to Baren Land
B ~gricuttural Land to Forest
[ ] Agricuitural Land Unchanged Il \vater Body to Baren Land
Bl Aoricutural Land to Water Body [l Buittup area to Forest

I:l Agricultural Land to Built-up area I:l Built-up area to Agricultural Land
I:l Agricultural Land to Shrub Land - Built-up area to Water Body

[ ] Agricuttural Land to Grassland
Bl Agricuitural Land to Barren Land
Bl \Vater Body to Forest

[ ] waterBody to Agricultural Land
Il \ater Body Unchanged

[7] water Body to Built-up area
7] waterBody to Shrub Land

[ ] waterBody to Grassland

Built-up area Unchanged Grassland to Agricultural Land
Grassland to Water Body
Grassland to Built-up area

Grassland to Shrub Land

Built-up area to Shrub Land
Built-up area to Grassland
Built-up area to Bamen Land
Shrub Land to Forest

Shrub Land to Agricultural Land
Shrub Land to Water Body
Shrub Land to Built-up area
Shrub Land Unchanged

Shrub Land to Grassland

Grassland Unchanged
Grassland to barren Land
Bamen Land to Forest

Bamen Land to Agricultural Land
Bamren land to Water Body
Bamren Land to Built-up area

Shrub Land to Bamen Land Bamen Land to Shrub Land

ICEERONNCER

Grassland to Forest Bamen Land to Grassland

I0RENCERCEEND

Bamren Land Unchanged

Figure 6. Change map (20102016).



Remote Sens. 2023, 15, 1148

15 of 24

Table 8. Transition matrix of 1991-2022.

1997
Forest AgrL WB BuA ShL GL BL
Forest 0.586 0.063 0.007 0.029 0.351 0.09 0.008
AgrL 0.014 0.603 0.023 0.016 0.141 0.199 0.004
1991 WB 0.364 0.124 0.240 0.002 0.181 0.080 0.009
BuA 0.005 0.641 0.001 0.027 0.061 0.252 0.012
ShL 0.056 0.342 0.004 0.011 0.241 0.33 0.013
GL 0.012 0.492 0.001 0.149 0.039 0.259 0.043
BL 0.043 0.316 0.003 0.007 0.253 0.390 0.009
2004
Forest AgrL WB BuA ShL GL BL
Forest 0.472 0.352 0.221 0.003 0.034 0.004 0.023
AgrL 0.049 0.809 0.003 0.070 0.019 0.018 0.030
1997 WB 0.435 0.462 0.052 0.018 0.015 0.003 0.014
BuA 0.007 0.854 0.003 0.081 0.004 0.042 0.009
ShL 0.373 0.389 0.016 0.010 0.113 0.022 0.076
GL 0.123 0.591 0.004 0.036 0.073 0.058 0.107
BL 0.078 0.714 0.007 0.045 0.056 0.241 0.073
2010
Forest AgrL WB BuA ShL GL BL
Forest 0.631 0412 0.016 0.014 0.234 0.007 0.061
AgrL 0.137 0.619 0.008 0.061 0.078 0.037 0.059
2004 WB 0.736 0.081 0.088 0.004 0.069 0.001 0.020
BuA 0.070 0.760 0.001 0.060 0.038 0.044 0.037
ShL 0.310 0.359 0.001 0.018 0.210 0.006 0.094
GL 0.115 0.703 0.001 0.010 0.070 0.065 0.035
BL 0321 0.634 0.004 0.021 0.210 0.083 0.077
2016
Forest AgrL WB BuA ShL GL BL
Forest 0.633 0271 0.007 0.011 0.067 0.007 0.003
AgrL 0.174 0.647 0.008 0.087 0.052 0.029 0.002
2010 WB 0.757 0.115 0.083 0.004 0.034 0.003 0.005
BuA 0.051 0.756 0.002 0.132 0.036 0.023 0.000
ShI, 0.448 0.445 0.002 0.012 0.074 0.014 0.004
GL 0.199 0.640 0.003 0.024 0.026 0.098 0.010
BL 0277 0578 0.006 0.031 0.076 0.019 0.013
2022
Forest AgrL WB BuA ShL GL BL
Forest 0.870 0.130 0 0 0 0 0
Sole AgiL 0.142 0.858 0 0 0 0 0
WB 0.952 0.044 0.004 0 0 0 0
BuA 0.006 0.987 0 0.007 0 0 0
ShL, 0.188 0.698 0 0 0.114 0 0
GL 0.069 0916 0 0 0 0.015 0
BL 0.290 0.676 0 0 0 0 0.034
2037
Forest AgrL WB BuA ShL GL BL
Forest 0.999 0.001 0 0 0 0 0
. AgiL 0.001 0.999 0 0 0 0 0
WB 0.002 0 0.998 0 0 0 0
BuA 0.000 0.000 0 1.000 0 0 0
ShI, 0.026 0.004 0 0 0.970 0 0
GL 0.001 0.002 0 0 0 0.998 0
BL 0 0 0 0 0 0 1

AgrL = agricultural land, WB = waterbody, BuA = built-up Area, ShL = shrubland, GL = grassland, BL = bare land.

