
Citation: Stopic, R.; Dias, E.

Examining Thresholding and Factors

Impacting Snow Cover Detection

Using Nighttime Images. Remote

Sens. 2023, 15, 868. https://doi.org/

10.3390/rs15040868

Academic Editors: Ran Goldblatt,

Steven Louis Rubinyi and

Hogeun Park

Received: 24 December 2022

Revised: 28 January 2023

Accepted: 2 February 2023

Published: 4 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Examining Thresholding and Factors Impacting Snow Cover
Detection Using Nighttime Images
Renato Stopic and Eduardo Dias *

SPINlab, Department of Spatial Economics, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
* Correspondence: ess580@vu.nl

Abstract: Nighttime remote sensing data from the Visible Infrared Imaging Radiometer suite
day/night band (VIIRS DNB) enable snow cover detection from full moonlight reflection. Us-
ing nighttime data is particularly relevant in areas with limited daytime hours due to high latitudes.
Previous studies demonstrated the potential of using thresholding methods in detecting snow, but
more research studies are needed to understand the factors that influence their accuracy. This study
explored seven thresholding algorithms in four case study areas with different characteristics and
compared the classified snow results to the MODIS MOD10A1 snow cover product. The results
found that Li thresholding delivers higher accuracies for most case studies, with an overall accuracy
between 65% and 81%, while mean thresholding performed best in mountainous regions (70%) but
struggled in other areas. Most false negatives are caused by forests, especially closed and evergreen
forests. The analysis of NDVI data matches these findings, with the NDVI of false negatives being
significantly higher than true positives. False positives appear to be primarily located in or around
built-up areas. This study provides insights into where nighttime VIIRS DNB data can be used to
increase snow cover data temporal and spatial coverage.
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1. Introduction

Knowing which areas of the planet are covered by snow or ice is of major importance
to many fields of earth sciences, including climatology, meteorology, and hydrology. Snow
has an impact on both local environments and on global climate [1,2]. Since the beginning
of remote sensing in the early 1970s, snow was one of the first to be investigated successfully
because of its high albedo [3]. The introduction of MODIS (Moderate Resolution Imaging
Spectroradiometer) enabled the creation of daily snow cover products at a global scale.
Due to its high temporal resolution and global coverage, the MODIS snow cover product
is widely used in many scientific fields, including climatology and hydrology [4]. The
MODIS snow cover extent product continues to be actively released, and the most recent
version of the product is version 6.1 of MOD10A1 [5], but the MODIS snow cover product
is limited by light availability and cloud coverage. The limitation of low light is particularly
impactful in high-latitude regions that receive few hours of daylight in winter months
due to their position on the globe [6]. Even when there is sufficient light, the view of the
ground may be limited by the presence of clouds. Beyond the limited winter availability of
light, the impact of clouds is noticeable in both high-latitude regions and other potentially
snow-covered areas in mid-latitude regions.

Satellite images captured during the night can circumvent both potential obstacles.
The illumination from moonlight during certain lunar phases can be sufficient for detecting
ground features with a high albedo, which also includes snow [7,8]. The ability to use
illumination from moonlight means that data collection is not limited by the low number
of daytime hours in winter in high-latitude regions.
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The use of nighttime data would also increase the possibility of data being captured in
cloud-free conditions anywhere on the planet. Regions covered by clouds during the day
would have no data available. If clouds clear during the night, it is then possible to deter-
mine the snow cover extent. Combined with the assumption that there are fewer clouds at
night due to the reduced convection, this means that more data would be available [9,10].

Snow detection with nighttime images has been around since the early days of night-
time satellites. The first attempts were made using the Defense Meteorological Satellite
Program’s Operational Line-Scan System (DMSP-OLS) in the 1980s and 1990s, but their
usefulness was limited due to their coarse resolution. Shortly after the launch of the Suomi
National Polar Partnership (S-NPP) satellite equipped with VIIRS, the first study detect-
ing snow cover was conducted, and it showed that this approach is feasible [6]. Further
research into this field has come in recent years, with the two most notable studies being
Huang et al. [7] and Liu et al. [11].

Miller et al. [6] was the first study to demonstrate that the detection of snow was
possible using VIIRS DNB and its potential to provide additional data about snow cover-
age. While this study demonstrated the viability of the approach, it was based on visual
identification, which limited its practical applications.

Later, Liu et al. [11] studied the classification of VIIRS DNB images using a Random
Forest algorithm. They classified the image into four categories: snow, farmland, river, and
other. The overall accuracy achieved in this study was 79.80%, and the kappa value was
0.45. They tested the approach to only one case study area, and it is still unknown how
this approach performs in areas with different land-use and topographic characteristics.
In addition, this approach is semi-automatic, requiring the operators to provide training
and test labels, meaning that the results also depend on the quality of the manually created
training and test data.

