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Abstract: Monitoring the Earth’s surface and objects is important for many applications, such as
managing natural resources, crop yield predictions, and natural hazard analysis. Remote sensing is
one of the most efficient and cost-effective solutions for analyzing land-use and land-cover (LULC)
changes over the Earth’s surface through advanced computer algorithms, such as classification
and change detection. In the past literature, various developments were made to change detection
algorithms to detect LULC multitemporal changes using optical or microwave imagery. The optical-
based hyperspectral highlights the critical information, but sometimes it is difficult to analyze the
dataset due to the presence of atmospheric distortion, radiometric errors, and misregistration. In this
work, an artificial neural network-based post-classification comparison (ANPC) as change detection
has been utilized to detect the muti-temporal LULC changes over a part of Uttar Pradesh, India,
using the Hyperion EO-1 dataset. The experimental outcomes confirmed the effectiveness of ANPC
(92.6%) as compared to the existing models, such as a spectral angle mapper (SAM) based post-
classification comparison (SAMPC) (89.7%) and k-nearest neighbor (KNN) based post-classification
comparison (KNNPC) (91.2%). The study will be beneficial in extracting critical information about
the Earth’s surface, analysis of crop diseases, crop diversity, agriculture, weather forecasting, and
forest monitoring.

Keywords: change detection; environment; hyperspectral; land use and land cover (LULC); post-
classification

1. Introduction

Remote sensing is one of the efficient ways to monitor and manage natural resources
and prediction analysis. Some examples are crop yield estimation [1], soil erosion de-
tection [2], urban planning [3], forest mapping [4], and climate variability [5]. Change
detection is important for observing the multitemporal changes over the Earth’s surface
and detecting ground objects using optical or/and microwave remote sensing. The optical
spectral bands, i.e., visible near-infrared (VIS-NIR) and shortwave infrared (SWIR), are a
good source of information to retrieve critical information from the Earth’s surface [6]. In
recent decades, numerous multispectral sensors have flown into space for earth observa-
tions [7]. However, the multispectral sensor’s detection, identification, and quantification
of surface materials is the challenge. In such situations, the hyperspectral sensor has
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the potential to identify and quantify critical information, which may be possible with
multispectral sensors.

Hyperspectral collects and processes information across the electromagnetic spectrum
in numerous narrow bands with the potential to explore unseen information. Hyperspectral
sensors are consistent and one of the richest sources of information retrieval from the
Earth’s surface [8]. With the high level of spectral details, the hyperspectral provides
numerous benefits, namely crop disease detection [9-11], leaf index estimation [12,13],
object identification [14,15], and forest monitoring [16,17]. However, the implementation of
computer algorithms, i.e., multitemporal change detection and classification, is challenging
due to the occurrence of atmospheric distortion, radiometric errors, and misregistration
between two or more multitemporal hyperspectral images [18].

The classification of remote sensing images allows the identification of various class
categories and the generation of thematic maps [19]. Classification is a technique used to
group the data into a specific number of classes based on pixels which can be achieved
with the help of various classifiers, broadly classified as hard and soft classifiers [20]. In
the past few decades, numerous classification algorithms based on machine learning and
deep learning were developed for earth observation, such as support vector machine
(SVM) [21,22], random forest (RF) [23-25], and artificial neural network (ANN) [26]. The
classification of hyperspectral data is one of the challenging tasks due to the intrinsically
nonlinear problem and hindrance in extracting features. Therefore, choosing the classifier
for hyperspectral imagery is crucial for efficient change detection analysis [27,28].

