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Abstract: Semantic segmentation of high-resolution remote sensing images plays an important role
in many practical applications, including precision agriculture and natural disaster assessment. With
the emergence of a large number of studies on convolutional neural networks, the performance of the
semantic segmentation model of remote sensing images has been dramatically promoted. However,
many deep convolutional network models do not fully refine the segmentation result maps, and,
in addition, the contextual dependencies of the semantic feature map have not been adequately
exploited. This article proposes a hierarchical refinement residual network (HRRNet) to address these
issues. The HRRNet mainly consists of ResNet50 as the backbone, attention blocks, and decoders. The
attention block consists of a channel attention module (CAM) and a pooling residual attention module
(PRAM) and residual structures. Specifically, the feature map output by the four blocks of Resnet50 is
passed through the attention block to fully explore the contextual dependencies of the position and
channel of the semantic feature map, and, then, the feature maps of each branch are fused step by
step to realize the refinement of the feature maps, thereby improving the segmentation performance
of the proposed HRRNet. Experiments show that the proposed HRRNet improves segmentation
result maps compared with various state-of-the-art networks on Vaihingen and Potsdam datasets.

Keywords: deep convolution convolutional neural network; attention mechanism; semantic
segmentation; remote sensing images; residual structure

1. Introduction

In recent years, semantic segmentation models for high-resolution remote sensing
images have emerged in an endless stream, which has also promoted the development of
many applications, including precision agriculture, natural disaster assessment, and urban
planning [1–5]. Many traditional semantic segmentation methods have also achieved good
results, but with the development of deep learning, because the semantic segmentation
model of deep learning has stronger timeliness, it is more applicable to actual situations.
As the pioneering work of semantic segmentation, a fully convolutional network (FCN) [6]
has opened up a new path for image segmentation. Next to the encoding and decoding
structures, multi-scale feature extraction blocks and attention-based blocks in semantic
segmentation models appear to improve model performance, but each structure has its
advantages and disadvantages, and some models even use them in combination to boost
the performance of the semantic segmentation model of remote sensing image.
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Since the emergence of the FCN model, it was better than the traditional image
segmentation method [7,8] in terms of segmentation accuracy and time consumption. FCN
has achieved good results, but because many convolution operations are used to extract
features, much primary feature information is lost. So, the skip connection method is
used to achieve feature compensation. Models of encoding and decoding structures have
also gradually emerged. Encoding means that the resolution of feature maps is gradually
reduced, while extracting features with convolution and pooling operations, and decoding
means that the resolution of feature maps is gradually increased through upsampling
operations. In the end, the model obtains input and output images of the same size.
At present, there is still a lot of research [9–11] using the structure of encoding and decoding.
The advantage of this structure is that it can alleviate the problem of loss of feature map
information. For instance, UNet [12] was a classic encoding and decoding structure model,
and it used skip connections to achieve fusion before and after feature extraction to make
up for the lack of important features. DeconvNet [13] used VGGNet [14] to delete the fully
connected layer as a feature extractor based on an encoding and decoding structure, but the
model employed deconvolution operations in the decoding stage to restore the resolution
of the feature map, which alleviated the problem of missing features. In addition, the model
complexity increased a lot. LinkNet [15] also adopted the encoding and decoding structure
to meet the real-time requirements of semantic segmentation and reduced the amount
of model parameters and time consumption of the model by increasing the stride of the
convolution operation.

The multi-scale feature extraction block has been widely used in the semantic segmen-
tation model because this module has a strong role in mining the continuous context infor-
mation, and it aims to enhance the ability of the model in recognizing objects of different
scales in the image. DeepLabV3+ [16] used dilated convolution to achieve feature extraction
at different scales, and PSPNet [17] used parallel pooling at different scales to extract key
features of different types of ground objects so as to increase the segmentation performance
of the model. DFCNet [18] adopted multi-scale convolution operations to widen the model
and advance the variety and abundance of extracted features, and it also adopted the fusion
of multi-modal data to refine the segmentation result map. Hoin et al. [19] proposed a
model that uses features from different decoding stages to enhance the features of the holis-
tically nested edge detection unit, and it finally achieved feature fusion at different scales to
enhance the generalization ability of the model. MSA-UNet [20] combined the multi-scale
feature extraction module with the Unet model, and it utilized the feature pyramid module
to realize the refinement of object edges. The sub-modules of RCCT-ASPPNet [21] were
dual decoding structures and atrous spatial pyramid pooling (ASPP), which cross-fused
global and local semantic features of different scales, thus further promoting the model
segmentation performance.

The attention mechanism module is derived from the study of human vision and aims
to focus more on key areas in the image than other areas. In the field of computer vision,
the purpose of the attention mechanism module is to enhance the weight of salient features
and reduce the weight of noise and useless information in the image so as to achieve the
purpose of extracting salient features in the image. Recently, many studies [22–25] have
been proposed based on the attention mechanism. For instance, SE-Block [26] was a classic
attention mechanism method. Its motivation was to explicitly establish the interdependence
relationship between feature channels. Specifically, it was to automatically obtain the weight
of each channel through model learning and then according to this weight, promote useful
features, and suppress useless features for the current task. CBAM-Block [27] was an
attention mechanism module that combined spatial and channel information. Compared
with SE-Block, which only focused on the channel attention mechanism, it achieved better
performance. MCAFNet [28] extracted features through the feature extractor, and the global–
local transformer block mined the context dependencies in the image, and the channel
optimization attention module mined the context dependencies between feature map
channels, thereby increasing the expressiveness of features. Zhang et al. [29] proposed a
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model whose submodule, the semantic attention (SEA), consisted of a fully convolutional
network, and this module enhanced the stimulation of regions of interest in the feature map
and suppressed useless information and noise in the feature map. In addition, the scale
complementary mask branch (SCMB) module realized feature extraction at different scales
and made full use of multi-scale features. The two sub-modules were multiscale attention
(MSA) and nonlocal filter (NLF) in MsanlfNet [30], and the former enhanced the expressive
ability of features by using the multi-scale feature attention module, and the latter captured
the dependence of global context information, and the model improved performance
through these modules.