To the best of the authors’ knowledge, only one study has applied an automated
algorithm to snow detection, and that is the minimum error thresholding algorithm by
Huang et al. [7]. It demonstrated that automatic thresholding was possible for snow detec-
tion at night. They applied the minimum error thresholding algorithm to two case study
areas. The overall accuracy reached 76.7% and 80.3% for each case study. The paper further
analyzed the amount of data gaps that can be addressed using this approach and studied
the impact of lunar phases on the results. However, it did not test the performance of
different algorithms and only used two case study areas. While the variety of thresholding
methods used for our specific purpose is limited, this is not the case in other areas of
remote sensing. Moreover, for snow detection during the day, there have been studies that
examined multiple different thresholding algorithms, including the study conducted by
Yin et al. [12], which benchmarked nine different algorithms.

An additional challenge to nighttime snow detection ©s that other factors beyond
snow cover can impact the brightness of the data collected and, therefore, the results.
Huang et al. [7] looked at what an adequate lunar angle would be to determine snow cover
extent and if there was a difference between different lunar phases. Land cover can also
play a crucial role in VIIRS day/night band (DNB) data since different land covers have
different albedos and, therefore, different pixel values when captured by the sensor. The
impact of land cover on VIIRS data has already been documented in a study that showed
that seasonal land cover change impacted the overall brightness of VIIRS DNB images [13].

Nighttime snow extent estimation is still in its early phases, and some questions still
need to be answered before researchers can more widely adopt it. Two notable questions
are as follows: (1) which thresholding methods perform best (under which conditions) and
(2) what factors impact the accuracy of the methods.

This study examined seven automated thresholding algorithms to determine the best
performance for snow detection using nighttime imagery captured by the S-NPP VIIRS
DNB. After identifying the best automated threshold algorithm, the false estimates were
analyzed to determine what factors influence the misclassifications. Improvements in this
field can lead to a better understanding of what areas and under which conditions could
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be most suitable for snow cover detection at night. Furthermore, snow cover detection at
night could further enable better spatial and temporal coverage of snow cover extent data,
which could play a significant role in further understanding the impact snow coverage has
on weather, climate, climate change, and hydrology.

2. Materials and Methods
2.1. Case Study Areas

For the purposes of this study, four different case study areas were selected. The
selection was made to incorporate different latitudes, elevations, topographies, and land
covers. The four case study areas are spread throughout North America, including both the
United States of America and Canada. The case study areas are located in Colorado, USA
(a); Ontario, Canada (b); Alaska, USA (c); and Saskatchewan, Canada (d). Their extents are
depicted in Figure 1.

Remote Sens. 2023, 15, x FOR PEER REVIEW 3 of 16 
 

 

This study examined seven automated thresholding algorithms to determine the best 
performance for snow detection using nighttime imagery captured by the S-NPP VIIRS 
DNB. After identifying the best automated threshold algorithm, the false estimates were 
analyzed to determine what factors influence the misclassifications. Improvements in this 
field can lead to a better understanding of what areas and under which conditions could 
be most suitable for snow cover detection at night. Furthermore, snow cover detection at 
night could further enable better spatial and temporal coverage of snow cover extent data, 
which could play a significant role in further understanding the impact snow coverage 
has on weather, climate, climate change, and hydrology. 

2. Materials and Methods 
2.1. Case Study Areas 

For the purposes of this study, four different case study areas were selected. The 
selection was made to incorporate different latitudes, elevations, topographies, and land 
covers. The four case study areas are spread throughout North America, including both 
the United States of America and Canada. The case study areas are located in Colorado, 
USA (a); Ontario, Canada (b); Alaska, USA (c); and Saskatchewan, Canada (d). Their 
extents are depicted in Figure 1. 

 
Figure 1. Locations of case study areas: Colorado, USA (a); Ontario, Canada (b); Alaska, USA (c); 
Saskatchewan, Canada (d). 

The case study areas in Colorado (a) and Alaska (c) are primarily mountainous, with 
the area in Colorado encompassing a part of the Rocky Mountains, while on the other 
hand, the area in Alaska encompasses part of the Alaska Range. The major difference 
between the two areas lies in their latitude. The Colorado case study area is in a mid-
latitude region, while the Alaska case study area is in a high-latitude region. Even though 

Figure 1. Locations of case study areas: Colorado, USA (a); Ontario, Canada (b); Alaska, USA (c);
Saskatchewan, Canada (d).