Change detection is used to identify multitemporal variations by observing them
at two or more time intervals. The significant applications of change detection involved
monitoring crop stress [29,30], deforestation [31], vegetation changes, season assessment,
LULC change analysis, etc. [32]. Numerous change detection techniques were developed
in the literature, such as image differencing [33], image rationing [34], change vector anal-
ysis (CVA) [35], principal component analysis (PCA) [36], post-classification comparison
(PCC) [37], artificial neural network (ANN) based PCC [38], and many more [39]. However,
some challenges are still there, such as mixed pixel problems for the coarse-resolution
dataset, radiometric errors and misregistration between the multi-temporal images, com-
putation power constraints in the case of deep learning [40], and incorporation of the
pan-sharpened dataset [41]. Each change detection technique has advantages and draw-
backs, so selecting suitable methods depends upon various factors, such as the type of
input datasets (i.e., microwave or optical), spatial resolution, spectral resolution, and pan-
sharpened requirements [42]. Therefore, the continuous development of change detection
techniques is always the primary requirement of researchers to detect the seasonal or
annual variations over the Earth’s surface with the help of high-spectral resolution datasets
due to their importance in detecting crucial materials or objects [43].

Various authors have reported the work done over LULC using different change
detection techniques. Goswami et al. [44] implemented a change detection technique for
multitemporal images. The decision tree algorithm with the PCC technique is proposed
and compared with other change detection techniques, such as image differencing using
a multispectral dataset. The author highlighted the accuracy of 91% is achieved using
a decision tree with PCC techniques. Zhu et al. [45] implemented a continuous change
detection algorithm using a multispectral dataset and achieved an accuracy of 90%.

Similarly, Zhang et al. [46] proposed a continuous change detection technique to
monitor the forest using a multispectral dataset via an index method over the country
of China. A total of three categories, namely forest, water, and others, are used, and the
accuracy of the changed map was 86.4% which was achieved. A deep learning algorithm
via encoder-decoder architecture is proposed by Nail et al. [47] over Karnataka for LULC
detection. The accuracy was 94% using a multispectral dataset (advanced wide-field sensor
(AWIFS)). Although the accuracy achieved is more than the proposed technique, it is
performed on the multispectral dataset, and deep learning is used, which requires high
computational power compared to the proposed technique. Liu et al. [48] proposed a semi-
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supervised change detection technique, namely a multilayer cascade screening strategy
(MCSCD) over four different datasets, i.e., Hermiston (2004 and 2007) dataset, river dataset
(2013) in China, USA dataset (2004 and 2008), and China dataset (2006 and 2007). The
accuracy obtained for each dataset was different, like the Hermiston dataset (97.84%), river
dataset (93.46%), USA dataset (94.46%), and China dataset (91.59%). The author claimed
to achieve accuracy above 90% with slight variation according to datasets. However, this
algorithm works better only for an unlabeled and smaller number of samples.

This article focuses on developing and demonstrating the potential of a simple frame-
work to generate thematic and change maps by integrating an artificial neural network
(ANN) classifier in post-classification comparison (PCC), named ANPC, using Hyperion
datasets. To demonstrate the proposed work, the Earth Observation (EO-1) Hyperion
dataset has been acquired in a part of Uttar Pradesh (a state of India). The major objectives
of the research studies included (a) preprocessing of the input dataset; (b) generation of the-
matic and change maps using ANPC; (c) validation of thematic and change maps generated
via ANPC; (d) comparative analysis of the proposed technique with spectral angle mapper
(SAM) based post-classification comparison (SAMPC) and k-nearest neighbor (KNN) based
post-classification comparison (KNNPC) techniques. It is expected that the outcome of
the study allows the effective utilization of the hyperspectral dataset in the detection of
identification and quantification of the inferring biological and chemical processes over the
Earth’s surface.

2. Materials
Study Area

The study area is located in a part of the North Indian State, i.e., Uttar Pradesh. It is
geographically located between the latitude of 27°23/23"N to 27°29'36”N and longitude of
77°24'52"E to 77°28'56"E as shown in Figure 1. The Uttar Pradesh State covers the major
portion of agricultural land and contributes to the development of India. It is one of the
leading states for wheat production in India [49,50]. Therefore, the continuous monitoring
of agricultural land is required to protect the environment [51,52]. The major class categories
involved in the study site are built-up, dense vegetation, deciduous vegetation, and others
(mixed categories due to less land held by the class). The study area is vegetative, consisting
of these four broader classes which can be properly classified. Some categories are limited
(herbs, shrubs) and difficult to examine using satellite images, so they have been added to
other categories.