As indicated in Figure 7, agricultural land expanded, and forest cover, shrubland, and
bare land decreased from 1991 to 1997. From 1997 to 2004, forest cover and agricultural land
increased, but shrubland and grassland decreased. From 2016 to 2022, agricultural land
and built-up areas showed a dramatic expansion, but forest cover, water bodies, shrubland,
and bare land decreased in size (Figure 7).
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Figure 7. Gain and loss of LULC (1991-2022).

3.6. Artificial Neural Network (ANN)-Based LULC Change Transition Potential Modeling

Based on MOLUSCE's approach, transition potential modeling was conducted using
an artificial neural network (ANN), which is ruled by the multilayer perception method
employing neighborhood (1 px), learning rate (0.01) (Figure 8), maximum iteration (1000),
hidden layer (12), momentum (0.05), fixed overall accuracy (—0.0018), minimum error
for validation (0.0317), and validation kappa (0.9781). The model used 5000 randomly
distributed samples to provide spatial representation for ANN. Based on the fixed value
(0.01 learning rate), the neural network learned and simulated LULC changes for 2022.

Neural Network learning curve

0.055

0.050

0.045

0.040

Figure 8. Neural network learning curve.

Transition potential modeling was computed, and future LULC changes were pre-
dicted using the CA-ANN model. The model utilized LULC data from 2010 to 2016 to
predict the change in 2022, which resulted in a validation kappa value of 0.97. An overall
accuracy of 87% and an overall kappa value of 0.82 were obtained by comparing the actual
data of 2022 with the simulated LULC data from the same year. The actual and simulated
LULC maps for 2022 are indicated in Figure 9 and their areal coverage was presented in
Table 9.
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Figure 9. Actual and simulated LULC of 2022.

Table 9. Actual and simulated LULC of 2022.

Actual Simulated

LULC Category Area (km?) Area (%) Area (km?) Area (%)
Forest 5004 13 4371 10
Agricultural land 22,147 58 28,314 63
Waterbody 893 2 938 2
Built-up area 5569 15 7658 17
Shrubland 2398 6 2149 5
Grassland 859 2 678 2
Barren land 1044 3 984 2

3.7. LULC Prediction

The LULC predictions for 2037, 2052, and 2067 (Figure 10 and Table 10) were performed
after obtaining acceptable model validation results. The procedure of model validation
combines the contents of two data sources and takes into consideration the features of
actual and simulated LULC data. The LULC for 2037 was predicted using the LULC data
between 2016 and 2022, the spatial variables selected for simulation, and the transition
probability matrix, and a kappa value of 0.73 was attained. Consequently, LULC for 2052
was predicted using the LULCs of 2022 and 2037, employing the explanatory factors and
transition matrix, and the kappa value computed was 0.68. Finally, using the projected data
for 2052-2067 and the transition matrix, we forecasted the LULC for 2082 and arrived at a

kappa value of 0.69 as a result.

Table 10. Area in km? for the LULC (2037, 2052, and 2067).

LULC2037 LULC2052 LULC 2067

LULC Cat. Area (km?) Area (%) Area (km?) Area (%) Area (km?) Area (%)
Forest 5139 15 4872 14 4328 13
Agricultural land 22,146 64 21,273 62 22,353 65
Waterbody 273 1 272 1 293 1
Built-up area 1725 5 2749 8 2858 8
Shrubland 1859 5 1763 5 1572 5
Grassland 1787 5 1674 5 1561 5
Barren land 1895 5 1684 5 1473 4
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Figure 10. Prediction of LULC (2037-2067).

3.8. Change Prediction

The evaluation performed on LULC changes during the course of the investigation
showed significant changes across land LULC classes. The results from 2022 to 2067 demon-
strate a discernible increase in built-up areas and a decrease in forest cover and shrub-
land. The area coverage and percentage changes for each LULC category are presented in
Figure 11 and Table 11. Inter-transitions between LULC classes and their contribution to
other classes intensify changes in LULC at times. As indicated in Table 11, between 2022
and 2037, agricultural land (2163 km?, 63%) and shrubland (1966 km?, 5%) showed a sig-
nificant increase, and forest (—1649, —48%) and grassland (—107 km?2, —0.31%) decreased.
From 2037 to 2052, the built-up area of 1023 km? (3%) showed a significant increase, and
forest —267 km? and agricultural land of —873 km? (—3%) showed a significant decrease.
From 2052 to 2067, the projected LULC simulation result showed that agricultural land
(1079 km?, 3%) and built-up area (109 km?, 0.32%) increased and forest —544 km? (—2%)
and shrubland —191 km? (—1%) showed significant decreases.

