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Abstract: Rodents are a vital part of the natural succession chain of the alpine grassland ecosystem,
and rodent activities have an important impact on alpine grassland ecology. Moderate rodent
population activities positively improve soil permeability, promote nutrient cycling, and promote
biodiversity. However, too much rodent population or excessive activity intensity will bring negative
effects on the ecological environment. Therefore, it is of great significance to accurately grasp the
rodent activity intensity (RAI) in alpine grassland to cope with the changes in rodent populations
and maintain the stability of the alpine grassland ecosystem. The Zoige alpine grassland was used
as the study area in this study. In addition, UAV was sent to sample the rodent activity area in the
alpine grassland. With the aid of field survey data, the surface information of rodent activity in
the experimental area was identified, and the RAI index in the sample plot was calculated. Then,
based on Sentinel-2A satellite remote sensing multi-spectral data and spectral index, multiple linear
regression (MLR), multi-layer perceptron neural networks (MPL neural nets), random forest (RF),
and support vector regression (SVR) were used to construct four models for RAI and Sentinel-2
datasets. The accuracy of the four models was compared and analyzed. The results showed that
the RF model had the highest prediction accuracy (R2 = 0.8263, RWI = 0.8210, LCCC = 0.8916,
RMSE = 0.0840, MAE = 0.0549), followed by the SVR model, the MLP neural nets model, and the
MLR model. Overall, the nonlinear relationship between rodent activity intensity and satellite
remote sensing images is obvious. Machine learning with strong nonlinear fitting ability can better
characterize the RAI in alpine grassland. The RF model, with the best accuracy, can quantitatively
estimate RAI in the alpine grassland, providing theoretical and technical support for monitoring RAI
and rodent control in the alpine grassland.

Keywords: alpine grassland; rodent activity intensity; multiple linear regression; MLP neural nets;
random forest; support vector regression

1. Introduction

Grassland is an important ecological barrier as well as a material base for animal
husbandry production [1]. At high latitudes or high altitudes, there are large areas of alpine
grasslands [2,3], which are important ecological reserves and have significant ecological
value for maintaining biodiversity and regional ecological balance [4–6]. Alpine grassland
is also a vital water source conservation and supply area in the basin’s upper reaches,
which has an important strategic position in the ecological protection and high-quality
development of the watershed [7,8]. Since alpine grassland is susceptible to plateau climate,
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human activities, and animal disturbance [9], it is crucial to ensure the ecological regional
security pattern and respond to climate change correctly [10,11].

Small mammals in the alpine grassland mainly include the Citellus dauricus, zokors,
gerbils, pikas, and marmots (collectively referred to as “rodents” in this paper), which are
important components of the natural succession chain of the alpine grassland ecosystem.
Through digging, excreting, foraging, and other activities, rodents can significantly affect
the soil formation process, nutrient content, and vegetation succession [12,13]. Moderate ro-
dent population activities can improve soil permeability, promote nutrient cycling, and play
an essential positive role in ensuring water conservation, improving the ecological land-
scape, and promoting biodiversity [14–16]. However, excessive rodent populations lead to
a large number of high-quality herbage being eaten. More seriously, the dense and criss-
crossed rodent holes change the soil surface structure and destroy vegetation [17–19]. It is
easy to form secondary bare land, and the soil moisture and fertility are reduced. The extent
of the problem will gradually expand and become large “bald spots” [20–22]. The activities
of the rodent population directly affect soil properties and vegetation growth [23] and have
an extremely important impact on the alpine grassland ecological environment [24].

Since the 1980s, alpine grassland in China has been seriously degraded, and its ecolog-
ical functions have been destroyed. Many problems have been faced, such as decreased
biodiversity, ecosystem service function, and environmental deterioration [25]. Large-scale
rodent infestation has been considered a significant factor in the degradation of alpine
grasslands in recent decades [23,26,27]. The rodent population is also reflected on the land
surface. The greater the number of rodents, the greater the activity intensity and the more
land surface traces will be produced. Therefore, it is of great significance to maintain the
alpine grassland ecosystem and ensure the sustainable utilization of grassland resources by
accurately grasping the rodent activity intensity (RAI) in alpine grasslands to cope with
changes in rodent populations effectively. The RAI index was proposed for the first time in
this study. It indicates the extent of the impact of rodent activity on the surface landscape
in an area.