The case study areas in Colorado (a) and Alaska (c) are primarily mountainous, with
the area in Colorado encompassing a part of the Rocky Mountains, while on the other hand,
the area in Alaska encompasses part of the Alaska Range. The major difference between
the two areas lies in their latitude. The Colorado case study area is in a mid-latitude region,
while the Alaska case study area is in a high-latitude region. Even though the Colorado
case study area is not limited by the number of daytime hours due to it being located in a
mid-latitude region, it can still experience cloud coverage during the day; therefore, it is
included in this study as snow cover extent data can be added if nights are clear.
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The other two case study areas are located in Canada and are mostly on flat terrain.
The major difference between the two areas lies in their land cover, with the area in
Saskatchewan (d) being primarily covered in cropland; in contrast, the area in Ontario (b)
is covered mainly by several types of natural land cover, including several types of forests,
shrubs, and herbaceous vegetation.

In addition to the geographic location of the case study areas, another important factor
was selecting the exact date and time at which the data were captured. Three major factors
determined the appropriate date for the data capture. The first factor was ensuring that
the data were captured during a full moon. While Huang et al. [7] suggested that other
lunar phases are also suitable for nighttime snow detection, only full moon phases were
selected for this study to reduce the potential impact different lunar phases could have on
the results. In addition to the data being captured during a full moon night, it was also
essential to guarantee a sufficient number of day and night hours. Since this study uses
both MODIS data captured during the day and VIIRS DNB data captured at night, only
images from March and October were selected; during both of these months, there was
snow cover in the selected case study areas, and both the day and night were sufficiently
long for capturing data. Finally, the last factor was to ensure that there was no or little
cloud coverage. Table 1 lists the exact dates of data collection for the four case study areas.

Table 1. Date and time of data collection by case study area.

Case Study Location VIIRS/MODIS
Collection Date

VIIRS Time
(Local)

a Colorado 2 March 2018 01:30
b Ontario 2 March 2018 03:24
c Alaska 13 October 2019 05:06
d Saskatchewan 21 March 2019 04:06

2.2. Data Collection

Data sources collected for the four case study areas included VIIRS DNB data for the
nighttime snow extent estimates; the MODIS snow cover product for benchmarking; and
land cover data to explore what factors could influence the false estimates. Table 2 lists the
datasets used, including the acquisition date, spatial resolution, and access links.

Table 2. Study dataset names, spatial resolution, and links from which they can be accessed.

Dataset Dates Resolution

VIIRS DNB 1 2018–2019 750 m
MODIS Snow Cover 2 2018–2019 500 m

MODIS NDVI 3 2018–2019 500 m
Copernicus Land Use 4 2018–2019 10 m

1 https://ladsweb.modaps.eosdis.nasa.gov/search/order/2/NPP_VDNES_L1--5000, (accessed on 6 May 2022).
2 https://nsidc.org/data/mod10a1/versions/61 (accessed on 5 May 2022). 3 https://lpdaac.usgs.gov/products/
mod09gav061/ (accessed on 7 May 2022). 4 https://land.copernicus.eu/global/products/lc (accessed on 7
May 2022).

The VIIRS DNB data were captured by the Suomi National Polar Partnership (S-NPP)
satellite. The captured data were accessed at the Level-1 and Atmosphere Archive and
Distribution System Distributed Active Archive Center (LAADS DAAC), operated by
the National Aeronautics and Space Administration (NASA). The data were part of the
NPP_VDNES_L1-VIIRS/NPP Day/Night Band 6-Min L1 Swath SDR 750 m product, and
for this study, raw radiance values from the DNB were used [14].

MODIS snow cover extent data were also used in this study, specifically, the latest
version 6.1 of the MOD10A1 snow cover extent product [5]. This data source was selected
because it is commonly used in many hydrology and climate studies and has relatively
high accuracy [4].

https://ladsweb.modaps.eosdis.nasa.gov/search/order/2/NPP_VDNES_L1--5000
https://nsidc.org/data/mod10a1/versions/61
https://lpdaac.usgs.gov/products/mod09gav061/
https://lpdaac.usgs.gov/products/mod09gav061/
https://land.copernicus.eu/global/products/lc
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For land cover data, since this study covers different countries, it was important to
select a land cover dataset with global coverage. Beyond global coverage, the level of detail
with respect to the data was also an important factor in the selection, as a more detailed
breakdown of forest and herbaceous vegetation types could lead to a clearer understanding
of how different land covers impact snow detection. For this reason, Copernicus Global
Land Service data were used for both 2018 and 2019 [15,16].