Table 11. LULC changes from 2037 to 2067.

2022-2037 2037-2052 2052-2067

LULC Cat km? % km? % km? %
Forest —16,492 —48 —267 -1 —544 -2

Agricultural land 21,631 63 —873 -3 1079 3

Waterbody 515 2 -1 0 21 0

Built-up area 115 0 1024 3 109 0
Shrubland 1967 6 —96 -0 —-191 -1
Grassland —107 -0 —113 -0 —113 —0
Barren land 1895 6 —211 -1 -210 -1
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Figure 11. Change maps (2022-2067).

4. Discussion

Recently, most of the changes occurring in the physical and human environments
have been directly related to the changes emanating from LULC dynamics. This condition
has attracted the interest of scholars from academic and research institutes globally. In
this regard, an ample number of studies have been conducted [63,64] dealing with the
impact of LULC changes on various aspects of the environment. Water resource (surface
and subsurface) availability, climate variability, soil fertility, and agricultural productivity
are some of the phenomena directly or indirectly influenced by LULC changes. Climate
variability may have a negative impact on land use and cover, as well as alter the environ-
ment’s natural aesthetic. Lack of rainfall and temperatures that are abnormally high or low
have detrimental impacts on the ecosystem [34].

The expansion of anthropogenic activities due to newly commenced national and
international projects contributes greatly to environmental alteration, paving the way for
the intensification of LULC changes. The study conducted in Linyi, China, considering land
use/land cover change analysis, evaluation, and prediction using the QGIS MOLUSCE
plugin and remote sensing big data revealed an increase in the population number and
density; and the associated expansion of urban areas significantly caused a decrease in
forest resource and grasslands [65].

In the Ethiopian context, population growth is the leading factor for LULC changes,
which contributes to land fragmentation, forest loss, and loss of biodiversity. LULC
dynamics can be primarily attributed to a variety of anthropogenic activities, including the
encroachment of farmland into vegetated lands, the growth of farm plots at the expense
of forestlands, the massive production of fuelwood and charcoal to support livelihood,
overgrazing, and the expansion of farm plots into agricultural lands.

The study undertaken in Nashe Watershed, Upper Blue Nile Basin, Ethiopia, consid-
ered the prediction of land use/land cover changes using a land change modeler. This study
used Landsat imageries for land use/land cover classification and predicted future LULC
changes using the CA-Markov model. The study findings revealed that there will be a
rapid conversion of forest land, range land, and grassland to agricultural land and built-up
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areas in the future and require a national policy implementation in order to maintain the
goal of sustainable development [66]

The present study area, the Upper Omo-Gibe River basin, is known for its long moun-
tain ranges, deep gorges, physically interconnected subbasins, lowland plains, woodlands,
broad- and needle-leafed trees and grasslands, an enormous number of wild species, and
mineral-rich soil [10]. Due to the existence of these environmental features in the study
area, it was imperative to include spatial variables, such as elevation, slope gradient, dis-
tance from the river, and distance from the main road in the LULC change simulation
and prediction.

According to the Gibe III hydroelectric project [67], the land cover of the study area
comprises forest (open and dense forest, woodland, riverine forest, and plantation), agri-
cultural land (cultivation, recession agriculture, fallow land, and croplands), water bodies,
built-up areas, shrubland, grassland, and bare soil.

The present study considered seven land use/land cover classes, including forest,
agricultural land, water bodies, built-up areas, shrubland, grassland, and barren land
in reference to Landsat image time series data and some supportive sources, such as
published and unpublished documents, topographic maps, and historical and current
Google Earth images. Geospatial data for LULC classification were acquired from different
sources. Digital elevation data with 30 m ground resolution were acquired from the shuttle
radar topographic mission (SRTM). Landsat-5 TM for 1991 and 2004, Landsat-7 ETM+ for
2010, and Landsat-8 operational land imager (OLI) for 2016 and 2022 were downloaded
from the USGS Earth Explorer Data Center. Spatial variables selected for the study were
altitude, slope gradient, distance from the main roads, population density, distance from
the streams, and distance from the urban center. Among the machine learning approaches,
random forest is preferable for various reasons: better capability of handling outliers and
data noises, better performance with multidimensional datasets from different sources,
relatively better accuracy than other commonly used classifiers, such as kNN, SVM, and
MLC, and optimized processing speed due to selection of effective variables.