In summary, the model of encoding and decoding structure, multi-scale feature ex-
traction block, and attention mechanism block, have significantly improved the accuracy
of semantic segmentation of remote sensing images, but these models are not obvious for
feature map refinement operations. In addition, mining the contextual dependencies of the
position information and channel information in the feature map is not thorough. Therefore,
in the proposed hierarchical refinement residual network (HRRNet), the channel attention
module (CAM) and pooling residual attention module (PRAM) are put forward to fully
exploit the contextual dependencies of the feature map position information and channels,
thus enhancing the deep expressive ability of features. The fusion of features realizes the
refinement of feature maps. In addition, the attention block, the pooling residual structure
in PRAM, and the residual structure between CAM and PRAM modules can significantly
promote the performance of the network.

The main contributions of the proposed HRRNet are summarized as follows:

(1) The proposed CAM and PRAM sub-modules of HRRNet can fully exploit the feature
map position information or the dependence of the context information between
channels to enhance the deep expressive ability of features.

(2) Using ResNet50 as a feature extractor, the layered fusion of features extracted to
different stages and different scales realizes the refinement of the feature map, and the
fusion of multi-scale features also enhances the model’s ability to recognize various
types of ground objects and promotes the generalization ability of the model.

(3) By setting different residual structures, the correlation between gradient and loss in
the model training process is improved, which enhances the learning ability of the
network and alleviates the problem of gradient disappearance.

2. Related Work
2.1. Semantic Segmentation Model with Attention Mechanism

Since it is very important to highlight details in complex scene images, modules that
simulate human attention mechanisms are used in various fields. Attention-based methods
have emerged in a large number of studies [31–34] in recent years.

The attention mechanism has also achieved good results in semantic segmentation
tasks. SEBlock [26] was to explicitly establish the interdependence relationship between
feature channels. Compared with SE-Block, SKNet [35] performed convolution kernel oper-
ations of different sizes on the same input, enabling neurons to collect and fuse multi-scale
features at the same stage, and it further explored the dependencies between spaces and
channels. SERNet [36] integrated SE-Block and residual structure, thus mining long-range
dependencies in the spatial and channel dimensions in the feature map. RSANet [37]
improved the self-attention mechanism module, and its sub-modules may mine the re-
lationship between pixels in salient regions, which was more logical for grasping the
context information of the image. Through two parallel branches, DANet [38] passed the
features extracted by the feature extractor through the channel attention module and the
position attention block, respectively, and it further mined the information of key features
in the feature map. The contextual transformer (CoT) block in CoTNet [39] cross-fused
features extracted by convolution kernels of different scales, and this module increased
the continuity of contextual information in the feature map. LANet [40] used the fusion
of advanced features and low-level features to complement semantic information and
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geometric information, and it used an average pooling operation and residual structure in
the sub-module to enhance the expressive ability of features. However, in high-resolution
remote sensing images, it seemed that one-time pooling could not fully extract salient
features. Therefore, SPANet [41] used successive pooling operations to extract more salient
features. The improved model has better segmentation results for small-scale targets and
object edges.

2.2. Semantic Segmentation Model Based on Multi-Branch Feature Fusion

In many studies [42–44], features are extracted through feature extractors, and then
features are enhanced at different stages, and finally features of different scales are fused
to increase the model’s ability to recognize objects of different scales and enhance the
robustness of the model. Usually, ResNet50 [45], HRNet [46], and the Inception [47]
Network are often used as feature extractors. The features extracted at different stages have
different characteristics. The features extracted in the shallow model contain edge texture
and geometric information, and the deep features contain advanced semantic features, so
the method of multi-stage feature fusion can alleviate the problem of information loss in
the semantic segmentation model. Specifically, MANet [48] used ResNet 50 as a feature
extractor and enhanced the extracted features to the four stages and then fused them
step by step to increase the segmentation accuracy of the model. Its sub-modules fully
mined the dependence on the context information of the feature map and explored the
relationship between pixels, which played a key role in improving the performance of
the model. Zuo et al. [49] proposed a MDANet in which a deformable attention module
(DAM) integrated a sparse spatial sampling strategy and context information dependencies
to capture the structural information of each adjacent pixel in the feature map. Besides,
the low-level features in the shallow network in the AFNet [50] model contained small-scale
target location information, and the high-level features in the deep network contained
feature information of large-scale targets. These features enhanced the expressive ability of
features through the scale-feature attention module (SFAM). CF-Net [51] used the backbone
to obtain accurate multi-scale semantic information from the image, and it utilized the cross-
fusion block to broaden the receptive field of the model, especially for the segmentation
accuracy of small-scale objects, which has been greatly improved. Zhao et al. [52] proposed
a model that integrated pyramid attention pooling blocks and attention mechanism blocks
to implement a multi-scale module for adaptive feature refinement. In order to extract
more detailed features, the pooling index correction module was employed to restore
fine-grained features.

