
Citation: Uwiragiye, Y.; Khalaf,

Q.A.W.; Ali, H.M.; Ngaba, M.J.Y.;

Yang, M.; Elrys, A.S.; Chen, Z.; Zhou,

J. Spatio-Temporal Variations in Soil

pH and Aluminum Toxicity in

Sub-Saharan African Croplands

(1980–2050). Remote Sens. 2023, 15,

1338. https://doi.org/10.3390/

rs15051338

Academic Editors: Antonino Maltese,

Yijian Zeng and Jian Peng

Received: 16 December 2022

Revised: 18 February 2023

Accepted: 21 February 2023

Published: 27 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Spatio-Temporal Variations in Soil pH and Aluminum Toxicity
in Sub-Saharan African Croplands (1980–2050)
Yves Uwiragiye 1,2,3, Qahtan Abdul Wahid Khalaf 4, Hayssam M. Ali 5 , Mbezele Junior Yannick Ngaba 1,3 ,
Mingxia Yang 1,3, Ahmed S. Elrys 6,7,8, Zhujun Chen 1,3 and Jianbin Zhou 1,3,*

1 College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
2 Department of Agriculture, Faculty of Agriculture, Environmental Management and Renewable Energy,

University of Technology and Arts of Byumba, Byumba P.O. Box 25, Rwanda
3 Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture,

Yangling 712100, China
4 Department of Medical Laboratory Techniques, College of Medical Technology, Al-Kitab University,

Kirkuk 36001, Iraq
5 Department of Botany and Microbiology, College of Science, King Saud University,

Riyadh 11451, Saudi Arabia
6 Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
7 College of Tropical Crops, Hainan University, Haikou 570228, China
8 Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University,

35390 Giessen, Germany
* Correspondence: jbzhou@nwsuaf.edu.cn

Abstract: Soil acidity threatens food production in the tropics. The effect of increasing ammonium-
based fertilizer (INF) on soil pH was assessed in sub-Saharan Africa (SSA). A total of 9043 soil data
from Africa soil information services, past INF use, and two future scenarios of INF use (business as
usual (BAU) and equitable diet (EqD)) were used to determine soil pH variations from 1980 to 2022
and to predict soil PH variations from 2022 to 2050. Random forest and extreme gradient boosting
algorithms and soil-forming factor covariates were used for the spatio-temporal soil pH predictions.
Topsoil acidification was shown to be significant, with mean annual decrements of 0.014, 0.024, and
0.048 from 1980 to 2022, 2022 to 2050 (BAU), and 2022 to 2050 (EqD), respectively. Over the past
42 years, croplands with soil pH < 6.5 have declined significantly, and soil acidification is predicted to
become severe by 2050 in the BAU and EqD scenarios. This was indicated by a predicted 3% increase
in croplands at risk of aluminum toxicity (soil pH < 5.5) from 66 × 106 ha in 2022 to 78.5 × 106 ha
in 2050. The drivers of the spatial variations in the soil pH between 1980 and 2050 were the MAP,
basic cation, clay content, SOC, and nitrogen fertilizers. The evaluation metrics of the 10-fold cross-
validation showed that the root mean squared errors (RMSEs) of the soil pH from 1980 to 2022, as
well as the predicted soil PH from 2022 to 2050 (BAU) and 2022 to 2050 (EqD), were 0.53 pH units,
0.54 pH units, and 0.56 pH units, respectively, with coefficients of determination (R2) of 0.63, 0.64,
and 0.66. The findings of this study can be used for the establishment of management strategies for
increasing INF use in acidic soils.

Keywords: soil pH decline; soil pH; aluminum toxicity; ensemble machine learning

1. Introduction

Soil acidification is a main factor in the soil degradation of cropland worldwide [1]
and it reduces food production and agricultural sustainability [2,3]. Soil acidification
is characterized by the reduced availability of base cations (calcium (Ca2+), magnesium
(Mg2+), and potassium (K+), low soil fertility, and low potential crop production [2,4].
At low soil pH (<5.5), aluminum (Al3+) and manganese (Mn2+) are released into the soil
solution, causing root damage and yield losses [5]. Soil acidity is caused by the presence of
hydrogen (H+) ions, which can be generated either naturally by soil formation processes or
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by anthropogenic activities [6]. The main processes of soil acidification are CO2 hydrolysis,
atmospheric deposition, soil organic matter decomposition, nitrification, basic and anion
uptake, Al3+ formation, Al3+ hydrolysis, nitrate leaching and basic cation leaching, root
respiration, and the application of ammonium-based fertilizers [7,8] (Table S1). The root
absorption of basic cations in excess anions and the long-term application of ammonium-
based fertilizers is called second soil acidification [9,10]. For example, red-yellow Podzols
experienced a decrease of 1.4 pH units after a two-year application of 360 kg N ha−1 yr−1

in Puerto Rico [11], whereas a five-year maize and cowpea rotation resulted in a reduction
of 0.84 pH units in Nigeria [12], and three tropical soils (Luvisols, Acrisols, and Ferralsols)
in southwest Nigeria showed a reduction of 1.7 pH units when 80–120 kg N ha−1 yr−1

was applied [13]. The effect of excessive N fertilizer on soil pH was observed in SSA
cropland and long-term nitrogen (N) fertilizer application in industrialized and emerging
countries (e.g., the United Kingdom and China) acidified croplands, resulting in a series
of ecological and environmental problems [3,14,15]. Nitrogen is a critical component of
food crop production and the application of N fertilizer has made a great contribution to
feeding the world’s populations [16–18]. However, minimizing soil acidification induced
by N fertilizer application is a big challenge.