The LULC classification result was evaluated using an accuracy assessment technique
to assure the correctness of the classification method employing the kappa coefficient.
Based on the classification evaluation outcome of the study, the kappa value for 1991 is 0.82
(82%), 1997 is 0.85 (85%), 2004 is 0.94 (94%), 2010 is 0.93 (93%), 2016 is 0.91 (91%), and 2022
is 0.95 (95%). Kappa coefficient values of the classification indicate that there was strong
agreement between the classified and reference data.

The present study used the CA-ANN model for the evaluation and prediction of LULC
changes in the future and found that the model is effective and reliable. However, it is
suggested that further studies could employ more spatial and socioeconomic variables
such as climate variability, economic development, technological advancement, political
economy, and GDP (gross domestic product) to provide more sufficient and valuable
information regarding the positive and negative impacts of LULC changes in the future.

5. Conclusions

LULC change detection was carried out for the time periods 1991-1997, 1997-2004,
2004-2010, 2010-2016, and 2016-2022, and the results were presented in maps and graphs.
Landsat time series imageries were used to develop information classes based on the LULC
categories. Raster data geometries were checked prior to simulation. The data extent,
coordinate system, and NoData value were made to have the same content for simulation.
Pearson’s correlation was used to measure the correlation between variables. Future LULC
changes were predicted employing spatial and socioeconomic variables, such as elevation,
slope gradient, distance from the main road, distance from streams, and population density,
respectively, using the MOLUSCE plugin of QGIS and the CA-ANN model. The following
conclusions were made based on the study’s findings.

Artificial neural network (ANN) and cellular automata (CA) machine learning meth-
ods were made available for LULC change modeling and prediction via the QGIS MO-
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LUSCE plugin. ANNs have the potential to handle issues arising from many variables
using nonparametric, nonlinear, and stochastic methods for LULC change modeling and
prediction. The model was able to control complicated situations during simulation because
ANN has the ability to learn from a large number of datasets. ANN primarily employs the
multilayer perception (MLP) method while taking into account previously observed LULC
changes and spatial variables (explanatory variables) for LULC modification. Transition
potential modeling was computed, and future LULC changes were predicted using the
CA-ANN model. The model utilized LULC data from 2010 to 2016 to predict the change
in 2022, which resulted in a validation kappa value of 0.97. An overall accuracy of 86.53%
and an overall kappa value of 0.82 were obtained by comparing the actual data of 2022
with the simulated LULC data from the same year and this result proved the reliability of
the model.

The present study findings revealed that between 2022 and 2037, agricultural land
increased by 2163 km? (or 63%) and shrubland by 1967 km? (or 6%) whereas grassland
decreased by 107 km? (or 0.31%) and forest by 1650 km? (or 48%). From 2037 to 2052, the
built-up area (1024 km?) (3%) showed a considerable increase, while the forest (—267 km?2)
and agricultural land (—873 km?) (3%) showed a significant decline. The predicted LULC
simulation result from 2052 to 2067 revealed that while built-up area 109.05 km? (0.32%)
and agricultural land 1079.28 km? (3.15%) both increased, forest —544.11 km? (—2%) and
shrubland —191 km? (—1%) significantly decreased.

The results of the study show that the future physical and human environment will be
impacted by the quick and intense LULC transformation. Due to this condition, the study
catchment (Gibe-1II catchment) will experience climate variability, soil erosion, biodiversity
loss, scarcity of water resources (both surface and subsurface), drought susceptibility,
disruption of water balance components, and reservoir sedimentation in the future. In
addition, increased human population density in the study area, particularly in urban areas
and areas near main roads, has led to extraordinary levels of land pressure and increased
demand for vast amounts of land for the building of residential homes both in urban and
rural areas.

Therefore, it is crucial to call for the development of long-run local and national plans
and their implementation regarding the utilization of natural resources and land use in
order to safeguard the natural resources and maintain the water balance of the study area
in particular and the entire basin (Omo-Gibe River basin) in general. Studies such as this
one will significantly contribute to bringing about the best resource usage in the future
by offering timely and relevant information in regard to LULC change evaluation and
monitoring; and its impact on the physical and human environment.

Finally, the predicted conditions in this study particularly the negative impacts of
LULC changes may be overturned through the implementation of integrated local and
regional scale policies and strategies toward efficient resource utilization, land use, and
physical and human environmental protection. In line with this, practicing effective soil and
water conservation measures, climate-resilient agricultural activities, periodic afforestation,
and reforestation programs will tackle the adverse impacts emanating from the LULC
changes. It is recommended that future studies undertake multisource data, more variables
(spatial and socioeconomic), and models to evaluate and predict LULC changes, and
provide sound information in the entire basin (Omo—Gibe River basin) and other basins.
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