2.3. Semantic Segmentation Model Based on Transformer

Recently, transformer-based models have also been applied to semantic segmentation
tasks and have achieved good results. For instance, WiCoNet [53] employed traditional
convolution operations to extract features and aggregated information in local areas of im-
ages through another sub-module. Moreover, the model introduced a context transformer
to embed contextual information and selectively projected it onto the local features, thus
achieving better results. Song et al. [54] proposed a convolutional neural network (CNN)
and transformer multiscale fusion network, which combined the CNN and transformer to
enhance the segmentation performance of the model. Specifically, the CNN had a strong
ability to represent hierarchical feature information, and the transformer had the potential
in mining the dependence of global context information, and, in addition, the sub-modules
of the network fused the context information of local and global features to enhance the
expressive ability of features. More recently, Zhang et al. [55] proposed a transformer
and CNN hybrid deep neural network. This model used the swin transformer to extract
features and achieve better long-range spatial dependencies. In addition, an atrous spatial
pyramid pooling block based on depthwise separable convolution (SASPP) was applied to
obtain the features of different scales context. This model greatly improved the accuracy
of remote sensing image edge semantic segmentation. Likewise, He et al. [56] proposed a
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model that embedded the swin transformer into the classic UNet model to construct a new
double decoding structure. This model established pixel-level correlation to encode the
spatial information in the swin transform, thus enhancing the feature expression ability
of the network. In addition, the model compressed the features of small-scale objects to
improve the segmentation accuracy.

3. Proposed Network Model

The flowchart of HRRNet is shown in Figure 1. HRRNet consists of a backbone (feature
extraction stage), four attention blocks, and five decoders. In this study, ResNet50 is used
as a feature extractor, also known as backbone. An attention block is composed of CAM,
PRAM, and residual structures, which play the roles of enhancing feature expression ability
and aim to mine context dependencies in feature maps. A decoder consists of convolution,
activation function, and deconvolution operation, and its function is to change the channel
of the feature map and perform upsampling operations. The convolution operation is
defined as:

out_size =
in_size− k + 2 ∗ padding

s
+ 1 (1)

out_size = (in_size− 1) ∗ s− 2 ∗ padding + k + output_padding (2)

where out_size stands for the dimensions of the output feature map, in_size represents the
dimensions of the input feature map, k is the size of the convolution kernel, s stands for
stride during the convolution operation, padding represents adding a few pixels to the
edge of the feature map matrix, and output_padding stands for the padding of the output
feature matrix. Specifically, the input of HRRNet is an image with a size of 3 channels ×
256 × 256, and ResNet50 is used as the backbone to extract features, and the features of the
four stages are, respectively, defined as S1, S2, S3 and S4, and their number of channels and
sizes are 256 channels and 64 × 64, 512 channels and 32 × 32, 1024 channels and 16 × 16,
2048 channels and 8 × 8, respectively. Then, S4 is fed to the attention block (AB), the output
feature matrix is defined as AS4, and then AS4 is input to Decoder4, the number of channels
and the size of the output feature matrix are 1024 channels and 16× 16, the output is defined
as AS4_1, and then the corresponding elements of AS4_1 and S3 feature map are calculated
by the sum operation to realize the fusion of feature maps, which is defined as the feature
matrix AS4_2:

AS4_2 = AS4_1 ⊕ S3 (3)

Then, S4 is fed to CAM and PRAM, and the output feature map matrices are CS4
and PS4, respectively. The attention matrix of the output Attention Block is defined
as AS4:

AS4 = CS4 ⊕ PS4 (4)

AB4 AB3
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1/2H×1/2W

Stage0

Stage1
Stage2

Stage3

Stage4
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1/4H×1/4W
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1/8H×1/8W

18 Layers

1024 Channels

1/16H×1/16W
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Sum Operation
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Figure 1. Flowchart of the proposed HRRNet.
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3.1. Illustration of the Proposed HRRNet

In addition, S3, S2 and S1 also achieve feature fusion with the previous stage in this
way to complete the refinement of the feature matrix and finally output 3 channels and
256 × 256. HRRNet network training details are shown in Algorithm 1.

Algorithm 1 Train an optimal HRRNet model.

Input: Input a set of images M ∈ RH×W×C and their labels GT.
Output: Get the segmentation results of the test set.
1: Initialize batch_size to be 5, the learnable parameters’ weight attenuation is set as

2× 10−5, the number of maximum iterations is set as m = 108, Adam is chosen as the
optimizer, the loss function is the cross-entropy (19);

2: High resolution images and their labels are preprocessed to a size of 256× 256× 3;
3: Start training the HRRNet network;
4: for i = 1 to m do
5: The features output from the four stages of ResNet50 are defined as SF1, SF2, SF3

and SF4;
6: These features are respectively passed through Attention Block, and the enhanced

features are defined as AF1, AF2, AF3 and SA4;
7: These feature maps are fused step by step to obtain the final prediction result map;
8: According to the loss function, the loss between the prediction result and the label

is obtained and the parameters are updated, and the training model of this time is
obtained;

9: Validate the result of saving the weights with the validation set;
10: Save the model when there are better validation results.
11: break
12: Get the best HRRNet model.
13: end for
14: Test the optimal HRRNet model through the test set to get the experimental results.

3.2. Channel Attention Module

Figure 2 shows the channel attention module (CAM) of the proposed HRRNet. Assume
that M and C represent the dimension of the input feature matrix and the number of
channels, respectively, where M = HM ×WM, HM, and WM represent the height and
weight of the input feature matrix, respectively. Assume that we input a feature matrix
F = [ f1, f2, f3, . . . , fC] ∈ RM×C. CAM generates the corresponding feature matrices Q, K,
and V by operating on different branch feature matrices as:

K = (Rk • F)T ∈ RM×I

Q =
(

Rq • F
)
∈ RM×I

V = (Rv • F) ∈ RM×I

(5)

where Rk•, Rq• and Rv• represent the reshape operation on the feature map F in different
branches. It is worth noting that the reshape operation performed on the feature map matrix
F in each stage of the CAM process is represented by Rk•, Rq•, and Rv•. T represents the
transpose of the feature map, and I represents the dimension of the transformed feature
map channel. Because the Q, K, and V feature maps have the same channel dimensions,
we use the same expression.
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Figure 2. Flowchart of the proposed CAM.