To calculate the NDVI, another MODIS product was used to guarantee consistency
and data availability: version 6.1 of MOD09GA [17].

2.3. Data Preparation

To maximize the potential of accurate threshold calculations, parts of the VIIRS DNB
data were masked as they were either not considered in this study, such as bodies of
water, or because they emitted light, which could skew the data, such as built-up areas [7].
Copernicus land cover data were used to determine which parts of the VIIRS data should
be masked. Areas masked out from the analysis included urban/built-up, permanent water
bodies, and open sea. In this step, any clouds present would also have been masked, but
since the case study areas were explicitly chosen to avoid cloud coverage, this step was not
necessary for this study.

In order to ensure consistency between this study and previous studies, the same
preparation steps outlined in Huang et al.’s studies [7,18] were used: MODIS snow cover
extent data were processed to create a binary snow cover map. Pixels were marked as
snow-covered, snow-free, or as no data (in case of cloud coverage or other data gaps).
While VIIRS data were completely cloud-free, some cloud coverage was present in the
MODIS data.

The NDVI values per case study area were calculated using the MOD09GA data source.
The standard NDVI was used, where MOD09GA Band 1 is the red band and MOD09GA
Band 2 is the near-infrared (NIR) band. The resulting NDVI maps for the case study areas
ranged between −1 and 1, with values closer to 1 indicating higher vegetation presence.

As noted in Table 2, the four datasets used have different spatial resolutions. To
address this, all datasets were resampled using the nearest neighbor operator to match
VIIRS data.

2.4. Methodology

Seven different thresholding algorithms were selected and applied to the preprocessed
VIIRS data. During the calculations, values that were previously masked during the
preprocessing phase were not taken into consideration. The seven thresholding algorithms
used are as follows: (1) Otsu [19], (2) Li [20], (3) Yen [21], (4) triangle [22], (5) minimum [23],
(6) mean [23], and (7) Isodata [24]. While thresholding algorithms were initially created for
different purposes, similarly to general computer vision, text identification, or microbiology,
they have since been used in many fields, including remote sensing [25]. The seven
algorithms are nonparametric and unsupervised. Their calculations are based on the
histogram of all values present in the image. While the specific ways in which they are
calculated vary from algorithm to algorithm, the end result of all algorithms is a numerical
value that splits the results into two discrete categories. A succinct overview of the different
algorithms was proposed by Sekertekin [25], where they also benchmarked the different
methods, however, in the classification of water.

Following this step, the binary snow cover maps made by thresholding (test datasets)
were compared to MODIS binary snow cover data for the same case study area (reference
dataset). All pixels where there were data available in both the test and the reference
dataset were considered true positive (TP), true negative (TN), false positive (FP), or false
negative (FN).

There are two distinct ways in which these results can be displayed, which serve
different purposes. The first is to create a confusion matrix (calculating the percentage
value for each category in the entire case study area). The confusion matrix is particularly
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useful in order to determine the overall accuracy of the thresholding results in comparison
to the MODIS snow cover product. Specifically, the higher the sum of the true positive
and true negative percentages, the more accurate the thresholding snow cover extent. The
second way is to map the accuracy results. This is particularly important to determine
which factors cause both false negatives and false positives. By mapping their position, it is
possible to relate the performance per land cover category and relate it to the NDVI value.

Discriminating the results into discrete categories enables determining if any particular
characteristic impacts the overall accuracy. This entails the creation of confusion matrices
per land cover category as previously proposed in a study by Yang et al. [26]. If the land
cover has no or a limited impact on the results, the accuracy should be relatively consistent
between different land covers. Conversely, if specific land covers do impact the results, the
accuracy within those should vary significantly.

Furthermore, version five of the MODIS snow cover product treated areas with high
NDVI values separately from regions with low NDVI values [27]; therefore, this study
also investigated the influence of NDVI. In version five of the MODIS snow cover product,
areas with high NDVI values were given a lower threshold in order to be considered snow-
covered compared to areas with low NDVI values [27]. If the impact of NDVI on VIIRS
matches the impact it had on MOIDS, it is expected that the NDVI values of pixels marked
as false negatives would be higher than those marked as true positives, indicating that the
potential reason for the misclassification would be the NDVI. This factor was examined
by looking at the distribution and mean values of the NDVI of true positives and false
negatives per case study area.

Finally, some false positive and false negative values might not be explainable using
the methods outlined above; therefore, visual analysis was also performed to explore
possible hypotheses explaining some of the results and potentially create the basis for
further research.