Currently, the standard method to investigate RAI in grassland is still a field survey
based on the plot scale [28–30]. The disturbance of plateau rodents to soil and vegetation
is the comprehensive result of various rodent activities. It is common to use the effective
hole density per unit area to classify rodent disturbance intensity on plateau [31–34]. Chen
believed that the total hole density of the plateau pika could reflect not only the plateau pika
interference intensity but also the amount of excavation activity of the plateau pika [35].
Li and Zhang used the transect method to estimate the population density of plateau
pika when the plateau pika activity peaked at the Haibei Alpine Meadow Ecosystem
Positioning Station of the Chinese Academy of Sciences [36]. Niu estimated the number
of pika holes in the sample plot using the blocked tunnel method [37] and calculated the
density of pika holes in each sample plot [38]. Liu used the blocking and stealing holes
method to continuously record the number of holes and the number of effective holes.
After determining effective holes, the plateau pika was captured in the sample field until it
was no longer captured. Finally, the number of captured plateau pika was used to calculate
the hole coefficient of the plateau pika [39]. Yu and Zhang believed that the number of
bare soil patches was directly related to the population density of plateau pika, so the
percentage of bare soil area of each disturbed plot could be used as a representative of
the plateau pika disturbance intensity [34]. The advantage of the field survey method is
that it can obtain accurate data about RAI at the sample plot scale, which has obvious
advantages for understanding and grasping RAI at the micro-scale [40,41]. However, the
RAI data obtained from the sample plot survey are easily affected by the number of sample
plots, survey area, and other factors. In this method, it is difficult to accurately obtain the
spatio-temporal distribution data of RAI in the macro scale area, which is not conducive to
the overall understanding of the spatio-temporal pattern of RAI.

Since 2013, UAVs have made a breakthrough in the field of rodent activity monitoring.
Many scholars used UAVs to acquire images of prairie rodent damage and combined them
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with artificial intelligence, pattern recognition, and other methods to obtain the spatial
distribution and damage degree of rodent damage in the grassland [42]. Ma and Sun took
aerial photographs of the rodent infestation areas based on the UAV low-altitude remote
sensing monitoring platform, and then calculated the coverage of hole clusters using the
UAV low-altitude remote sensing images, classified the rodent infestation levels in the study
area and analyzed the distribution of rodent infestation [43,44]. Dong carried out a study
on the UAV remote sensing identification of rodent holes and rodent mounds information
and achieved good accuracy [45]. Xuan built a low-altitude remote sensing platform using
dynamic delta wings and digital cameras to obtain ultra-high resolution image data of
grassland rodent infestation of about 1 cm. Additionally, the spatial distribution and
damage degree of rodent infestation was obtained by using GIS spatial interpolation and
statistical methods on the basis of manual interpretation [46]. With the development of UAV
technology, field investigation method and low-altitude remote sensing technology are
effectively combined. Aerial images with ultra-high spatial resolution can provide a finer
spatial scale for directly mapping rodent hole distribution. Compared with the manual field
survey method, the work efficiency and survey scope are greatly improved [47]. However,
the continuous flight time of UAVs is limited, and it is not easy to meet the prediction of
RAI in an extensive range and multiple periods.

In contrast, whether it is a manual field survey or UAV remote sensing survey, the
point data of field monitoring can hardly reflect the spatial and temporal distribution of
RAI in macro-scale areas comprehensively and accurately. Satellite remote sensing has the
characteristics of macroscopic and multi-phase, which has advantages in estimating RAI in
large-scale and multi-stage. The critical point is to study further the relationship between
satellite remote sensing data and RAI. However, rodent activity information such as holes
and mounds cannot be directly obtained from the images because the spatial resolution of
satellite images is far less than UAV images. Fortunately, the surface landscape of alpine
grassland is altered by rodent feeding and digging. Therefore, landscape changes caused
by rodent activity can be used to estimate RAI [48].