The cloud-free EO-1 Hyperion satellite dataset was acquired on multitemporal dates,
i.e., 24 February 2005 and 9 February 2014, from the United States Geological Survey
(USGS) earth explorer online web platform (https:/ /earthexplorer.usgs.gov/, accessed
on 16 December 2022). The spectral resolution of EO-1 Hyperion data is 242 with the
separation of narrow bandwidth, i.e., 10 nm (wavelength range of 356-2577 nm). Moreover,
the spatial resolution is 30 m, having a swath width of 70 km. During image acquisition, the
solar elevation and inclination angles were 135.76° and 98.07°, respectively. This dataset
offers a radiometric resolution of 14 bits. Each image (band) of dimension 1061 x 3751
(2005) and 951 x 3417 (2014) is used for Hyperion EO-1 with the Geo Tiff format. The sun
azimuth angle of the dataset (2005) is 139.04 and for (2014) is 135.68 and the sun elevation
angle (2005) is 44.24 and for (2014) is 35.25, satellite inclination is 98.07 degrees for both,
orbit path 147 and orbit row 41 for both datasets. Figure 2 represents the Hyperion EO-1
dataset acquired on multitemporal dates over the study site. To train the network and
validate the outcomes, a very high-resolution dataset was acquired from the Pleiades.

In the training and validation processes, fine-resolution data from the Pléiades constel-
lation, i.e., Pléiades -1A and Pléiades 1B were used. This satellite is managed by Airbus
Defense and Space/Centre National d’Etudes Spatiales (CNES). It delivers high-resolution
imagery, which can provide greater details about the region. ERDAS Imagine Earth Re-
sources Data Analysis System (2015) consists of in-built google earth (GE) viewer where
an image can be grounded about the GE. It offers the ability to connect to GE, travel to a


https://earthexplorer.usgs.gov/

Remote Sens. 2023, 15, 1326

40f 15

specific location, match photographs to GE and vice versa, export footprints, and perform
syncing. Very high-resolution remote sensing can be utilized to validate the data that the
Pléiades system provides. It can be used to measure the distance between small objects
like rural roads and buildings or to provide information to recognize and identify them.
Farming: locating crop disease and agricultural monitoring.
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Figure 1. Representation of study area: (a) Indian map highlights the Study area, (b) Study site using
Hyperion dataset (RGB: 40:30:20), (c) Reference image.
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Figure 2. Representation of reflectance images acquired using Hyperion (RGB: 40:30:20): (a) 24 Febru-
ary 2005, (b) 9 February 2014, (c) Reference Image.

3. Methods

As shown in Figure 3, the flowchart of the proposed methodology included (a) pre-
processing of the hyperspectral dataset (atmospheric/radiometric corrections, bad bands
removal, and strip errors correction), (b) generation of thematic and change maps using
ANPC, (c) validation of thematic and change maps generated via ANPC, and (d) compara-
tive analysis of the proposed technique with SAMPC and KNNPC technique is done.
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Figure 3. The flowchart of the proposed methodology. Note: ! RC: Radiometric Correction; > ANN:
Artificial Neural Network; 3 PCC: Post Classification Comparison.

3.1. Preprocessing of Hyperion Dataset

The preprocessing is an essential step before change detection analysis to compensate
for the atmospheric noise, radiometric distortion [53], geometric errors, and bad band [54].
The hyperspectral data, namely Hyperion EO-1, is chosen for the study purpose as it
consists of a huge collection of spectral bands, i.e., 242, but 197 informatory bands are used
for the present study. The bad spectral bands have been removed from the input dataset.
Bad bands are unused bands that cannot be used for further processing in the dataset.
These bands do not contain any information, so they are removed from the study to avoid
unnecessary stacking of layers and increase computational time [48,55]. To perform the
atmospheric/radiometric corrections, FLAASH (Fast Line-of-Sight Atmospheric Analysis
of the Spectral Hypercubes) in the ENVI (Environment for Visualizing Images) v5.3 was
utilized for hyperspectral (i.e., Hyperion) datasets to correct wavelengths in the NIR
and SWIR region [56-58]. Afterward, an area of interest (AOI) was extracted from the
input dataset.