3. Results
3.1. Overall Thresholding Results

The confusion matrices of the seven different thresholding algorithms for the four
case study areas are shown in Table 3. The results are expressed as percentages, with the
number representing the total fraction of the classification relative to the total number of
all classified pixels. Both the overall accuracy (the sum of both the true positive and true
negative percentages) and Cohen’s kappa [28,29] are included in Table 3.

Table 3. Confusion matrix, overall accuracy, errors, and Cohen’s kappa for the seven thresholding
algorithms and the four case study areas.

Case
Study

Thresholding
Algorithm TP TN FP FN Overall

Accuracy Kappa

a. Colorado

Otsu 28.42 31.32 0.14 40.13 59.73 0.31
Li 36.86 31.19 0.26 31.68 68.05 0.42

Yen 0.03 31.44 0.01 68.51 31.47 0.00
Triangle 7.98 31.42 0.04 60.57 39.40 0.08

Minimum 0.01 31.45 0.00 68.54 31.45 0.00
Mean 38.36 31.15 0.30 30.19 69.51 0.44

Isodata 29.73 31.30 0.16 38.82 61.02 0.32

b. Ontario

Otsu 62.34 0.00 0.00 37.66 62.34 n/a
Li 69.17 0.00 0.00 30.83 69.17 n/a

Yen 77.91 0.00 0.00 22.09 77.91 n/a
Triangle 0.07 0.00 0.00 99.93 0.07 n/a

Minimum 0.00 0.00 0.00 100.00 0.00 n/a
Mean 54.75 0.00 0.00 45.25 54.75 n/a

Isodata 64.97 0.00 0.00 35.03 64.94 n/a
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Table 3. Cont.

Case
Study

Thresholding
Algorithm TP TN FP FN Overall

Accuracy Kappa

c. Alaska

Otsu 19.17 40.25 0.22 40.36 59.42 0.27
Li 25.72 40.16 0.31 33.81 65.88 0.37

Yen 0.01 40.42 0.05 59.53 40.42 0.00
Triangle 0.20 40.39 0.08 59.33 40.59 0.00

Minimum 0.00 40.47 0.00 59.53 40.47 0.00
Mean 30.50 40.03 0.44 29.03 70.53 0.45

Isodata 23.38 40.19 0.27 36.15 63.57 0.34

d. Saskatchewan

Otsu 55.10 22.26 0.17 22.47 77.36 0.52
Li 59.37 22.21 0.22 18.20 81.58 0.59

Yen 0.02 22.38 0.04 77.55 22.41 0.00
Triangle 0.15 22.34 0.08 77.42 22.50 0.00

Minimum 0.00 22.42 0.00 77.57 22.42 0.00
Mean 52.68 22.27 0.16 24.89 74.95 0.48

Isodata 55.10 22.26 0.17 22.47 77.36 0.52

In Figure 2, the thresholding method with the best overall accuracy was used to map
the confusion matrix. For the Colorado and Alaska case study areas, mean thresholding was
used; for the Ontario case study area, Yen thresholding was used; finally, Li thresholding
results were used for the Saskatchewan case study area. The resulting four maps for the
case study area show the geographic locations of TP, TN, FP and FN values.
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3.2. Land Cover Discrimination

The mapping of the confusion matrix values onto their geographic location also
enabled the creation of discrete results per land cover type. For this, the maps from Figure 2
were compared per land cover type of the Copernicus data for the appropriate year [15,16].
The resulting confusion matrices (Table 4) discriminate the per land cover type. As the four
case study areas cover different geographic regions, there are differences between the land
cover types present in them. Additionally, some land cover types are infrequent in some
case study areas; therefore, land covers with under 500 appearances were removed from
the results.

Table 4. Confusion matrix per land cover type for the four case study areas.

Case Study Thresholding Algorithm TP TN FP FN Overall
Accuracy Kappa

a. Colorado

Shrubs 25.45 58.43 0.73 15.39 83.88 0.65
Herbaceous vegetation 46.45 41.22 0.46 11.88 87.67 0.76
Cultivated and managed
vegetation/agriculture 7.72 86.68 0.64 4.95 94.40 0.70