Sub-Saharan Africa (SSA) has a population that is growing at a rate of 2% per year
and is projected to reach 1.5 billion by the year 2050 [19]. However, 30% of the population
of SSA was malnourished in 2010, largely due to low crop yields [20]. Low crop yields
are associated with low soil fertility, low external agricultural inputs, and soil degradation.
For example, in Africa, 65% of cropland (2.30 billion hectares) is degraded as a result of
ineffective soil fertility management, erosion, and soil acidity [21,22]. More than a third
of SSA cropland is covered in acidic soils, where the output is insufficient and rapidly
diminishes due to low soil fertility, Al toxicity, and unstable structures [23,24]. Maize yield is
less than 2.0 Mg (1 Mg = 106 g) ha−1 on average in SSA compared to 5.5 Mg ha−1 in Asia and
8.0 Mg ha−1 in America [25]. Thus, nitrogen fertilizers should be increased in SSA countries
to increase crop productivity because N is needed for plant growth; however, excessive
application may aggravate soil acidity and reduce agricultural output [26,27]. Some studies
have predicted the N needed in Africa over the next 30 years [28–30]. However, there are
some flaws in these studies because they came up with different solutions for increasing
crop production while cutting down on the amount of N released into the environment;
however, they did not take into account the effect of N fertilizer and nutrient uptake by
crops on the soil acidity of SSA croplands. We know that croplands in arid and semiarid
regions usually have high soil pH and high soil-buffering systems as they are rich in
carbonates [10,31]; however, most SSA soils are formed from old and stable parent material
that has been weathered for many years with a low soil-buffering capacity and high leaching
of basic cations due to the high precipitation in the humid and sub-humid regions of east
and central Africa [32]. Therefore, there is an urgent need to understand the potential
effects of increasing agricultural production and ammonium-based fertilizers on the rate of
soil pH decline in SSA.

To the best of our knowledge, this is the first study to examine the drivers of soil
acidification and the spatial and temporal changes in soil pH in SSA croplands from 1980 to
2050. We hypothesize that an increase in the use of N fertilizers in SSA croplands increases
both soil acidity and the cropland areas affected by Al toxicity. Furthermore, we predict
that the net H+ addition in cropland (from both nitrification and basic cation uptake),
climate parameters (e.g., mean annual precipitation (MAP)), and soil parameters (cation
exchange capacity, exchangeable acidity, soil organic carbon, and clay content) will be the
main drivers of soil acidification in SSA croplands in 2050. Therefore, our study aimed to
(1) investigate the H+ production trends in SSA croplands from 1980 to 2050, (2) estimate the
soil pH decline and soil pH change and determine the spatial drivers of soil pH decline in
different scenarios from 1980 to 2050, and (3) determine the spatial and temporal variations
in the soil pH decline, soil pH change, and Al toxicity in SSA croplands for the period
1980–2022 and then predict these variations for the period 2022–2050.
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2. Materials and Methods
2.1. Site Description

SSA includes 50 countries plus the southern part of Mauritania. Sub-Saharan Africa
is a huge 24.6 million km2 territory with a broad range of soil and land management
types, with the most prevalent soils being Arenosols (21.5%), Cambisols (10.8%), Ferralsols
(10.4%), and Leptosols (17.5%) [33]. There are three major types of climate in our case
study including climates A, B, and C. Climate A represents the tropical climate that covers
11.8% of the land (MAP > 1500 mm), climate B represents the arid climate that covers 57.2%
of the land (MAP < 250 mm yr−1), and climate C represents the temperate climate that
covers 31% of the land (MAP ranges from 500 to 1500 mm yr−1) [33]. The soil acidity rate
and pH variation in the croplands of SSA from 1980 to 2050 were determined using the
available soil data, fertilizer use data, and crop-yield data from SSA countries. Soil profile
data were collected from African soil information services (http://africasoils.net, accessed
on 21 August 2022). We restricted our analysis to data from 1980 onwards because most
SSA soil surveys began in 1980 [31,34]. We retained 9043 soil profiles of SSA croplands,
which have physical and chemical soil properties (Table S2), after excluding soil profiles
that were not of croplands (Figure 1). SSA cropland data were extracted from global land
use and land cover datasets from the European Space Agency (ESA) WorldCover 10 m 2020
product [35]. Data on the inorganic fertilizer use and crop productivity of each SSA country
were collected from the FAOSTAT database [25]. This study focused on the top cultivated
horizon (Ap horizon) because more than 95% of N fertilization, soil nitrification, and N
uptake by roots occur in the upper 40 cm [36,37].
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Figure 1. Distribution of soil profiles used in the evaluation and prediction of the soil acidity of SSA
croplands. Soil profile data of SSA croplands were extracted from Soil Africa information services [34]
and land use and cover data of sub-Saharan Africa were extracted from The European Space Agency
(ESA) WorldCover 10 m 2020 product [35]. AfSIS refers to the Africa Soil Information Service.