Hyperspectral imaging is a process of extracting information from massive images
at discrete wavelengths. It is a growing and hot topic in remote sensing for researchers
worldwide [59]. The foremost objective of hyperspectral imaging is to attain a spectrum
for each pixel in the image to find an object. However, it is an appropriate method used to
detect green citrus [60], crop disease identification [31], and species diversity [61]. Moreover,
it also focuses on urban analysis, land use, land cover(LULC) monitoring [62], mineral
identification, management of water quality [63], etc. Hyperspectral imaging is preferred
over multispectral imaging because it provides more detailed information and various
applications, which is impossible via multispectral imaging. Compared to multispectral
imaging, it offers various advantages such as narrower bands, higher spectral resolution,
the ability to detect more than a hundred bands, distinct wavelengths, and a continuous
spectrum of each pixel. These advantages favor using hyperspectral data in weather
forecasting, forest monitoring, environmental monitoring, water body detection, etc.
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3.2. ANPC as a Change Detection

To estimate the LULC multitemporal changes, ANPC as change detection has been
utilized in the present work. It included two parts: (a) classification of input dataset using
ANN classifier; and (b) generation of change maps using post-classification comparison
(PCC). The ANN is one of the most reliable classification tools to resolve complex classifica-
tion problems and learns through past experiences or gaining knowledge via training [64].
The simplest form of the neural network is feed-forward, but it cannot move backward
and adjust weights. Therefore, a multilayer feed-forward neural network is used for the
present study. Backpropagation is a supervised method used for multilayer feed-forward
networks. The information processing of one or more neurons, also known as neural cells,
serves as the model for feed-forward neural networks [65]. A neuron’s dendrites receive
input signals before transmitting them to the cell body. The signal is sent from the cell’s
axon to synapses, where one cell’s axon connects to another cell’s dendrites. Similarly, the
backpropagation approach’s fundamental idea is to simulate a given function by altering
the internal weights of input signals to generate an anticipated output signal. The system
is trained via supervised learning techniques.

The backpropagation technique is used to adjust the weights in neurons to minimize
the error rate, which is obtained in the previous epochs using the recursive method. The
error rate can be reduced with the help of proper weight tunning, and the model can
be made more reliable. It is comprised of three layers, namely the input node, hidden
layer, and output nodes. The input node initiates the input data for further processing
with the help of neurons. The hidden layer is intermediate between the input and output
node, where neurons are adjusted with the help of the backpropagation method [47]. The
processing of ANN consists of numerous parameters, such as a single hidden layer selected
with a logistic activation function, 0.80 threshold value, and 0.27 training rate with 0.65
of training momentum. It consists of 197 input nodes and four output nodes (built-up,
dense-vegetation, deciduous vegetation, and others using 500 total iterations. After the
predate and postdate input datasets have been categorized, PCC can produce a change
map linked to “from-to” class variations. Here, only three layers are enough to make ANN
a strong model with high accuracy.