The feature matrix K and Q are multiplied by elements between channels, the symbol
⊗ represents channel element-level multiplication operation, and the similarity between the
feature matrices is calculated through this operation. The result of an activation function
σ usually represents the similarity between feature maps, the feature maps output by the
operation is defined as Y, and the similarity between channels is calculated by the activation
function is expressed by weight:

Y = σ(K⊗Q) (6)

where σ represents the activation function so f tmax:

σ(K⊗Q) = so f tmax (K⊗Q) (7)

Here, Y represents the similarity matrix between the feature matrix K and Q, corre-
sponding to the channel. Next, the output of the product operation of Y and the feature
matrix V is defined as the feature matrix Vy, which is reshaped to have the same channel
number and size as the input feature map F. Finally, the summation operation is performed
to output the result F′:

F′ = Vy ⊕ F (8)

It is worth noting that the input and output of CAM are feature maps of the same
dimension and same size. Through a series of operations of this module, the contextual
dependencies between feature map channels are fully excavated, and the representation
ability of salient features is enhanced.

3.3. Pooling Residual Attention Module

Figure 3 shows the PRAM of the proposed HRRNet. Assume that Mp and Cp represent
the dimension of the input feature matrix and the number of channels, respectively, where
Mp = HMp ×WMp, HMp and WMp represent the height and weight of the input feature
matrix, respectively. The feature matrix F

′
= [ f

′
1, f

′
2, f

′
3, . . . , f

′
C] ∈ RMp×C is output from the

CAM module. PRAM implements 1 × 1 convolution operation on different branch feature
matrices to generate corresponding feature matrices K

′
and Q

′
:

K
′′
=
[

R •
(

CkF
′)]T

∈ RMp×Ip

Q
′′
=
[

R •
(

CqF
′)] ∈ RMp×Ip

(9)

where Ck represents the 1 × 1 convolution operation performed on the F
′

feature map
matrix to generate the K

′
feature map matrix, Cq represents the 1 × 1 convolution op-

eration performed on the F
′

feature map matrix to generate the Q
′

feature map matrix,
R• represents the reshape operation of the feature map, T is defined as the transpose of
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the feature matrix, and Ip is defined as the channel dimension of the transformed feature
matrix. Because the K

′
and Q

′
feature matrix channel dimensions are the same, we use the

same expression.

Figure 3. Flowchart of the proposed PRAM.

The feature matrices K
′′

and Q
′′

are multiplied by elements between channels, and, af-
ter the output is passed through the activation function σ, the final output feature matrix Z
is obtained. Then, the activation function is used to calculate the similarity of the feature
map position:

Z = so f tmax (K
′′ ⊗Q

′′
) (10)

Next is the operation of the third branch of the feature matrix F
′
. Here, HF

′
and WF

′

are the length and width of the feature map F
′
. Specifically, the average pooling operation

is first performed on the feature map V
′
, and the resulting feature map is defined as P.

At this time, the corresponding relationship between the original feature map and the
pooling feature map PA is defined as:

PAz =
1

Ki ∗ Ki

Ki

∑
m=1

Ki

∑
n=1

oc(m, n) (11)

where PAz is the value of each element of the feature map after average pooling, Ki =
HF
′

2 ,
Oc is the cth channel of the feature map. By performing the bilinear interpolation, the PA
feature map is upsampling to obtain PAu. The purpose is to perform the summation
between the corresponding channels with the feature map V

′
to obtain the feature map V

′′
.

Next, we perform a 1 × 1 convolution operation on V
′′

and the reshape operation, which is
defined as:

RV
′′
=
[

R •
(

CvV
′′)] ∈ RMp×Ip (12)

Finally, the RV
′′

and Z feature maps are multiplied between corresponding elements,
and the feature map F

′
is summed to output the feature map M:

M =
(

RV
′′ ⊗ Z

)
⊕ F

′
(13)

4. Experiments and Results
4.1. Dataset

The model uses two datasets of ISPRS Vaihingen and Potsdam to verify its validity.
The first one is the Vaihingen dataset. It is composed of 33 tiles with an average size of
2500× 2100, and the ground resolution is 9 cm. Tile consists of red, green, blue, and infrared
(RGB-IR) four-channel, and a digital surface model (DSM) is provided in this Vaihingen
dataset. This ground truth has six categories, including: buildings, impervious surfaces,
low vegetation, tree, clutter, and car. For assessment, the 17 ground truth images are
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classified into three groups, 11 images are used as the training set, two images are used for
the verification set, and four pictures are used for the test set.

The second one is the Potsdam dataset. It is composed of 38 tiles with an average
size of 6000 × 6000, and the ground resolution is 5 cm. Tiles are RGB-IR images with four
channels. The Potsdam dataset also has a DSM. The ground truth of the Potsdam dataset
has the same number of categories as that of the Vaihingen dataset. For assessment, the
24 ground truth images are classified into three groups, 19 images are used as the training
set, two images are used for the verification set, and three images are used for the test set.

4.2. Dataset Preprocessing and Evaluation Metrics

In high-resolution remote sensing images, the distribution of multiple categories of
ground objects is chaotic, so the labeling of dataset labels is very difficult, which leads
to a small amount of annotated datasets. Therefore, the training sets of Vaihingen and
Potsdam use random flipping and mirroring for data enhancement to achieve the purpose
of expanding the amount of data. We employed test time augmentation (TTA) in the
flipping and mirroring stages of the image. In this study, the albumations library was
adopted to implement Vaihingen and Potsdam data augmentation. After augmentation,
the images of the training sets were normalized to [0, 1]. It is worth noting that other
models also use the same data augmentation operation.