2.2. Evaluation of Nitrogen Inputs and Outputs in SSA Croplands (1980–2050)

Five scenarios were developed in this study to determine the amount of N required by
each SSA country to feed itself and to assess the environmental impact of N on agriculture
based on the paths developed by Elrys et al. [30], Lassaletta et al. [29], and Alexandratos

http://africasoils.net
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and Bruinsma [28]. These paths were (1) the business-as-usual (BAU) approach, and (2) the
equitable diet approach (EqD; self-sufficiency). In the BAU scenario, the production trends
continue as they have for the past four decades (unhealthy human diet), whereas in the
equitable diet (EqD) scenario, the targets meet the animal and plant protein demands of a
healthy diet. Using these two approaches, five different scenarios for the SSA agro-food
system were developed to evaluate the impact of increased inorganic N fertilizers (INF) on
soil acidity in SSA. These scenarios were the BAU, EqD, an IFN input 20% higher than the
EqD (S1), an IFN input 20% lower than the EqD (S2), and an IFN input 40% lower than the
EqD (S3) (Table S3). These scenarios were applied to the N fertilizer inputs and harvest
products of all cereals, pulses, tubers, and vegetables from the FAOSTAT database from
1980 to 2022 [25] (Figure S1).

2.3. Calculation of Incoming Protons (H+) in SSA Croplands

The main processes of soil acidification in tropical soils are primary soil acidity and
second soil acidification [6], which are summarized in Table S1. We focused only on sec-
ond soil acidification, which refers to the consequence of agronomic practices, including
the long-term application of ammonium-based fertilizers and the root absorption of ex-
cess basic cations compared to anions in croplands [9]. We calculated the contribution of
the nitrification process of ammonium fertilizers (urea, ammonium sulfate, and diammo-
nium phosphate) on second soil acidity. The urea, ammonium sulfate, and diammonium
phosphate processes are described by Equations (1)–(3), respectively.

CO(NH 2)2+2H2O→ (NH 4)2CO + 4O2 → 2H++2NO3
−+CO2+H2O (1)

(NH 4)2SO4+4O2 → 4H++2NO3
−+SO4

2−+H2O (2)

(NH 4)2HPO4+O2 → 3H++2NO3
−+H2PO4

−+H2O (3)

In this study, ammonium-based fertilizer is treated the same as urea, as is commonly
done, and we assume that urea hydrolysis is completed [38]. The contribution of the
alkalinity (excess cations) concentration in plants to H+ production was calculated by the
following equation:

HUP = Catuptake − Anuptake (4)

where HUP is the H+ produced by the basic cation and anion uptakes, Catuptake is the H+

produced by the basic cation uptake (K+, Ca2+, sodium (Na+), Mg2+), and Anuptake is the
plant uptake of anions (sulfate (SO4

2−) and dihydrogen phosphate (H2PO4
−)). The basic

and anion content of the grain and crop residues are detailed and explained in Table S4.

2.4. Soil pH Variations and Aluminum Toxicity Risk from 1980 to 2050

The term soil pH buffering capacity (pHBC) refers to the number of exchangeable base
cations or H+ that leads to a change of one pH unit [39]. The pHBC can be estimated by
the soil pH, cation exchange capacity (CEC), and exchangeable Al data [40] or by using the
soil type, texture, and organic matter [41]. We used the regression equation developed by
Helyar et al. [41] to estimate the soil-buffering capacity of acidic soils (pHBC), as described
in the following equation:

pHBC
(

kmol (+)ha−1pH−1
)
= 4.2×OM(%) + 2× Clay(%) (5)

where pHBC (kmol(+)ha−1pH−1) is the soil-buffering capacity and OM is the organic matter
(%) and clay content (%).

The mean annual pH decline was calculated using the pHBC values estimated in
Equation (5) and the H+ calculated in Section 2.3, assuming that 28% of the incoming
H+ was absorbed by the soil surface [41]. The mean annual soil pH decline was esti-
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mated by Equation (6), which is suitable for acidic soils with soil pH < 7, developed by
Helyar et al. [41].

pHdecline rate =
H+

(
kmol(+)ha−1yr−1

)
× 28%

pHBC
(

kmol(+)ha−1pH−1
) (6)

where the pH decline rate in pH units is the mean annual soil pH decline rate,
H+(kmol(+)ha−1yr−1 is the total H+ produced by ammonium-based fertilizer transfor-
mation (nitrification and urea hydrolysis) plus the H+ produced by the excess basic cation
uptake by crops than anion uptake, 28% is the proportion of H+ absorbed by the soil surface,
and pHBC is the soil-buffering capacity calculated in Equation (5).

The soil pH trend in SSA croplands was estimated by taking the soil pH of
9043 observations as the benchmark of the soil pH in 1980 minus the soil pH decline
from 1980 to 2020. The predicted soil pH in 2050 was calculated by taking the estimated
soil pH in 2022 minus the soil pH decline estimated based on the soil BAU, EqD, S1, S2,
and S3. The equation used to estimate the soil pH from 1980 to 2022 and predict the soil
ppH in 2050 is described by Equation (7):

pH f inal = pHinitial − pHdecline rate

(
pH unit yr−1

)
(7)

where pHfinal is the soil pH of the targeted year, pHinitial is the soil pH at the starting
time (soil pH in 1980), and pHdecline rate is the mean annual soil pH decline. We used
the spatial analysis tools in ArcMap 10.8 to examine the variations in the croplands with
a soil pH of less than 5.5 from 1980 to 2050. These areas were considered croplands that
are at risk of aluminum toxicity, as Sánchez [6] described that tropical soils with soil pH
less than 5.5 are at risk of Al toxicity and croplands with soil pH greater than 5.5 are free of
Al toxicity.