Bare/sparse vegetation 73.37 24.09 0.13 2.37 97.50 0.93
Closed forest, evergreen needle leaf 22.81 15.33 0.08 61.77 38.15 0.10
Closed forest, deciduous broad leaf 70.13 0.11 0.03 29.74 70.24 0.00
Closed forest, unknown 43.42 20.74 0.14 35.69 64.16 0.33
Open forest, evergreen needle leaf 34.72 21.94 0.18 43.15 56.66 0.26
Open forest, deciduous broad leaf 72.95 0.07 0.00 26.99 73.01 0.00
Open forest, unknown 43.14 29.40 0.24 27.22 75.86 0.54

b. Ontario

Shrubs 85.81 0.00 0.00 14.19 85.81 n/a
Herbaceous vegetation 94.17 0.00 0.00 5.83 94.17 n/a
Herbaceous wetland 97.09 0.00 0.00 2.91 97.09 n/a
Closed forest, evergreen needle leaf 36.94 0.00 0.00 63.06 36.94 n/a
Open forest, evergreen needle leaf 63.92 0.00 0.00 36.08 63.92 n/a
Open forest, unknown 74.73 0.00 0.00 25.27 74.73 n/a

c. Alaska

Shrubs 20.65 56.49 0.25 22.61 77.14 0.50
Herbaceous vegetation 48.50 33.71 0.31 17.48 82.21 0.65
Bare/sparse vegetation 84.51 1.14 0.28 14.06 85.66 0.12
Snow and Ice 78.48 0.18 0.03 21.30 78.67 0.01
Herbaceous wetland 3.37 82.83 2.28 11.52 86.20 0.27
Closed forest, evergreen needle leaf 6.13 38.31 0.35 55.22 44.44 0.07
Closed forest, mixed 0.95 69.95 2.47 26.63 70.90 0.00
Closed forest, unknown 6.66 56.01 0.74 36.59 62.67 0.16
Open forest, evergreen needle leaf 11.60 31.55 0.91 55.93 43.16 0.10
Open forest, unknown 12.24 58.13 0.45 29.18 70.37 0.32

d. Saskatchewan

Herbaceous vegetation 48.16 37.93 0.59 13.33 86.08 0.72
Cultivated and managed
vegetation/agriculture 67.79 20.76 0.13 11.31 88.55 0.71

Herbaceous wetland 62.41 20.66 0.18 16.75 83.07 0.60
Closed forest, evergreen needle leaf 6.43 0.08 0.00 93.50 6.50 0.00
Closed forest, deciduous broad leaf 29.14 0.22 0.00 70.63 29.37 0.00
Closed forest, mixed 3.46 0.07 0.00 96.48 3.52 0.00
Closed forest, unknown 35.92 5.77 0.00 58.31 41.69 0.07
Open forest, evergreen needle leaf 57.12 0.92 0.00 41.96 58.04 0.02
Open forest, deciduous broad leaf 58.94 0.26 0.00 40.80 59.20 0.01
Open forest, unknown 60.25 7.63 0.08 32.03 67.88 0.22

3.3. NDVI Influence

NDVI values were also investigated in this study. If false negative areas have a higher
NDVI than true positives, this may indicate that the thresholding value should be lower
for the areas with higher NDVI. In order to determine if the NDVI values are higher,
two boxplots per case study area were created: one for true positives and one for false
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negatives. The boxplots indicate mean values, the first and third quantiles of the data, and
the minimum and maximum (see Figure 3).
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3.4. Additional Factors

To explain false positives (which account for less than 1% of the pixels), visual analyses
were performed. What is clearly noticeable in the spatial distribution of false positives is
the proximity to urban/built-up areas. Examples of this phenomenon can be observed in
Figure 4, where the built-up areas from the Copernicus data are presented, as well as false
positives. The Ontario case study area had no false positives; therefore, it was not included
in the visual analysis.

Even though most false negatives occurred in forested areas, other land covers also had
false negatives. The distribution and cause of these cannot be explained by tree canopies;
therefore, another factor must be their cause. The two different false negatives can be best
observed in the Saskatchewan case study area, which is pictured in Figure 5. While the
false negative values in the north and northeast can be explained by the forest present there,
the false negatives in the center and southwest are present in a mixture between cropland
and herbaceous vegetation.
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4. Discussion

The seven thresholding algorithms investigated in this study had notably different
performances. The overall accuracy varied for each algorithm and between the four case
study areas, but some overall conclusions can still be drawn from them. The overall
accuracy of the algorithms had quite widespread values, with the lowest overall accuracy
being 0%, while the highest overall accuracy was 81.58%.

The two thresholding algorithms that performed the worst were triangle thresholding
and minimum thresholding, both of which had their highest overall score at only around
40%. Similarly, Yen thresholding also had results of less than or approximately 40%, with the
exception of the Ontario case study area, where it performed the best with a 77.91% overall
accuracy. Otsu and Isodata thresholding had middling performances in all four case study
areas, with neither of them being the best-performing one in any case study area. Their
overall accuracies ranged between 59% and 77%. Another algorithm, mean thresholding,
had a similar range of overall accuracy, with its lowest result being 54.75% and the highest
being 74.95%. However, what is notable is that mean thresholding was the best-performing
algorithm in both the Colorado and Alaska case study areas. However, it underperformed
in the Ontario case study area, where it achieved only a 54.75% overall accuracy. These
results indicate that mean thresholding is the best-performing algorithm in mountainous
regions, as both the Colorado and Alaska case study areas are predominantly mountainous.