The ANN model was found useful in the detection of LULC changes, food adulteration,
crop disease detection [66,67], weather forecasting [68-70], and assessment of damage in
mushrooms [71]. The ANN classifier is best suitable for the hyperspectral dataset to process
and extract the crucial details. Moreover, it is a rapid algorithm to resolve classification
issues. The model is trained using various categories such as vegetation, built-up, and
crop analysis [72]. The hyperspectral dataset is linked with the reference dataset using the
inbuilt Google Earth tool in Earth Resources Data Analysis System (ERDAS) version 2015
for analyzing various features related to the study area. A total of 1000 samples are used
for the study purpose, further categorized into training (~80%) and testing (~20%). During
training, the input image is selected. The region of interest (ROI) is chosen for training
consisting of different classes such as built-up, dense vegetation, deciduous vegetation, and
minor crops (others). After completion of model training, implementation is performed
over images. The dataset is preprocessed and classified using ENVI (Environment for
Visualizing Images) v5.3 software. If testing accuracy is higher, then the model does
not suffer from an overfitting problem [73]. If the desired output is not produced, then
the model refinement can be done by choosing an ROI having a prominent number of
pixels [74]. After the computation of thematic maps from ANN of each input dataset,
the PCC as change detection has been implemented over multitemporal thematic maps
generated from the hyperspectral dataset using the ERDAS software version 2015 [75,76].

Change detection is a technique used to measure the changes between multitemporal
images or areas within a specified period. In the past literature, numerous authors have
implemented different change detection techniques, namely image differencing, image
rationing [77], post-classification comparison (PCC) [78-80], change vector analysis, etc. [81].
However, PCC is the best classification change detection among them all. This change
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detection method allows pixel-wise comparison and restricts the requirement of strict
radiometric. The accuracy of PCC is highly dependent on the quality of the classified map;
thus, the classified maps need to be accurately classified. PCC is a commonly used changed
detection method, straightforward and easily applicable to all sensor images irrespective of
the same environmental condition [82,83].

3.3. Cross-Referencing

To compare the outcomes of the proposed technique, two well-defined techniques,
i.e,, SAMPC and KNNPC, have been implemented. SAM is also a supervised classification
method based on the assumption that a single pixel on the image represents one class
category. In this, the spectra of the image are compared with known spectra. This is used
to discover similarities between variant spectra via calculating the spectra angle between
them. Here, a smaller angle means a near match to the referred spectrum. It has been widely
used with remote sensing datasets. However, it is not useful for the hyperspectral dataset
because of angle calculation for multiple spectral bands, which makes it a cumbersome
method for the high-dimensional dataset. On the other hand, KNN is a flexible classifier
that can be used for classification and regression. There is no special training required for
this algorithm; it is also known as the lazy algorithm [84—87]. This classifier outperforms
the SAM model and is best for a limited training dataset, though, in the case of a higher
training dataset, it will not achieve higher accuracy. After the computation of thematic
maps from SAM and KNN of each input dataset, the PCC as change detection has been
implemented over multitemporal thematic maps; thus, the technique is named SAMPC
and KNNPC, respectively.

3.4. Accuracy Assessment

The validation of thematic and change maps is required to evaluate the efficacy of the
proposed model. Each thematic and change map has been compared with the reference
dataset, i.e., Pleiades images of the precise region. For the validation, more than 100 pixels
have been selected for each class or conversion category. The evaluation metrics used to
find the accuracy of the proposed model are (a) producer’s accuracy (PA), referring to the
correct classified pixel on the image from the user’s point of view, (b) user’s accuracy (UA),
referring to the classification of the pixel on the image representing the same value on the
ground, (c) omission error (OE), representing the probability of the reference pixel to be
accurately classified, (d) commission error (CE) representing the incorrect classification of
the classified classes, (e) overall accuracy (OA) representing the mapping of the reference
site with classified categories, and (f) kappa coefficient (Kc), including the difference
between the actual and the expected outcome [88].

4. Results and Discussion

The ANPC has been implemented to detect the muti-temporal LULC changes over
a part of Uttar Pradesh, India, using the Hyperion dataset. The outcomes of the ANPC
have also been compared with SAMPC and KNNPC. In the initial stage, each input dataset,
i.e., 24 February 2005 and 9 February 2014, has been classified using different classification
algorithms, i.e., ANN, SAM, and KNN. Figure 4 represents the classified maps generated
from different classification algorithms, i.e., ANN, SAM, and KNN.