There are mainly the following methods for estimating RAI based on satellite remote
sensing. Firstly, construct the interpretation signs of rodent activity areas. For example, in
a study by Li [49], Interpretation signs such as rodent infestation sites, grasslands, rodent
wasteland, and bare land were constructed based on Landsat8 remote sensing images.
Then, rodent-infested areas in the Altun Mountains grassland were identified and classified
with the help of altitude and vegetation coverage. Secondly, build an evaluation model.
He selected six indicators of elevation, slope, slope aspect, grassland type, soil type, and
enhanced vegetation index (EVI) to construct a rodent damage estimation model. Different
rat infestation areas and thresholds were extracted [50]. Thirdly, the changes in remote
sensing indices were used to indirectly estimate the number of rodents. For example,
Pianalto used the surface temperature extracted from the TM thermal infrared band to
simulate the spatial pattern of desert rodent abundance at night [51]. Andreo used the
number of rodents as the dependent variable and the vegetation index and moisture index
as the independent variables to construct a fitting model based on Sentinel-2 and Landsat
8 satellite images [52]. In past research, indirect indicators such as vegetation index and
comprehensive index were used to construct various models to estimate RAI, and various
methods were also being tried and improved. The estimation of RAI by remote sensing
was successfully reached. However, these indicators and methods are single and do not
correlate satellite remote sensing data with field survey data and UAV survey data, resulting
in low accuracy of estimation results.

The critical point of remote sensing estimation RAI is to find the relationship between
RAI and satellite remote sensing data. Still, there may be complex nonlinear relationships
between them, which linear regression models may not sufficiently reflect. In recent years,
the extreme learning machine (ELM) [53] and multiple adaptive regression spline (MARS)
model [54,55] were used to solve multiple nonlinear problems in the field of engineering
technology, such as predicting the thermal conductivity of unsaturated soil [56] and evalu-



Remote Sens. 2023, 15, 1404 4 of 18

ating the ultimate bearing capacity of geosynthetic-reinforced sand soil foundations [57].
Moreover, machine learning nonlinear regression algorithms, such as support vector ma-
chine [58], artificial neural network [59], and random forest [60], were applied to remote
sensing regression fitting [61]. The experimental results of different methods are different.
Therefore, finding the most suitable fitting model between RAI and satellite remote sensing
data is the critical problem in estimating RAI in alpine grassland by satellite remote sensing.

This study was carried out on the Zoige alpine grassland. Satellite remote sensing data,
UAV survey data, and field survey data were combined to construct the RAI estimation
model. UAV remote sensing techniques and field surveys were used to extract rodent
activity information from the sample sites. Meanwhile, multispectral datasets and remote
sensing indicators from the Sentinel-2A satellite were used as indicators to estimate RAI.
The plots used multiple linear regression, support vector machine, random forest, and MLP
neural nets to research the relationship between the RAI and remote sensing indicators. The
model with the highest accuracy was selected by verifying and comparing the prediction
accuracy of the four models. The quantitative description of rodent activity can provide
some theoretical and technical support for estimating rodent activity in alpine grassland.
Study ideas and technical routes are shown in Figure 1.
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Figure 1. Study ideas and technical routes.

2. Data and Method
2.1. Study Area

The area selected for this study is Zoige Alpine Grassland, which is located at the
eastern edge of the Qinghai–Tibet Plateau, at the junction of Sichuan, Gansu, and Qinghai
provinces, with a total area of about 10,326 km2 (Figure 2).
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Figure 2. Location of the study area.