The performance of those models on the Vaihingen and Potsdam datasets is verified
by the mean intersection over union (mIoU), the overall accuracy (OA), the F1 score (F1)
and the mean F1 score (mF1) indicators, which are calculated based on the confusion matrix
as follows.

mIoU =
1
M

M

∑
l=1

TPl
FPl + FNl + TPl

(14)

OA =
∑M

l=1 TPl

∑M
l=1 FPl + FNl + TNl + TPl

(15)

F1 = 2 ∗ recall ∗ precision
recall + precision

(16)

mF1 =
∑M

l=1 F1
M

(17)

4.3. Training Details

Before model training started, the learning rate was set as
(

8.5 ∗ 10−5/
√

2
)

, and it was
reduced to 0.85 times after every 15 epochs. In addition, we used Adam as the optimizer for
the training model, and the polynomial learning rate was set as (1 − (cur_iter/max_iter))0.9,
the learnable parameters’ weight attenuation was set as 2 ∗ 10−5, and the number of
maximum iterations was set as 108. In this study, the model utilized the following loss
function by combining the cross-entropy function and median frequency balancing weights.

Ia =
median({ea | a ∈ A})

ea
(18)

Loss = − 1
S

S

∑
j=1

A

∑
a=1

b(n)a log
(

r(n)a

)
Ia (19)

where Ia is the weight for class a, ea is the pixel frequency of class a, r(n)a is the probability
of sample belonging to class a, and b(n)a denotes the class label of sample n in class a.
For the Vaihingen and Potsdam datasets, the training sets are cropped and augmented
to 5000 images of size 256 × 256, and the batch size is set to 5. We employed a sliding
window (with a size of 448 × 448 and a step size of 100 pixels) on the test set by averaging
the predicted results of the overlapping patches as the final results.
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4.4. Ablation Study

The proposed submodule attention block of HRRNet fully explored contextual depen-
dencies, and the enhanced features of multiple branches are fused step by step to refine
the segmentation results. In order to prove the effectiveness of the attention block, CAM
and PRAM on the experimental results, we made different experimental settings. First, we
added an attention block on different branches based on the backbone (ResNet50). It was
worth noting that adding an attention block each time was based on the previous model.
Regardless of whether there was an attention block on each branch, multiple stages of
feature fusion were performed step by step. Second, the attention block in the four branches
remained unchanged, and the CAM, PRAM, and residual structures were sequentially
added to obtain experimental results to prove their efficiency.

The results of two groups of ablation experiments on the Vaihingen dataset are shown
in Tables 1 and 2. Table 1 shows the ablation results of the first set on the Vihingen dataset.
It is clear that OA and mF1 increased by 2.84% and 5.23% after adding an attention block
on the basis of Backbone, especially mIoU, which increased by 7.87%. It shows that the
attention block has greatly improved the performance of the model. In addition, with the
increase of the attention block, all the indicators have been promoted, which proves that
the attention block can fully explore the contextual dependencies of positions and channels.
Finally, the experimental results are optimal when we add the attention block to each branch.
Table 2 shows the results of the second set of ablation experiments. At this time, we kept
the number of attention blocks unchanged, and the CAM, PRAM, and residual structures
were added to the attention block in order. It is shown from Table 2 that OA, mF1, and
mIou increased by 2.95%, 5.19%, and 7.80%, respectively, after adding CAM, which proves
that the CAM module fully exploits the contextual dependencies between feature map
channels, thus increasing the segmentation of the model performance. Immediately after
the PRAM module was added to the attention block, the contextual dependencies of the
feature map position can be fully exploited, and OA, mF1, and mIoU increased by 0.21%,
0.41%, and 0.62%, respectively, indicating that the pooling residual structure increases the
feature expressive ability. Finally, adding the residual structure to the attention block is
HRRNet, especially mIou, which increased by 0.54%, which proves the effectiveness of the
residual structure.

The results of two sets of ablation experiments on the Potsdam dataset are shown in
Tables 3 and 4. Table 3 shows the results of the first set of ablation experiments. The experi-
mental results show the same trend as the indicators on the Vaihingen dataset. With the
increase in the number of attention blocks, the performance of the model gradually reaches
the optimum. Table 4 shows the results of the second group of ablation experiments. It is
worth noting that, after adding PRAM, OA, mF1, and mIoU increased by 1.83%, 1.55%, and
2.64%, respectively, which fully proves that the contextual dependencies of the position can
be further exploited to advance the segmentation performance of the HRRNet.All in all,
the ablation experimental results on the Vaihingen and Potsdam datasets show the same
trend, which proves the robustness of the HRRNet model, and it also shows that CAM
and PRAM can fully mine the contextual dependencies of the channel and position in the
feature map. In addition, the attention block of multiple branches realizes the purpose of
refinement of the feature map.

Table 1. Ablation results of the first set (on Vaihingen data set), the optimal results are bolded.

Model
F1 Score (%) Indicators

Building Low-Veg Surface Tree Car OA (%) mF1 (%) mIou (%)

Backbone 91.93 79.39 88.97 87.92 73.90 87.23 84.42 73.61
Attention Block1 94.61 82.98 92.34 89.39 88.95 90.07 89.65 81.48
Attention Block2 94.30 83.10 92.78 89.58 88.63 90.17 89.68 81.51
Attention Block3 94.92 82.90 92.32 89.47 89.70 90.21 89.86 81.82

HRRNet 94.92 84.41 92.52 89.89 89.97 90.59 90.34 82.57
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Table 2. Ablation results of the second set (on Vaihingen data set), the optimal results are bolded.

Model
F1 Score (%) Indicators

Building Low-Veg Surface Tree Car OA (%) mF1 (%) mIou (%)

Backbone 91.93 79.39 88.97 87.92 73.90 87.23 84.42 73.61
CAM 94.51 83.19 92.53 89.58 88.26 90.18 89.61 81.41

CAM + PRAM 94.71 84.06 92.33 89.71 89.28 90.39 90.02 82.03
HRRNet 94.92 84.41 92.52 89.89 89.97 90.59 90.34 82.57

Table 3. Ablation results of the first set (on Potsdam data set), the optimal results are bolded.