Notably, the present scenario has selected four class categories, i.e., built-up, dense
vegetation, deciduous vegetation, and minor crops (others). ANPC, SAMPC, and KNNPC
have been implemented to generate the change map. The experimental analysis uses
hardware configuration: Windows 10/11, mac OS 10.14, and above. Approximately
4 GB of disk space is required for software installation, 4-core Intel Xeon W-2104 @3.2
GHz, NVIDIA Quadro P620 2 GB. Software platform: NVIDIA graphics card with CUDA
Compute Capability is required for ENVI v5.3 platform, which is required for classification;
ERDAS 2015 is required for analysis purposes, and Google Earth for validation. Currently,
fewer epochs (20) have been chosen because of the limited computation resources, which
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lengthens the running duration. However, if plenty of computing resources are available,
the running duration can be increased by choosing a lot of epochs. Since topology, training
methods, and other factors may vary from application to application, and yet are adaptable,
there is no standard approach for identifying the machine learning parameters.

Legend
Il Builtwp
I Dense-veg

- Deciduous-veg

|:] Others

Figure 4. Classified map of: (a) Hyperion imagery (24 February 2005) computed from (b) ANN (c)
KNN (d) SAM; (e) Hyperion imagery (9 February 2014) computed from (f) ANN (g) KNN (h) SAM.

In each change map, twelve class-conversion categories exist. The statistical analysis
has also been computed for each classified and change map, as shown in Tables 1 and 2, re-
spectively, highlights the various parameters such as producer accuracy (PA), user accuracy
(UA), overall accuracy (OA), and kappa coefficient (Kc).

From Hyperion classified results (Table 2), it has been observed that ANN outper-
forms and achieved OA of (94.50-94.80%) as compared to SAM (91.10%-91.40%) and KNN
(93.00%-93.30%). From Table 2, it has been concluded from the results that ANPC out-
performed with an accuracy of (92.60%) as compared to SAMPC (89.70%) and KNNPC
(91.30%).

In addition, the changed areas have also been calculated from ANPC, SAMPC, and
KNNPC using Hyperion datasets, as shown in Table 3. From visual and statistical analysis,
it has been observed that Hyperion EO-1 is capable of fetching precise information due to
the large number of narrow bands which may use in the categorization of various class
categories. Past literature states that extensive work has been done using multispectral
datasets through numerous classifiers [89]. Despite various benefits, the multispectral
dataset is not capable of producing the desired outcome because of a limited wider band.
Some studies have shown remote sensing applicability using hyperspectral datasets over
water bodies and wetlands, plant diseases, and forest monitoring.
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Table 1. Accuracy Assessment of ANN, SAM, and KNN classification of Hyperion EO-1.