2.5. Spatial and Temporal Modeling of Soil pH Variations

The spatio-temporal modeling for the soil pH decline and soil pH change followed
the developed workflow (Figure 1). In this study, 32 environmental covariates were chosen
because they all have a relationship with soil pH variations and represent 5 soil-forming fac-
tors (climate, topography, organisms, parent material, other soil properties, and time) [42].
Climatic data with a resolution of 1 km was obtained from the WorldClim 2 dataset using
the getdata function from the raster package [43]. The topographic features were repre-
sented by the digital elevation model (DEM) and its derivatives. In this study, the slope,
curvature, and topographic wetness indexes were used. The DEM was downloaded from
the USGS website https://earthexplorer.usgs.gov, accessed on 21 August 2022. Organisms’
activities were represented by human activities (mineral fertilizer application, crop yield,
and crop water requirement), and the parent material was represented by lithology data
extracted from the world lithology dataset [44]. Soil property data were represented by soil
texture (clay, silt, and sand), cation exchange capacity (CEC), soil bulk density, basic cations,
and soil organic carbon. Soil properties with a 250 m resolution were downloaded from the
Africa Soil Information Service (http://africasoils.net, accessed on 21 August 2022) [34].
Detailed information related to the environmental covariates used is described in Table
S5. All the covariates’ raster files were up-scaled to a 1 km resolution at the equator to
minimize the computation time (Figure S3). We developed a workflow of the steps used to
estimate the mean annual soil pH decline and soil pH variations for the period from 1980
to 2050 (Figure 2).

https://earthexplorer.usgs.gov
http://africasoils.net
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2.5.1. Environmental Covariate Selection and Relative Importance

Recursive feature elimination analysis (RFE) was used to select the covariates used in
the spatial prediction for the mean annual soil pH decline and soil pH variations (1980–2050)
in sub-Saharan African croplands. RFE is similar to backward regression. It starts with
the greatest number of covariates and removes the least significant one until it reaches a
predetermined number of covariates [45,46]. Ranking the relative importance of the poten-
tial environmental voariaetes allowed us to determine the most important environmental
covariates that drive the spatial variations in the soil pH decline and the soil pH variations
over time. The importance is measured by the percentage increase in the mean squared
error, and the covariate with the highest percentage increase in the mean squared error is
the most important [47].

2.5.2. Model Fitting and Evaluation

We used the “caretEnsemble” package to predict the pH variation in the soil. In the
“caretEnsemble” package, multiple base models are combined to build a single best predic-
tion model using R software and machine learning [48,49]. A single best prediction model
was built using two base models, random forest (“RF”) and extreme gradient boosting
(“xgbDART”). “RF” is a machine learning algorithm for regression and classification. It
trains many decision trees and then aggregates each prediction into a single dataset. The
predicted value is the average of the regression tree outputs [50]. For making predictions,
gradient boosting is unique and uses consecutive boosting rather than parallelizing the
tree-building process; each decision tree in gradient boosting predicts the error of the
previous one [51]. The optimization and fine-tuning of the machine learning algorithm
were computationally time-consuming, but they improved the overall accuracy by 5–15%
over the use of a single model [52,53]. A spatial resolution of 1 km was used to reduce the
computational load and ensure that the average resolution of all covariates was equal.

The performance of the final models was evaluated using 10-fold cross-validation.
The dataset was divided into ten equally sized folds at random, nine of which were used
to calibrate the selected base models and predict the soil acidification rate; the soil pH
variation for the remaining fold was used for validation. This method was repeated ten
times, with a different fold reserved each time. The coefficient of determination (R2), mean
absolute error (MAE), and root mean square error (RMSE) for the soil pH decline and
soil pH change were used for the model evaluation. The uncertainties of the produced
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maps were assessed using a standard deviation map, as suggested by Poggio et al. [54].
The spatio-temporal trends were divided into two time intervals. The first period was the
42 years from 1980 to 2022 and the second period was the next 28 years from 2022 to 2050.
The modeling for the soil pH decline and soil pH variation were performed using the
R programming language (https://www.r-project.org/, accessed on 20 January 2020). The
aluminum toxicity was assessed by comparing the predicted soil pH maps using the spatial
analysis tools in ArcMap 10.7.

3. Results
3.1. Descriptive Statistics of Estimated Protons Produced (H+), Soil pH Decline, and Soil pH
Change in SSA in Different Scenarios (1980–2050)

From 1980 to 2022, the mean total H+ production in SSA croplands increased from 1.5
to 2.7 kmol H+ ha−1 yr−1. SSA croplands are expected to experience a significant increase
in the total H+ produced from 2.7 to 3.7 and 8.7 kmol H+ ha−1 yr−1 following the BAU and
EqD scenarios, respectively. In S1, S2, and S3, the croplands are expected to produce 10.4,
7.0, and 5.0 kmol H+ ha−1 yr−1, respectively (Figure 3). In the last four decades, the H+

from basic cation removal was higher than the H+ from N nitrification, and this trend is
expected to continue in the future according to the BAU scenario. However, the H+ from N
transformation is expected to be higher than the H+ from basic cation removal according to
the EqD, S1, S2, and S3 scenarios. The share of H+ from basic cation uptake from 1980 to
2022 was 70% and it is expected to be 60% according to the BAU scenario. According to
the EqD and S1 scenarios, the H+ from N nitrification is expected to be greater than that of
the basic cation uptake and 59% of the H+ is expected to be produced by N nitrification
processes (Figure 3).
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In 1980, the highest soil pH was 9.8, whereas the minimum was 3.7 and the mean soil 
pH in sub-Saharan Africa was 6.09. The soil pH in sub-Saharan Africa had high variability, 
which was shown by the high standard deviation of almost 1 pH unit (0.9). This high 
standard deviation was observed in the different scenarios and ranged from 0.89 to 0.904 
pH units (Table 2). 