The Zoige alpine grassland is a typical alpine grassland ecological landscape area
on the Qinghai–Tibet Plateau [62–65]. It is also an important water conservation and
supply area in the upper reaches of the Yellow River [66,67]. In May 2022, the Zoige
Grassland was approved as a national park, and the ecological benefits were raised to a high
strategic position, which plays a vital role in guaranteeing and promoting the environmental
protection and high-quality development of the upper Yellow River basin [7,8]. Zoige alpine
grassland is a specific area that is comprehensively affected by plateau climate, human
activities, animal disturbance, and other aspects. It has a direct indicator and early warning
value for the grassland ecosystem of the Qinghai–Tibet Plateau [68,69]. It is vital to ensure
the regional ecological security pattern and respond to climate change [70].

According to the actual statistics of the Sichuan Grassland Station, the average area
of rodent damage in Sichuan grasslands in 2018 was 2.84 × 106 hm2, an increase of about
4.7% over 2017. Moreover, the severely damaged area is about 1.82 × 106 hm2, an increase
of about 10% compared with 2017 [71]. Excessive rodent activity seriously affects the
sustainable development of grassland animal husbandry. The sample plot selected for this
study is located in Hongxing Town in the north of Zoige County, and the sample plot size
is 500 m × 500 m. The primary rat species in this area are the zokor and the marmot, whose
activity traces are typical.

2.2. Data Collection and Processing
2.2.1. UAV Data Acquisition and Processing

(1) Flight plan of UAV

In the alpine grassland, the rodent population and the intensity of excavation were
the highest in spring and autumn [72]. However, grassland vegetation gradually began to
wither and yellow in autumn, which was not conducive to extracting vegetation indexes
based on multispectral satellite data. According to the research of Dong [73] and Xiong [74],
May 2021 was selected as the time for UAV remote sensing data collection. This time
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ensures that the surface rodent activity information obtained by UAV remote sensing
represents the maximum RAI and allows the extraction of accurate vegetation indices using
satellite remote sensing images in the same period.

A DJI Phantom 4 Pro Multi-rotor was used to take aerial photography of the sample site.
The UAV is equipped with GPS/GLONASS dual-mode satellite positioning system, IMU,
and compass dual redundant sensors, which can give images high-precision positioning
information. The flight date was 12 May 2021; the flight altitude was 200 m, and the
heading and side overlap rates were 80% and 60%, respectively.

(2) Data Processing

The UAV image processing software Pix4Dmapper platform was used to convert the
photos taken by the UAV into digital orthophotos [75]. Then the sample area is clipped
out according to the size of 500 m × 500 m. The ground resolution of the UAV image
is 0.05 m, which can clearly identify the surface traces of rodent activities. Combined
with the information from the field investigation, the traces of rodent activities (including
rodent holes and mounds) are interpreted by manual interpretation, which took 18 h. The
interpretation results are shown in Figure 3.
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According to the research of Pang [16], Yu [34], and Liu [39], the number of bare soil
patches is directly related to the population density of plateau rodents, so the percentage of
bare soil area in each disturbance plot can be used as a representative of the disturbance
intensity of plateau rodents. In order to achieve a complete match between the UAV image
and the Sentinel-2A image on the pixel scale, the interpretation results were gridded in this
study, and the grid size was set to 10 × 10 m. Finally, the proportion of rodent activity trace
areas in the grid was taken as the RAI index of the grid (Figure 3).

2.2.2. Collection and Processing of Sentinel-2A Data

(1) Data source and description

In this study, Sentinel-2A satellite images were sourced from the ESA Copernicus Data
Center (https://scihub.copernicus.eu/dhus/#/home, (accessed on 22 July 2021)). The
image was taken on 9 May 2021, and the cloud cover was 0.2%. The imaging time of the
satellite image is three days earlier than the UAV flight. During this period, there was no
apparent natural change or human intervention in the sample plot. The field investigation

https://scihub.copernicus.eu/dhus/#/home
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results showed no signs of rodent activity, such as rodent holes and mounds recently added,
and there was no significant growth in pastures. The authors believe that the temporal
phases of the UAV image and satellite image used in this study are consistent and can be
used to research the remote sensing estimation method of grassland RAI.