Accuracy Assessment Parameters

Yo Model Class Categories
ear ode & RT cT NC PA (%) UA (%) KC
Built-Up 131 141 122 93.13 86.52 0.84
Dense-veg 338 342 313 92.60 91.52 0.87
2005 SAM Deciduous-veg 196 170 158 80.61 92.94 0.91
Others 335 347 321 95.82 92.51 0.88
Overall Accuracy = 91.40%; Overall Kappa = 0.8799
2005 KNN Built-Up 196 200 189 96.43 94.50 0.93
Dense-veg 374 363 347 92.78 95.59 0.92
Deciduous-veg 259 259 238 91.89 91.89 0.89
Others 171 178 159 92.98 89.33 0.87
Overall Accuracy = 93.30%; Overall Kappa = 0.9179
Built-Up 189 194 183 96.83 94.33 0.93
Dense-veg 292 278 269 92.12 96.76 0.95
2005 ANN Deciduous-veg 287 286 271 94.43 94.76 0.92
Others 232 242 225 96.98 92.98 0.90
Overall Accuracy = 94.80.%; Overall Kappa= 0.931
Built-Up 166 168 152 91.57 90.48 0.88
Dense-veg 311 300 280 90.03 93.33 0.90
2014 SAM Deciduous-veg 340 340 312 91.76 91.76 0.87
Others 183 192 167 91.26 86.98 0.84
Overall Accuracy = 91.10%; Overall Kappa = 0.8778
2014 KNN Built-Up 172 177 162 94.19 91.53 0.89
Dense-veg 300 299 277 92.33 92.64 0.89
Deciduous-veg 345 340 323 93.62 95.00 0.91
Others 183 184 168 91.80 91.30 0.89
Overall Accuracy = 93.00%; Overall Kappa = 0.9040
Built-Up 122 127 115 94.26 90.55 0.89
Dense-veg 335 328 316 94.33 96.34 0.94
2014 ANN Deciduous-veg 291 278 270 92.78 97.12 0.95
Others (Minor crops) 252 267 244 96.83 91.39 0.88
Overall Accuracy = 94.50%; Overall Kappa = 0.9243
Note: Reference Total (RT); Classified Total (CT); Number of correct (NC); Producer’s Accuracy (PA); User’s
Accuracy (UA); Kappa coefficient (KC).
Table 2. Accuracy Assessment of change maps computed from SAMPC, KNNPC, and ANPC using
Hyperion.
Dataset Hyperion EO-1
Algorithm SAMPC KNNPC ANPC
S. No. Change Classes PA UA KC PA UA KC PA UA KC
1 Built Up-Dense veg 97.56 86.96 0.85 95.56 88.66 0.87 86.96 85.11 0.84
2 Built Up- Deciduous veg 60.00 90.00 0.89 74.19 85.19 0.84 80.00 85.71 0.85
3 Built Up-Others 84.09 88.10 0.87 52.38 78.57 0.78 7222 86.67 0.86
4 Dense veg-Built Up 87.04 82.46 0.81 88.35 91.46 0.90 96.19 94.39 0.93
5 Dense veg-Deciduous veg 78.95 88.24 0.87 88.35 89.22 0.87 93.27 94.17 0.93
6 Dense veg-Others 94.08 89.94 0.88 87.95 89.02 0.88 94.33 95.68 0.94
7 Deciduous veg-Built Up 66.67 88.24 0.87 84.93 89.86 0.89 76.92 88.24 0.87
8 Deciduous veg- Dense veg 91.82 90.68 0.88 97.13 93.37 0.91 93.81 92.86 0.92
9 Deciduous veg-Others 94.44 92.73 0.90 95.76 94.17 0.93 95.73 90.32 0.89
10 Others -Built Up 57.14 80.00 0.79 85.71 92.31 0.92 81.13 91.49 0.91
11 Others -Built Up 91.86 92.94 0.92 94.74 93.75 0.93 94.26 95.04 0.94
12 Others -Built Up 94.20 87.84 0.86 96.97 92.31 0.91 97.20 92.05 0.90
OA = 89.70%; OA =91.30% OA =92.60%
Kc =0.8820 Ke =0.9028 Kc =0.9170

Note: Producer’s Accuracy (PA) in %; User’s Accuracy (UA) in %; Kappa coefficient (KC).
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Table 3. Representation of change area (in percentage) computed from SAMPC, SVMPC, and ANPC
using Hyperion EO-1.

Dataset Hyperion EO-1
S. No. Change Classes SAMPC KNNPC ANPC
1 Built Up-Dense veg 5.53% 5.70% 3.00%
2 Built Up- Deciduous veg 0.55% 1.55% 1.00%
3 Built Up-Others 2.48% 0.82% 1.00%
4 Dense veg-Built Up 3.43% 4.83% 6.00%
5 Dense veg-Deciduous veg 3.07% 5.96% 6.00%
6 Dense veg-Others 9.66% 4.81% 8.00%
7 Deciduous veg-Built Up 2.01% 4.06% 2.00%
8 Deciduous veg- Dense veg 9.74% 10.63% 6.00%
9 Deciduous veg-Others 13.38% 7.05% 7.00%
10 Others -Built Up 0.82% 1.53% 3.00%
11 Others -Built Up 5.13% 5.65% 7.00%
12 Others -Built Up 4.46% 6.12% 9.00%