While mean thresholding performed the best in mountainous areas, the algorithm with
the best range of overall accuracy and the highest individual accuracy in the Saskatchewan
case study area was Li thresholding. This algorithm always had an overall accuracy
above 65% and was either the highest or second-highest result in every case study area.
Therefore, even though mean thresholding did have the best result in two out of the four
case study areas, the results indicate that its choice depends on context. The fact that
mean thresholding measurably underperformed in the Ontario case study area means
that in order to ensure the best overall and consistently high overall accuracy, the Li
thresholding algorithm is the best choice out of all seven algorithms tested in this study.
If the thresholding is applied exclusively to mountainous areas, using mean thresholding
could yield better results. However, if various terrains are present, Li thresholding will
provide fair overall and consistent results.

The highest overall accuracy results among all case studies range between 70% and
82%, which is comparable with the results achieved by Huang et al. [7], where the overall
accuracy reached 77% and 80%. Moreover, similarly to the results achieved by Liu et al. [11],
the overall accuracy reported was 80% and the Kappa coefficient was 0.45. Therefore,
the results were also within the range of the maximums achieved by the thresholding
algorithms in this study.

Determining the best thresholding algorithm is not the only conclusion that can be
drawn from the results. What is especially noteworthy is the difference between false
positives and false negatives. The percentage of false negatives is significantly larger than
the false positives for all thresholding algorithms and in all case study areas. In fact, false
positives in every case study area and thresholding algorithm make up less than 0.5%. This
indicates that the vast majority of overall error comes from the underestimation of the
snow extent by the VIIRS DNB snow extent model when compared to the MODIS snow
cover product.

The causes of this underestimation and the locations where it occurs can be potentially
explained by the land cover’s presence. While the four case study areas had different
land cover types present, some overall trends are still noticeable. The two land covers
that had the lowest overall accuracy in all case study areas are open and closed evergreen
needle leaf forests. Besides those two, all other types of forests, when present in the case
study area, had lower overall accuracies than non-forest land covers such as shrubs or
herbaceous vegetation. Considering forest types, evergreen needle leaves had the lowest
overall accuracy, but when comparing open and closed forests, closed forests have lower
overall accuracies. In all cases, the low overall accuracy can be entirely explained by false
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negatives, with false positives being rare or nonexistent for most forests. The remaining non-
forested areas performed well with high true-positive and true-negative values, resulting
in high overall accuracy. The false negatives were in the 10–25% range, and false positives
were present but usually made up less than 1%.

The effect that forests have on the accuracy of snow cover extent is not unexpected.
Forests have been a factor that limited the accuracy of snow cover extent estimates in
many different products. The presence of tree canopies would effectively block the view
of the ground and, therefore, any snow that is present, causing underestimations [30].
Furthermore, while it is possible that the canopy itself would capture some of the snow and
therefore increase its albedo, studies suggest that even when that does occur, the overall
albedo is still lower [31].

The differences between closed and open forests relate mainly to their canopies. In the
Copernicus land cover data, closed forests were considered all areas that have more than
70% of the ground covered by canopies, while open forests have 15–70% canopy cover [32].
Since canopies cover more of the view of the ground and any snow present there in closed
forests, they would have more false negative estimates than in open forests, where more of
the ground is visible.

The impact of canopies would also explain the lower overall accuracy of evergreen
forests compared to other forest types. In most cases, the evergreen forests performed
roughly 20–30% worse than other types of forests. This relates to the fact that the images
were captured during March and October, when evergreen trees still retain their full canopy
while deciduous trees have lost most of their canopy. The lack of canopies in deciduous
forests would mean that the ground—and therefore any potential snow on the ground—
would be more visible and therefore easier to classify.

Another way in which this effect could possibly be measured is by investigating the
NDVI. As tree canopies, and especially evergreen trees, should have a high NDVI value
at the time the data were captured, it would be expected that the NDVI values of the
false negatives would show consistently higher values than the NDVI in true positives.
As observed from the box plots in Figure 3, the mean, quantiles, and maximum values
of the NDVI are higher for false negatives than for true positives. This indicates that a
higher NDVI is correlated with false-negative identification. This factor, combined with the
previous discussion of the impact of forest canopies, suggests that high-density forests and
especially evergreen forests have the most negative impact on identification.