Model
F1 Score (%) Indicators

Building Low-Veg Surface Tree Car OA (%) mF1 (%) mIou (%)

Backbone 90.07 82.05 86.28 86.13 76.18 84.61 84.14 72.91
Attention Block1 92.32 86.05 90.01 87.47 92.50 88.25 89.67 81.37
Attention Block2 92.11 84.93 90.99 88.66 93.96 88.57 90.13 82.18
Attention Block3 93.90 87.85 91.21 88.89 94.10 89.72 91.19 83.91

HRRNet 95.88 87.95 92.75 88.93 93.68 90.70 91.84 85.05

Table 4. Ablation results of the second set (on Potsdam data set), the optimal results are bolded.

Model
F1 Score (%) Indicators

Building Low-Veg Surface Tree Car OA (%) mF1 (%) mIou (%)

Backbone 90.07 82.05 86.28 86.13 76.18 84.61 84.14 72.91
CAM 92.70 86.28 90.79 88.07 92.82 88.64 90.13 82.14

CAM + PRAM 95.92 87.52 92.67 88.89 93.38 90.47 91.68 84.78
HRRNet 95.88 87.95 92.75 88.93 93.68 90.70 91.84 85.05

4.5. Quantitative Comparison of Different Models

In order to further verify the efficiency of the proposed HRRNet, we also reproduced
the classic semantic segmentation models and compared them with the HRRNet. First of
all, methods based on attention mechanism, including CBAM-Block [27], SE-Block [26],
SK-Block [35], DANet [38], and CoTNet [39], all of which have a common feature, that is, to
enhance the expressive ability of features through modules, so that salient features can be
extract. In addition, semantic segmentation models based on multi-scale feature extraction,
including DeepLabV3+ [16] and PSPNet [17], these models used dilated convolution
or multi-scale pooling to extract features at different scales to grasp the dependencies
of contextual information in images. However, they improved model performance by
increasing the complexity of the model. In addition, peer models designed for semantic
segmentation remote sensing images, such as LANet [40] and SPANet [41], were also
chosen for comparison. For the fairness of experimental results, all models use ResNet50 as
a feature extractor.

Table 5 shows the experimental results of various models on the Vaihingen dataset. It
shows that the experimental results based on the attention mechanism model are slightly
better than the multi-scale model. The OA, mF1, and mIoU of the SK-Block model are 1.87%,
3.22%, and 4.93% higher than those of PSPNet. The purpose of the attention mechanism
module is to increase the weight of salient features in the feature map and suppress
noise and useless information, and the multi-scale feature extraction model increases the
complexity of the model and improves the continuity of context information, but the
attention mechanism module obtains better experimental results. In addition, the OA,
mF1, and mIoU of the CoTNet model are 2.02%, 3.07%, and 4.68% higher than those of
DeepLabV3+. For LANet and SPANet models, what they have in common is the fusion of
advanced semantic features and shallow features to complement geometric information
and spatial information, but their difference is the feature enhancement module. LANet
employed a pool to enhance the representation of features ability, while SPANet employed
a successive pooling strategy to extract key salient features, and the segmentation of target
boundaries was more accurate. However, HRRNet makes up for the shortcomings of the
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above models and adopts the fusion of features of different scales at different stages to
realize the refinement of feature maps.

Table 5. Experimental results for various models (on Vaihingen data), the optimal results are bolded.

Model
F1 Score (%) Indicators

Building Low-Veg Surface Tree Car OA (%) mF1 (%) mIou (%)

DeepLabV3+ [16] 92.51 79.18 90.62 87.26 79.25 87.71 85.77 75.50
CBAMNet [27] 91.62 80.51 89.82 87.87 74.05 87.47 84.77 74.12

SENet [26] 92.55 81.53 90.65 88.60 79.70 88.46 86.61 76.73
PSPNet [17] 92.15 81.34 90.30 88.42 78.11 88.21 86.06 75.93
SKNet [35] 94.56 83.29 92.31 89.38 86.85 90.08 89.28 80.86
DANet [38] 95.00 82.48 92.13 88.94 85.96 89.91 88.90 80.30
CoTNet [39] 94.61 82.40 92.04 89.09 86.04 89.73 88.84 80.18
LANet [40] 94.60 81.83 92.13 88.64 85.96 89.61 88.63 79.88
SPANet [41] 94.87 82.79 92.16 89.15 88.11 90.01 89.41 81.11

HRRNet 94.92 84.41 92.52 89.89 89.97 90.59 90.34 82.57

Table 6 shows the experimental results of various models on the Potsdam dataset.
The experimental results of the model based on the attention mechanism are better than
those of the multi-scale feature extraction model. This trend is similar to the experimental
results on the Vaihingen dataset. DANet performed very well on the Potsdam dataset,
and the position attention module and channel attention module played a big role in the
performance of the model. CoTNet promoted the performance of the model by further
exploring the contextual dependencies in the feature map through the convolution oper-
ation of multiple branches and adding the sum product operation between the feature
maps. Table 6 shows that the OA, mF1, and mIoU of the DANet model are 2.51%, 1.69%,
and 2.78% higher than those of CoTNet, but the performance of the DANet model needs
to be improved. SPANet used a successive pooling strategy to improve model perfor-
mance. The OA, mF1, and mIoU of the SPANet model are 0.26%, 0.49%, and 0.88% higher
than those of DANet. HRRNet explores the contextual dependencies between positions
and channels and uses multi-stage feature map fusion to implement refinement opera-
tions to further improve the segmentation performance of the model. The OA, mF1, and
mIoU of the HRRNet model are 0.97%, 0.53%, and 0.9% higher than SPANet. In addition,
the F1 of the surface, building, and Low-veg categories are 1.14%, 0.98%, and 0.86% higher
than SPANet.

Table 6. Experimental results for various models (on Potsdam data), the optimal results are bolded.