Figure 3. Variation in mean H+ production from N nitrification and (a) mean total H+ from basic
cation removal (b) from all cropping systems; mean total H+ production for all SSA croplands
(c) and temporal share of H+ production from N nitrification and basic cation removal of all cropping
systems in SSA from 1980 to 2050 (d). Details of H+ from different cropping systems (cereals, tubers,
vegetables, and pulses (Figure S3).
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The mean annual soil pH decline in SSA croplands in the last 42 years was 0.014 soil
pH units (Table 1). In 2050, the mean annual soil acidity rate according to the different
scenarios is estimated to be 0.024 pH units (BAU), 0.048 pH units (EqD), 0.057 pH units
(S1), 0.0.04 pH units (S2), and 0.032 pH units (S3) (Table 1).

Table 1. Descriptive statistics of estimated soil pH decline in SSA.

Descriptive Statistics of Mean Annual Soil pH Decline (pH Unit)

Soil pH Decline
(N = 9043) Mean Std. D Min Max

1980–2022) 0.01 0.01 0.00 0.06
2022–2050 (BAU) 0.02 0.02 0.00 0.11
2022–2050 (EqD) 0.05 0.04 0.00 0.26
2022–2050 (S1) 0.06 0.05 0.00 0.31
2022–2050 (S2) 0.04 0.03 0.00 0.22
2022–2050 (S3) 0.03 0.02 0.00 0.17

N: number of soil profiles in SSA croplands; BAU: business-as-usual scenario; EqD: equitable diet scenario; S1, S2,
and S3: scenarios 1, 2, and 3; Min: minimum; Max: maximum; StD: standard deviation.

In 1980, the highest soil pH was 9.8, whereas the minimum was 3.7 and the mean
soil pH in sub-Saharan Africa was 6.09. The soil pH in sub-Saharan Africa had high
variability, which was shown by the high standard deviation of almost 1 pH unit (0.9). This
high standard deviation was observed in the different scenarios and ranged from 0.89 to
0.904 pH units (Table 2).

Table 2. Descriptive statistics of soil pH variation in different scenarios (1980–2022).

Descriptive Statistics of Soil pH (1980–2050)

Soil pH
(N = 9043) Mean Std. D Min Max

1980 6.09 0.90 3.72 9.8
2022 6.08 0.90 3.70 9.79

2050 BAU 6.07 0.90 3.68 9.78
2050 EqD 6.05 0.89 3.55 9.78
2050 S1 6.04 0.89 3.50 9.77
2050 S2 6.05 0.89 3.58 9.78
2050 S3 6.06 0.90 3.66 9.78

N: number of soil profiles in SSA cropland; BAU: business-as-usual scenario; EqD: equitable diet scenario; S1, S2,
and S3: scenarios 1, 2, and 3; Min: minimum; Max: maximum; StD: standard deviation.

3.2. Potential Environmental Covariates and Their Relative Importance

The recursive feature elimination (RFE) results showed that among the 32 environ-
mental covariates proposed, only 10 were important for soil pH decline modeling and
22 were important for soil pH prediction (Figure 4a). The RFE results revealed that after
the selected covariates (22 for soil pH and 10 for soil pH decline), there were no further
decreases in the RMSEs (0.0065 for soil pH decline and 0.40 for soil pH). Ensemble machine
learning ranked these selected environmental covariates based on their relative importance
(Figure 4b,c). The five most important environmental covariates for the soil pH prediction
were the basic cations (BC), topographic wetness index (TWI), mean annual precipitation
(MAP), exchangeable acidity (ExA), and clay content (clay) (Figure 4b), whereas the five
most important environmental covariates for the soil pH decline prediction were the clay
content, soil organic carbon, N fertilizer, crop evapotranspiration (ETo), and ClimBio12
(mean annual precipitation) (Figure 4c).
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3.3. Spatio-Temporal Prediction Maps of Soil Acidity Rate, Soil pH, and Potential Areas Affected
by Aluminum Toxicity and Their Uncertainties

The prediction maps of the mean annual soil pH decline (Figure 5) from 1980 to 2050
in the different scenarios varied across the SSA regions. The spatial predictions showed
that the mean annual soil pH decline was less than 0.1 pH unit from 1980 to 2022. In the
next 28 years, the soil pH decline is expected to increase with different spatial patterns,
ranging from 0.003 to 0.2 pH units based on the tested scenarios. A high mean annual
pH decline (>0.1 pH unit) was observed in the southern part of SSA, including Angola,
Botswana, Namibia, and South Africa, and also in the northwest of SSA in Nigeria and
Niger. This pattern is expected to continue in the future as ammonium-based fertilizers
and crop yields increase (Figure 5).

Figure 5b,d,f show that the produced maps had low errors that ranged from 0 to 0.028
for the mean annual pH decline in SSA in all scenarios. The standard deviation map of the
mean annual decline in the last 42 years was lower (ranging between 0.0 and 0.005). The
southern and northern parts of SSA had higher errors (0.01–0.015 pH units). These areas
also had higher standard deviations in the BAU scenario (0.005–0.01 pH units).