The cause of the false negatives can be explained by their location at the periphery of
the snow cover. Because these areas mark the transition between snow and no snow, they
should have relatively shallow snow depth. Studies have shown that even during the day,
the accuracy of remote sensing of snow decreases with lower snow depths [26]. Therefore,
nighttime snow detection accuracy seems to also be susceptible to underestimations with
low snow depth, explaining the underestimates in those periphery regions. The snow
depth could have also slightly changed in the period between when MODIS and VIIRS
DNB data were captured, which could explain some of the discrepancies between them.
While in most non-forested areas, the VIIRS DNB data performed well, the accuracy of
the boundaries will only become apparent with an in situ study, which could analyze the
impact of snow depth on the accuracy.

The spatial distribution of false positives (e.g., in Figure 4) clearly shows that most
false negatives are within the vicinity of urban/built-up areas. This is predominant near the
larger built-up areas present in case study areas such as Anchorage in Alaska or Saskatoon
and Regina in Saskatchewan. While the specific built-up areas were masked during the
data preparation step, the surrounding areas were noticeably much brighter due to human
activity. Our quantitative analysis of the accuracy within the different land covers is affected
by the accuracy of the land cover reference dataset. If urban areas are underestimated in the
reference dataset, we overestimate the false positives as not enough build-up is masked.

This phenomenon has been described in previous studies suggesting that suburban
and rural areas do emit more artificial light toward the horizon, making the surrounding
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area brighter [33]. However, not all false positives are obviously near built-up areas (or at
least near areas categorized as urban/built-up land cover). When exploring FPs distant
from built-up land cover, we observed that a majority of these false positives still appear to
be linked to human activity, but it is not enough to mark the area as built-up in the land
cover dataset. This is true in the case of smaller communities, such as the town of Beechy in
Saskatchewan, which is categorized as cropland due to its small size and population (the
predominant land cover that completely surrounds the town). While being relatively small,
there is still enough artificial light emitted to skew the results into false positives. Other
areas in the three case study areas with false positive results follow the same pattern. While
this approach seems to explain the false positives, it remains only a visual identification
of the pattern, and to determine if it is the main reason behind it, a more rigorous and
analytical study would be necessary. One way to (potentially) avoid these false positives
is by creating a mask layer that is not based on land use but instead on light. Since the
NASA Black Marble product suite releases monthly and annual data, it could be used to
create a mask layer as all the brightest areas would be a result of human activity [34]. This
approach would also remove uncertainty caused by inaccuracies of the land cover data.

Naturally, this study has certain limitations that can have some impact on the results.
The main limitation is that the VIIRS snow cover extent is compared to another snow cover
model and not to in situ measurements. The selected MODIS snow cover product has
known limitations [35], but it is still a widely used model, and agreement between the
models still indicates that it is acceptable for many studies in hydrology, climate science, or
other areas where MODIS data are commonly used [4].

Exploring accuracies in evergreen or all forested areas is an avenue for further research.
Daytime snow cover extent products have dealt with the forest issues [30], and improving
the results in those areas could be possible by following the strategy of lowering the
threshold for areas with high NDVI or by calculating a separate threshold for forested areas.

Furthermore, since future Joint Polar Satellite System (JPSS) missions are already
planned and will be equipped with VIIRS, data availability in the future will only in-
crease [36]. Hopefully, this will reduce the impact cloud coverage has on VIIRS DNB data
as multiple satellites will be capturing the data, enabling even better coverage in the future.

Identifying snow cover extent using VIIRS DNB data is possible and achievable
with relatively high overall accuracy. The false estimates are usually underestimations,
with overestimations present but usually limited to areas near human activity. The false
negatives are usually present in forested areas, especially in closed and evergreen forests.
Some false negatives also occur on the border between areas covered and not covered by
snow. While this could impact the usefulness of the VIIRS DNB data for some purposes,
this is an area where the results could be improved with in situ research.

5. Conclusions

Of the seven tested thresholding algorithms, Li thresholding achieved the most consis-
tently high overall accuracy in all case study areas, while the mean thresholding algorithm
performed the best in mountainous regions, but it did not have high overall accuracies in
other areas. Depending on the use case, either of the two thresholding algorithms could
provide results that would be useful for climate or hydrology research. If the terrain of the
case study area is diverse or if there are multiple different areas, Li thresholding seems to
be the most effective option. If the case study is predominantly mountainous, then mean
thresholding can potentially achieve better results. While some limitations are present, the
high overall accuracy and the distribution of accurate identification should still prove useful
in filling in some spatial or temporal data gaps for snow cover extent maps, especially in
regions with few forests.
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