Model
F1 Score (%) Indicators

Building Low-Veg Surface Tree Car OA (%) mF1 (%) mIou (%)

DeepLabV3+ [16] 92.28 83.51 89.88 85.17 89.19 87.06 88.01 78.73
CBAMNet [27] 90.11 81.47 88.60 82.97 87.04 85.14 86.04 75.64

SENet [26] 92.59 84.44 90.53 85.24 87.06 87.63 87.97 78.67
PSPNet [17] 91.88 83.31 90.55 85.75 89.31 87.24 88.16 78.97
SKNet [35] 92.72 85.02 90.85 88.10 93.12 88.46 89.96 81.89
DANet [38] 93.76 87.59 90.69 88.96 93.09 89.47 90.82 83.27
CoTNet [39] 90.48 85.56 88.00 88.40 93.20 86.96 89.13 80.49
LANet [40] 93.04 86.48 90.58 88.73 93.10 88.87 90.39 82.56
SPANet [41] 94.90 87.09 91.61 88.85 94.08 89.73 91.31 84.15

HRRNet 95.88 87.95 92.75 88.93 93.68 90.70 91.84 85.05

For the experimental results, the OA, mF1, and mIoU of the HRRNet model are 0.98%,
1.71%, and 2.69% higher than those of LANet, and 0.58%, 0.93%, and 1.46% higher than
those of SPANet, and the F1 of Low-veg, tree, and car categories are 1.62%, 0.74%, and 1.86%
higher than those SPANet. The HRRNet model can obtain better segmentation performance.

All in all, the experimental results of HRRNet compared with various models on
these two datasets show that the HRRNet has strong robustness and good
segmentation performance.
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5. Discussion

The complexity of the model is also an important indicator for judging the performance
of a model. We also compared the parameter amount, floating-point operations (FLOPs),
and inference time of HRRNet and other models. The larger the model, the larger the
amount of memory occupied and the lower the real-time performance, but the segmentation
accuracy is still very important. Table 7 shows the indicators of different models. In order
to maintain fairness, the input of all models is 3 × 256 × 256. It can be seen from Table 7
that multi-scale feature extraction models, such as PSPNet and DeepLabV3+ models, have
the largest number of parameters, and the PSPNet model has the highest FLOPs, but their
segmentation results are not ideal. LANet and SPANet are dual-branch feature fusion
strategies, with slightly lower parameters and FLOPs, but HRRNet adopts a strategy of
step-by-step fusion of four-branch feature maps to refine feature maps, which improves the
segmentation performance at the cost of a small number of model complexity. Additionally,
we compared the inference time of all competing models on CPU and GPU, which was
also one important indicator of model complexity. The implemented GPU is NVIDIA
Geforce GTX 2080Ti, and the model of the CPU is Intel (R) Xeon (R) Silver 4210. It is
observed that HRRNet sacrifices a small amount of inference time to accomplish higher
segmentation performance.

Table 7. Complexity metrics for various models. (The input is the 3 × 256 × 256).

Model PSPNet [17] DeepLabV3+ [16] SKNet [35] LANet [40] CoTNet [39] SPANet [41] HRRNet

Params (Mb) 59.71 40.41 25.73 23.79 23.97 24.03 35.86
FLOPs (GFLOPS) 118.31 11.69 10.25 5.47 8.48 8.54 19.42

Inference time (ms-CPU/GPU) 7809/180.20 1111/48.10 147.32/76.09 577/59.86 143.323/59.50 865/55.72 287.64/76.49

5.1. Qualitative Analysis of the Segmentation Results from Ablation Experiments

Quantitative analysis can objectively explain the performance of the model, and the
segmentation maps can more subjectively explain the segmentation performance of the
model. In this subsection, we illustrate the function of the proposed main submodules
and structures by presenting segmentation maps of ablation experiment results. Figure 4
shows the segmentation results of the model on the two data sets after adding the attention
block in order on the basis of the backbone. Figure 4a,b are the selected results on the
Vaihingen dataset. It can be seen from Figure 4a that, with the addition of the attention
block, the Low-veg category is wrongly segmented until the final segmentation result
basically matches the label. It can be seen from Figure 4b that the segmentation map of
the building category is also gradually more precise, and we know that the attention block
is accompanied by the addition of different branches to improve the expressive ability of
the features so that it is constantly refining the segmentation map. It plays a great role in
improving the performance of the model. The segmentation maps show that it is consistent
with the experimental data in Tables 2 and 4.

Figure 5 shows the segmentation results of the model on the two data sets after adding
CAM, PRAM, and residual structure in order based on the backbone. Figure 5a,b are the
selected results on the Vaihingen dataset. It is obvious that, with the addition of CAM
and PRAM, the accuracy of the segmentation map of the building category is improving
step by step until all modules and structures are added. Although the final segmentation
map still has some defects, it is already very close to the label. The category of Low-veg in
Figure 5b is more likely to be misclassified, but there has been a significant improvement
in the segmentation map of HRRNet. Figure 5c,d are the selected results on the Potsdam
dataset. The objects in these original images all have a characteristic of whether they
have specific outlines, so the segmentation results can reflect whether the model has good
segmentation performance, especially after adding CAM and PRAM, and the segmentation
results have been significantly improved. The wrongly segmented areas are also reduced,
indicating that the CAM and PRAM modules play a key role in excavating the contextual
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dependencies between channels or feature maps. In the end, the segmentation results of
HRRNet are closer to the labels and the proposed HRRNet achieves the refinement of the
segmentation results.

Figure 4. On the basis of backbone, the segmentation result map after adding the attention block in
sequence. Rows (a,b) are the selected results on the Vaihingen dataset. Rows (c,d) are the selected
results on the Potsdam dataset.

Figure 5. On the basis of backbone, the segmentation result map after adding the CAM and PRAM in
sequence. Rows (a,b) are the selected results on the Vaihingen dataset. Rows (c–e) are the selected
results on the Potsdam dataset.