Figure 6 shows the change in the soil pH in SSA croplands for the last 42 years and
their associated uncertainties expressed as standard deviations. The spatial patterns show
that in 1980, some of the croplands in Sudan, Somalia, Niger, Mali, South Africa, the
southern part of Angola, and the northern part of Botswana had higher soil pH values
(7.5–8) (Figure 6a). The associated errors of the soil pH map in 1980 ranged from 0 to 1.2 but
most of the cropland areas had standard deviations that ranged from 0 to 0.6 (Figure 6b).
The southern part of SSA had higher errors (0.6 pH units), and the same standard deviation
pattern was observed in parts of Ethiopia, Niger, Chad, Somalia, and Mali (Figure 6b). In
1980, almost all the SSA croplands had a soil pH that ranged from 5 to 6.5, and the lowest
soil pH was observed in the central part of SSA (Figure 6a).
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Figure 5. Spatial and temporal variations in soil pH decline in the last 42 years and prediction of soil
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The map of the current soil pH (Figure 6c) followed the same pattern as the soil map of
1980. The soil pH ranged from 4.5 to 8.6 and parts of Sudan, Niger, and South Africa were
among the top countries with cropland areas with a high soil pH (above 8). Additionally,
the soil pH in these areas did not change in the 42 years from 1980 to 2022 (Figure 6a,c).
The croplands with a soil pH ranging from 6 to 6.5 in 1980 experienced significant changes
but the soil pH in these areas did not drop much in 42 years because in the 2022 soil pH
map, the pH in these areas ranged from 5.5 to 6 (Figure 6c). The central and western
parts of SSA plus Madagascar had low soil pH (6–4.5). The current spatial variation is
expected to change with future increases in the use of ammonium-based fertilizers and
other soil acidification factors. The uncertainty map showed that the soil pH in 2022 was
accurate, with a low standard deviation ranging from 0 to 1.2. However, almost all of the
SSA standard deviation maps showed the soil pH ranging from 0 to 0.8 for both the past
and current maps (Figure 6a,c).

Figure 7 shows the predictions of the soil pH in the different scenarios. We compared
the current spatial variation in the soil pH and its associated errors (Figure 7a,b) with the
predicted soil pH maps in the BAU and EqD scenarios. The spatial variation in the soil pH
in the BAU and EqD scenarios had the same spatial patterns as the past and current soil
pH patterns but with different intensities. The predicted spatial variation in the soil pH is
expected to be in the same range (8.6–3.9) as the current variation, and only the soil pH
ranging from 6.5 to 5 is expected to change, especially in the central and eastern parts of
SSA (Figure 7c). The standard deviation map of the soil pH in the BAU scenario ranged
from 0.2 to 0.4 (Figure 7d). The map of the soil pH variation in the EqD scenario showed the
same pattern as the map of the soil pH in the BAU scenario, with few differences, especially
in the areas with a soil pH of less than 6.5; however, the areas with a high soil pH (>7.5)
showed the same pattern and intensity as the soil map in 1980 (Figure 7e). The uncertainties
of the soil pH in the EqD scenario showed that the soil pH map of South Africa, Angola,
Botswana, Western Uganda, Niger, and Chad were uncertain with 0.6 pH units (Figure 7f).

Ensemble machine learning (RF and xgbDART) increased model performance by
reducing model errors (RMSE and MAE) and increasing the R2 for the soil pH decline
model. The density scatter plots of the predicted against the observed soil pH decline
showed that the observed and predicted points were concentrated along the 1:1 line
and that the prediction errors were low (Figure 8a–c). The errors (RMSEs) of the soil
pH decline prediction ranged from 0.02 to 0.07 pH units (1980–2050) and the R2 ranged
from 0.88 to 0.91.

Figure 9 shows the results of 10 cross-validations for the soil pH change over time
(1980–2050). It shows the model errors (RMSE and MAE) and R2 for the soil pH model.
Most of the predicted and observed values were concentrated on the 1:1 line, whereas
others were not close to the 1:1 line, resulting in high RMSEs for all the predicted pH values.
The RMSEs ranged from 0.53 to 0.56 and the MAEs ranged from 0.37 to 0.40 (Figure 9a–c).
The R2 ranged from 0.63 to 0.64 (Figure 9a–d).