(2) Data Processing

The images were radiometrically calibrated and atmospherically corrected in sen2cor
software, then post-processed in SNAP software, and finally, the images of the plots were
clipped in ENVI software. Sentinel-2A multispectral data has a total of 13 bands. Band 1
is used to monitor aerosols, Band 9 is used to monitor water vapor, and Band 10 is used
to monitor ocean currents. The spatial resolution of the above three bands is low (only
60 m). The spatial resolution of the above three bands is low (only 60 m). These three
bands should be excluded from this study and not be used as variables to construct the RAI
estimation model in alpine grassland, so as to avoid interfering with model construction
and reducing the model’s prediction accuracy.

Then, 14 derived indices were obtained through band calculation (Figure 4), includ-
ing Enhanced Vegetation Index (EVI), Modified Soil Adjusted Vegetation Index (MSAVI),
Normalized Difference Moisture Index (NDMI), Normalized Difference Soil Index (NDSI),
Normalized Difference Vegetation Index (NDVI), Normalized Difference Vegetation Green-
ness Index (NDVGI), Normalized Moisture Index (NDWI), Ratio Vegetation Index (RVI),
Soil Adjusted Vegetation Index (SAVI), Soil Color Index (SCI), Transformed Vegetation
Index (TVI), Brightness Index (BI), Greenness Index (GI), and Wetness Index (WI).
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There are many variables used for modeling, and the measurement standards of each
variable are inconsistent. Therefore, all data were standardized before constructing models
to improve the model’s sensitivity and ensure the accuracy of the estimation results.

2.3. Methodology

This study mainly consists of three stages: extracting the rodent activity area of the
UAV image, constructing RAI estimation models, and comparing the model accuracy. RAI
estimation was achieved by constructing an optimal inversion model between the RAI index
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and the spectral index [76]. This paper discussed four methods: multiple linear regression
model, MLP neural nets model, random forest model, and support vector regression model.

2.3.1. Multiple Linear Regression

MLR models can describe the correlation between a dependent variable and multiple
independent variables. The independent variables are added to the model one by one
according to the correlation of the independent variables to the regression equation [77]. If
the significance of the original variable is reduced after adding a new variable, the original
variable is eliminated [78]. The addition or elimination of independent variables must pass
the significance test to ensure that only the variables with large significance are included
in the regression model [79,80]. In this study, 24 variables were added to the regression
model according to the degree of correlation between the index and RAI. Variables with
high significance were retained, and variables with minor significance were eliminated.
The model equation for estimating the RAI was constructed as follows:

RAI = 0.168 + 0.145 × B2 − 0.363 × B3 + 0.166 × B4 + 0.002 × B5 − 0.012 × B6 − 0.054
× B7 − 0.167 × B8 + 0.002 × B8A + 0.371 × B11 − 0.070 × B12 + 0.49 × RVI + 0.388 ×

MSAVI + 0.355 × NDMI − 0.060 × NDGVI + 0.043 × EVI − 0.188 × TVI
(1)

where RAI is rodent activity intensity; B1~12 are band 1~12 of Sentinel-2A satellite image.

2.3.2. Multi-Layer Perception Neural Network

There may be a complex non-linear relationship between the 24 variables used for
remote sensing inversion and the RAI values, which machine learning models can better
reflect. Multi-layer perception neural networks (MLP neural nets) are artificial neural
networks with a forward structure consisting of multiple node layers. Each layer is fully
connected to the next layer, and the linearity is overcome by merging one or more hidden
layers. It has a strong non-linear fitting ability and can map any complex non-linear
relationship [81,82].

The MLP neural nets have three layers: the input layer, the hidden layer, and the
output layer [83]. The input layer data were the spectral values and spectral indexes of the
Sentinel-2A satellite image. In the hidden layer, the sigmoid function was selected as the
activation function. The hidden layer was determined to be two layers, and the number of
neurons in the first and second layers was 20 and 15, respectively. The output layer has
only one layer, which is the RAI. The main parameters of the model in this study are as
follows: the solver is “lbfgs”, the initial learning rate is 0.001, the L2 regular term is 0.01,
and the number of training iterations is 500.