The present study proposed a simple framework, ANPC, to detect the changes in the
LULC area. The proposed method has improved accuracy compared with other state-of-art
algorithms, i.e., SAMPC and KNNPC. This work has demonstrated that, in comparison to
KNNPC and SAMPC, the proposed technique ANPC enhanced efficiency by extending the
application of the hyperspectral dataset in identifying land surface changes. The underlying
cause of these results may be that KNNPC is computationally inefficient and excels only
with prediction problems, while SAMPC excels only with a limited set of spectral bands.
Compared to both, ANPC performs well with images, is connected to various neurons, and
is regarded as a quick and simple algorithm to learn. Compared to KNNPC and SAMPC,
it can also extract more features because of hidden layers. Figure 5 represents the visual
analysis of various classified maps, and Figure 6 portrays the changed and non-changed
areas using different classifiers. The results of the experiments have demonstrated that the
ANPC approach is quicker and more efficient at evaluating modified maps.

The ANPC technique is better and more effective at evaluating changed maps because
of backpropagation, which helps manage error by adjusting weights and improving the
accuracy KNNPC performs well with a small number of the dataset, and SAMPC suffers
from the albedo effect means the surface’s ability to reflect sunlight. The experimental
results have shown that the ANPC approach is faster and finer than SAMPC and KNNPC.
Moreover, the proposed technique can also be explored for other areas such as weather fore-
casting, leaf index, crop identification, etc. The proposed ANPC technique has also shown
improved accuracy compared with other stated algorithms in the literature. Goswami
et al. [44] implemented a change detection technique for a multitemporal image with 91%
accuracy, which is lesser than the proposed method and can detect fewer spectral bands
only. Zhu et al. [45] implemented continuous change detection and classification (CCDC)
algorithm using a multispectral dataset and achieved an accuracy of 90%, which is less
than the proposed technique and not applicable to higher resolution datasets, which is a
part of the pre-classification technique. Similarly, Zhang et al. [46] also proposed a continu-
ous change detection technique and achieved an accuracy of 86.4% which is lesser than
the proposed method. Nail et al. [47] used deep learning over LULC and achieved 94%
accuracy. Currently, we have focused only on post-classification techniques with limited
datasets per availability. We will also focus on new techniques like CCDC and advanced
deep learning techniques in the future.

The proposed technique is specially designed for the hyperspectral dataset using
post-classification techniques. However, this technique can be used for other satellites and
the latest datasets. Due to data unavailability, testing of the technique is done on a smaller
scale, but in the future, we will also work on a larger scale with the latest datasets and
fusion with other methods.
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Figure 5. Comparison of accuracy assessment of classified maps computed from (a) Hyperion EO-1
(2005), (b) Hyperion EO-1 (2014).
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Figure 6. Graphical representation of “change/no-change” area computed from different change
detection methods, i.e., SAMPC, SVMPC, and ANNPC, using Hyperion EO-1.

5. Conclusions

In this paper, the potential of the hyperspectral dataset, i.e., Hyperion EO-1, is evalu-
ated in estimating LULC multitemporal changes using a straightforward ANPC change
detection approach. This study was conducted in a part of Uttar Pradesh (a state of India).
The experimental outcome of the ANPC has also been compared with other state-of-art
algorithms, i.e., SAMPC and KNNPC. From the experiment, it is apparent that the ANPC
performed well enough (92.60%) as compared to SAMPC (89.70%) and KNNPC (91.30%).
However, it has also been observed that the accuracy of Hyperion EO-1 has been affected
due to misclassification errors. To resolve these issues, deep learning models can be used,
which will be included in future work. Although, the present work confirms the effective-
ness of the ANPC in recognition of various land cover categories via hyperspectral imagery.
It is expected that this work could be used for other applications such as plant disease
detection, crop growth monitoring, crop yield, and leaf area index. The proposed technique
can also be used for other non-decommissioned platforms. Due to the unavailability of the
free dataset, the processing is performed on a limited choice of requirements. As a future
work, larger scale computational can be considered using deep learning techniques.
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