The assessment of croplands at risk of aluminum toxicity in the different scenarios
revealed that there is expected to be an increase in cropland areas affected by aluminum
toxicity. The estimated total cropland area in sub-Saharan Africa is 444 × 106 ha. In S1, the
cropland area affected by aluminum toxicity is expected to increase by 2.09% from 2022 to
2050 and 17.8% of croplands are expected to be affected by aluminum toxicity compared
to 15.61% in 2022 (Figure 10 and Figure S6). The top five countries expected to be affected
by aluminum toxicity were shown to be Liberia, Sierra Leone, Guinea, Rwanda, and the
Republic of Congo (Figure S6).
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Figure 8. Density scatters plots of predicted against observed soil pH decline using ensemble machine
learning: cross-validation results for mean annual pH decline for (a) 1980–2022, (b) 2022–2050 in
the BAU scenario, and (c) 2022–2050 in the EqD scenario. The black line is the 1:1 line. MAE: mean
absolute error; RMSE: root mean square error; R2: coefficient of determination for 1980 to 2050. For
S1, S2, and S3, see the cross-validation results in Table S5.
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Figure 9. Density scatter plots of predicted against observed soil pH using ensemble machine
learning: cross-validation results for soil pH in (a) 1980, (b) 2022, (c) 2050 in the BAU scenario, and
(d), 2050 in the EqD scenario. The black line is the 1:1 line. MAE: mean absolute error; RMSE: root
mean square error; R2: coefficient of determination. For S1, S2, and S3, see the cross-validation results
in Table S5.
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The results of the one-way ANOVA showed that the mean annual soil pH decline in 
the last 42 years was very low (less than 0.05 pH units) (Figure 11a). According to the 
different scenarios, the mean annual soil pH decline is expected to be lower than 0.05 pH 
units. However, there was a statistical significance when we compared the mean soil pH 
decline in all scenarios tested (Figure 11b). The mean soil pH in sub-Saharan Africa from 
1980 to 2050 ranged from 5.7 to 6 (Figure 11c) and the comparison of the means showed 
that there were no statistically significant differences in the soil pH between the S1 and 
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Figure 10. Temporal variation in mean soil pH of SSA croplands (a) and variation in croplands affected
by aluminum toxicity in the different scenarios (b). BAU: business-as-usual scenario (ammonium-
based fertilizer and crop production for 2022 to 2050) followed the same trends as those of the last
42 years); EqD: equitable diet scenario (self-sufficiency); S1: increase of 20% in use of N fertilizers in
the EqD scenario; S2: decrease of 20% in use of N fertilizers in the EqD scenario; and S3: decrease of
40% in use of N fertilizers in the EqD scenario. See Figure S7 for spatial and temporal changes in the
estimated area affected by aluminum toxicity in SSA croplands.

The results of the one-way ANOVA showed that the mean annual soil pH decline
in the last 42 years was very low (less than 0.05 pH units) (Figure 11a). According to the
different scenarios, the mean annual soil pH decline is expected to be lower than 0.05 pH
units. However, there was a statistical significance when we compared the mean soil pH
decline in all scenarios tested (Figure 11b). The mean soil pH in sub-Saharan Africa from
1980 to 2050 ranged from 5.7 to 6 (Figure 11c) and the comparison of the means showed
that there were no statistically significant differences in the soil pH between the S1 and
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EqD, S3 and S2, S2 and S1, EqD and BAU, and BUA and 2022 scenarios, whereas there
were statistically significant differences between the past and current soil pH (2022 and
1980) and the current and predicted soil pH in the EqD scenario (Figure 11d).
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4. Discussion

The increased H+ in response to the N application rates and crop yields increased the
rate of soil pH decline significantly, as well as the cropland areas at risk of aluminum toxicity
from 1980 to 2022 and this is projected to continue until 2050. From 1980 to 2022, proton
production was driven by basic cation loss rather than the H+ from the N transformation.
However, it is expected to be the opposite between 2022 and 2050 because the effect of
nitrification (H+ produced from estimated N fertilizer) use in SSA in the different scenarios
(EqD, S1, S2, and S3) is expected to contribute 52% of the total H+ production in SSA
(Figure 3). Thus, understanding the variation in soil acidity in the expected intensified
cropping systems in the future is an urgent matter.

4.1. Potential Soil Acidification in SSA Croplands

The results of this study show that there is expected to be a strong effect of nitrifi-
cation from ammonium-based fertilizer applications. This has also been mentioned in
other studies, which confirmed that the increase in the use of N fertilizers in acidic soils
enhanced by nitrification leads to nitrate leaching and contributes to the increase in H+
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production [15,55–57], which is in contrast with other studies that reported that nitrification
is inhibited in acidic soils [58,59].

There was an imbalance in the cation and anion uptake in all four cropping systems,
which led to a net H+ release in the soil. This means that there was a net loss of base cations
in SSA croplands due to basic cation uptake by plants. This observation can be explained
by the fact that the removal of base cation uptake by plants accelerates soil acidification by
decreasing soil exchangeable base cations [60]. It is not surprising that in the S1 scenario
(172 kg N ha−1yr−1), the effect on the soil pH decline was statistically significant in SSA
because this N application rate increased the residual N in croplands and decreased the soil
pH. This phenomenon was also shown in SSA, where an N application of 80–120 kg N ha−1

yr−1 in three tropical soils (Luvisols, Acrisols, and Ferralsols) in southwest Nigeria showed
a reduction of 1.7 pH units [13]. In addition, it was also suggested that N applications
above 90 kg N ha−1 yr−1 did not contribute to maize yield increases in field trials in 13 SSA
countries but contributed to N residuals in croplands, which may have contributed to soil
acidification [61]. In the SSA croplands, the current total H+ production rate is lower than
that in developed countries [3]. This could be explained by the low mean N fertilizer use
(20 kg N ha−1 yr−1) from 1980 to 2022 and the low crop production in SSA croplands [10].
Thus, the increase in the use of N fertilizers in SSA croplands should be included with other
soil management strategies to mitigate the effect of N applications on soil acidification in
SSA croplands.