5.2. Qualitative Analysis of the Segmentation Results from Various Models

In this subsection, we fully verify the superiority of HRRNet performance by analyzing
the segmentation results of various models. Figure 6 shows the results cropped on the
Vaihingen and Potsdam test datasets, and the details of the segmentation are easier to show
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clearly. Figure 6a mainly shows the segmentation of car categories by various models.
In high-resolution remote sensing images, car categories belong to the segmentation of
small objects, which is very difficult for models to accurately segment. It can be seen that
the DeepLabV3+ of multi-scale feature extraction is very vague for the segmentation of the
car boundary, and there are misclassified areas on the edge of the car category. From the
segmentation prediction maps of the SPANet, it has been proved that the accuracy of each
car category segmentation has been improved. However, from the segmentation prediction
maps of the HRRNet, it can be clearly seen that the edge details of the adjacent vehicle
categories can also be segmented, and the result is very accurate. Figure 6b shows the
segmentation results of various models for buildings and Low-veg categories. Except for
the precise segmentation of HRRNet, other models misclassify the Low-veg category
into the surfaces category in the same area, which validates that the HRRNet has more
efficient performance compared to other various models. Figure 6c,d are the selected
results on the Potsdam dataset. (c) shows the segmentation of buildings and Low-veg
categories. From the segmentation results, it can be seen that DeepLabV3+ and SKNet have
misclassified some areas of building categories, but LANet and CoTNet have accurately
segmented the building categories. However, CoTNet also suffers from segmentation errors
in the surfaces category. The segmentation results of SPANet are better than other models,
but the HRRNet model is more accurate at the edges. The objects in Figure 6d are similar to
the building categories, DeepLabV3+ is wrongly segmented, and the segmentation results
of other models are gradually becoming more accurate. However, the result of HRRNet
segmentation is the best, especially for the segmentation of a cluttered area, which is not
correctly segmented by other models.

Figure 7 shows the high-resolution segmentation results of various models cropped on
the Potsdam dataset. It could be obtained from the original image that the scene is complex
and diverse, and it is difficult to segment different types of ground objects. The DeepLabV3+
cannot accurately segment the building category. SKNet is misclassified as the building
category when segmenting the surfaces category. LANet, CoTNet, and SPANet appear
ambiguous when segmenting the edge of the building, although the segmentation results
and labels of some areas of HRRNet are inconsistent, HRRNet still segments more precise
areas than other models. It is noteworthy that, in order to compare the segmentation
performance of each model, some areas in the segmentation maps of each model are
marked with red boxes.

In summary, from the segmentation results of various models in Figures 6 and 7, it can
be concluded that HRRNet makes up for the shortcomings in other models. Specifically,
Peer models, such as LANet and SPANet, use a dual-branch feature fusion strategy so
that they do not fully utilize the features extracted by the feature extractor (ResNet50).
In addition, they use 4 times or 8 times upsampling strategy to expand the size of the feature
map, but the loss of detailed information in the feature map is particularly significant,
thus reducing the segmentation performance of the model. Compared with the proposed
HRRNet model, the features of different stages extracted by the feature extractor (ResNet50)
are fully utilized, and the contextual dependencies of channels and positions in the feature
map are explored through CAM and PRAM to enhance the expressive ability of features.
In addition, HRRNet performs the process of feature fusion of each branch, and it uses the
deconvolution strategy to perform only 2 times upsampling operations, which not only
fully utilizes the semantic information of feature maps in multiple stages, but also alleviates
the problem of loss of detailed information in feature maps. Therefore, the feature fusion
of each stage is a refinement of the feature map. From Figures 6 and 7, the categories of
some regions are segmented incorrectly in other models, but HRRNet still can deliver an
accurate segmentation result. The same efficient segmentation performance is presented
on different data sets, reflecting the robustness and efficient segmentation performance
of HRRNet.
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Image Ground truth DeepLabV3+ SKNet CoTNetLANet SPANet HRRNet

Buildings Low-veg Cars Trees Surfaces Clutters

(a)

(b)

(c)

(d)

Figure 6. Visual segmentation maps for various models. Rows (a,b) are the results of cropping on the
Vaihingen dataset. Rows (c,d) are the results of cropping on the Potsdam dataset.

Image Ground truth DeepLabV3+ SKNet

CoTNetLANet SPANet HRRNet

Buildings Low-veg Cars Trees Surfaces Clutters

Figure 7. Visual segmentation maps for various models. These maps were the selected results on the
Potsdam dataset.

6. Conclusions

Many deep convolutional network models do not fully refine the segmentation result
maps, and, in addition, the long-range dependencies of the semantic feature map have not
been fully exploited. This article proposed a hierarchical refinement residual network (HRR-
Net) to address these issues. The HRRNet mainly consists of ResNet50 as the backbone,
attention blocks, and decoders. Attention block consists of a channel attention module
(CAM), pooling residual attention module (PRAM), and residual structure. Specifically,
the proposed CAM and PRAM sub-modules of HRRNet fully exploit the feature map posi-
tion information or the dependence of the information context between channels to enhance
the expressive ability of features. Then, using ResNet50 as a feature extractor, the layered
fusion of features extracted to different stages and different scales realizes the refinement
of the feature map, and the fusion of multi-scale features also enhances the model’s ability
to recognize various types of ground objects, thus promoting the generalization ability of
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the model. In addition, by setting different residual structures, the correlation between
gradient and loss in the model training process is improved, which enhances the learning
ability of the network and alleviates the problem of gradient disappearance. Experiments
show that the proposed HRRNet promotes the segmentation result maps compared with
various models on ISPRS Vaihingen and Potsdam datasets.

In the future, the precise segmentation of Low-veg categories and tree categories in
high-resolution variability remote sensing images is still a good research direction, and the
problem of large intra-category differences and small inter-category differences is worthy
of further study.
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