4.2. Soil Acidity Neutralization Potential in SSA

From 1980 to 2022, the most important contributor to the soil-buffering capacity in
most soil reference groups in SSA croplands was silicate clay and soil organic matter
except in arid and semi-arid areas, where the soil-buffering capacity was driven by calcium
carbonates. This can be explained by the fact that in all scenarios, the soil pH values
in Sudan and Somalia were not affected by the increase in ammonium-based fertilizers
because our analysis showed that areas with a high soil pH (>7.5) in 1980 are expected to
have the same soil pH (>7.5) in 2050 in all scenarios. This was not the same for the soils in
other SSA croplands because their soil-buffering capacity is driven by soil organic matter,
clay, and basic cations for soils with montmolinite and smectite silicate clays, whereas
other soils with kaolinite, iron (Fe) and Al oxides, and low basic cations are buffered by
Fe and Al oxides [62,63]. This observation was also supported by the relative importance
analysis, which showed that the soil pH decline was driven by the clay content and SOC
(Figure 4c). In addition, in non-calcareous soils, the difference between pH 7.0 and pH 4.5
can be explained by the initial amount of exchangeable base cations. When the Al oxides
and/or hydroxides increase, the pH decreases even further close to 3.0 [64]. Furthermore,
these soils with a low pH (<5.5) have a poor buffering capacity, which is insufficient
to neutralize the H+ input due to the minerals dominated by kaolinite and Fe and Al
oxides [65]. In this condition, the neutralization process relies on the decomplexation
of Al3+ in soil organic matter and the weathering of Al oxides [66,67] aluminum and Fe
buffering reactions explain the low soil pH decline rate in the central and western parts of
SSA in all scenarios (Figure 5).

4.3. Model Performance and Uncertainty Assessment

The main advantage of our soil pH maps was that we predicted the soil pH based on
the expected increase in the use of N fertilizers in order to feed SSA populations, which
are expected to double by 2050. We did not estimate the area of applicability for machine
learning [68]. However, our uncertainty assessment using standard deviation maps clearly
showed the areas where the models under- or overpredicted (Figures 5–7). Based on our
analysis, the produced maps had low uncertainties because all their produced standard
deviation maps had lower standard deviations compared to the standard deviation of
the descriptive statistics of the training data (Tables 1 and 2). Based on our predicted
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maps, there were under- or overestimations in areas with missing training data, which is a
common error in digital models [31].

A comparison of our results with those of previous works that predicted the soil pH
in Africa showed that our soil maps had the same patterns as previous soil pH prediction
maps of Africa. There were a few differences between the model accuracy of this study and
that of recent soil pH predictions for Africa by Hengl et al. [31]. This could be the result of
the fine resolution (30 m) used, the covariates used, or the distribution of the training data.
However, there were no significant differences between the errors of this study and those
of previous studies on Africa. A low RMSE (0.53) was observed for this study, whereas the
soil pH maps of Africa predicted by a previous work had a higher RMSE (0.67), as well as a
higher R2 (0.66) than our R2 (0.64) [31]. We also compared our results to the recent Global
Soil Grids version 2.0 by Poggio et al. [54]. We found that ensemble machine learning (RF
and xdbDART) performed better than QRF. The RMSEs of the predicted soil pH ranged
from 0.53 to 0.56, whereas the RMSEs for the recent global soil grids were higher than those
of our study and ranged from 0.7 to 0.74 [54]. This was expected because it has been shown
that ensemble machine learning can increase accuracy by up to 15% over a single algorithm
but requires higher computations [52,53].

4.4. Implications and Practical Recommendations

To feed a rapidly growing population, SSA needs to increase the fertilizer application
rates. Our study indicates that soil acidification could be a big challenge for most SSA
countries. Reasonable N management practices should concentrate on ways of increasing
N use efficiency while decreasing N losses. First, applying a 4R strategy would be the
best solution to the problem of increasing H+ production in SSA croplands. This type of
strategy focuses on adding the right type of fertilizer in the right place (deep placement)
at the right time (higher splitting frequency) and in the right amounts (lower basal N
fertilizer and optimal N rate based on a soil N test) [69]. It has also been shown that
introducing essential N utilization genes into agricultural cultivars has the potential to
boost N uptake [70]. Second, the fertilization structure should be adjusted by reducing
chemical fertilizers and increasing organic fertilizers because organic fertilizers can increase
the gross NH4

+ immobilization rates, resulting in strong competition with nitrification [71],
and increasing the soil-buffering capacity [41]. Third, soil amendments (e.g., lime, crop
residues, and biochar) should be extensively applied to solve the problem of Al toxicity
and increase the soil pH in areas that are at high risk of Al toxicity (Figure 10) by increasing
the SOC, soil-base saturation, and soil-buffering capacity [72].

5. Conclusions

This is the first study to evaluate the effects of the increase in the use of N fertilizers
on the soil acidification rate and soil pH change over the last four decades, as well as
predict the effects on SSA cropland over the next three decades. We tested five scenarios
of increasing N fertilizers in SSA in order to achieve an equitable diet by 2050. We found
that the mean annual soil pH decline was 0.014 pH units during 1980–2022, and from 2022
to 2050, it is estimated to be 0.024 pH units (BAU), 0.048 pH units (EqD), 0.057 pH units
(S1), 0.04 pH units (S2), and 0.034 pH units (S3). The mean annual soil acidity rate is driven
by protons (H+) produced by nitrification and basic cation loss. CEC and soil-buffering
capacity control the soil acidity rate and the central and western parts of SSA are at risk of
Al toxicity in all the scenarios tested. We conclude that to achieve self-sufficiency in Africa
by 2050, it is important to increase the level of N input in croplands (143.4 kg N ha−1 yr−1).
However, we need to develop strategies to minimize the effect of N fertilizers on the soil
pH decline in the future in SSA soils, including the use of less acidifying fertilizers, the
selection of plant species that do not accumulate cation excesses, a reduction in carbon and
N losses, liming, and the use of biochar in SSA croplands.
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