In training the neural network, the output value of the hidden layer and the predicted
RAI index of the output layer were sequentially calculated by forward propagation. Then,
the weights between the input layer and the hidden layer and between the hidden layer
and the output layer were corrected by backpropagation. The above process was repeated
until the maximum number of repetitions was reached. Optimizing network parameters
was the process of constructing MLP neural nets.

2.3.3. Random Forest

Random forests (RF) is a machine learning model proposed by Breiman based on the
classification and regression tree (CART) [84,85]. Random forest integrates several CARTs
in parallel to construct a model with strong learning ability. When one CART makes an
error, the other decision trees can correct it. The random forest algorithm has high efficiency
for classification or regression with multidimensional features. It can process data with
higher dimensions without dimensionality reduction and is simple to implement and fast
to train [86].

The model randomly selects some samples from the training set. A set of samples is
used to train a base-decision tree located at the tree’s root node. The information purity
of the sample features is judged by the information gain rate or Gini index, and the best
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features are selected as the standard for splitting. Repeat the above steps to keep the base-
decision tree growing until it meets the design. The random forest model is constructed by
merging all the trained base-decision trees into a forest [87,88].

The performance of the RF model depends on the number of base-decision trees used.
The more trees there are, the less easy the model is to overfit, but the computational effort
will increase. In this study, the random search optimization method is used to find the
optimal parameters. The optimal number of base-decision trees is 150, and the depth of a
tree is 20. Max-features (the number of features to be used when splitting each node) is
log2, min-samples-split (the minimum number of samples required to split internal nodes)
is 8, min-samples-leaf (the minimum number of samples in each leaf) is 4, and the bootstrap
(sampling method: put back the sample) is “true”.

2.3.4. Support Vector Regression

The support vector machine (SVM) is a machine learning model based on the statistical
learning theory proposed by Cortes, which has excellent learning ability [89]. In dealing
with pattern recognition problems, it can ensure that the training sample set and test
sample set have small errors. It is widely used in environmental modeling, land use/cover
classification, and the estimation of forest biomass. SVR is the regression algorithm model
of SVM, whose basic idea is to find an optimal function that minimizes the “total deviation”
of sample point distance.

SVR includes linear regression and nonlinear regression, and nonlinear regression
is used in this study. The selection of the kernel function has a significant impact on the
performance of the SVR model. In this study, the radial basis function (RBF) was selected
as the kernel [90], and its prediction results depend on the distance to a specific point. The
advantage of the RBF kernel function is that it is not constrained by the sample size when
the data are mapped to a high-dimensional space and is resistant to perturbations in the
data. Two critical parameters of the RBF kernel function are C and γ. C is the penalty
coefficient, namely the tolerance for error. γ is the characteristic width of the kernel function
and determines the scope of the kernel function [91]. Appropriate parameter settings will
greatly improve the performance of the model. The parameter optimization algorithm
obtained the optimal C and γ [92,93]. The optimal C = 54 and =1 were used to construct the
SVR model in this study. The remaining main hyperparameters are as follows: the number
of training iterations is 1696, shrinking is “true”, tol (the threshold for terminating iteration)
is 0.001, random state is “none”, and epsilon (parameter e) is 0.1.

2.3.5. Model Assessment

To assess the four models’ accuracy, the sample data were divided into training sets
and validation sets. A total of 70% of the sample data were randomly used for model
construction, and 30% of the sample data were used for model accuracy validation [94].
Four statistical criteria were used to characterize the predictive performance of the model,
including the coefficient of determination (R2), the root mean square error (RMSE), the
mean absolute error (MAE), refined Wilmott index (RWI) [54], and Lin’s concordance
correlation coefficient (LCCC) [95]. The larger the LCCC value and R2 value and the
smaller the MAE value and RMSE value, the higher the accuracy of the estimated model.

R2 = 1−

n
∑

i=1
(yi − zi)

2

n
∑

i=1
(yi − y)2

(2)

RMSE =

√
1
n

n

∑
i=1

(yi − zi)
2 (3)
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MAE =
1
n

n

∑
i=1
|yi − zi| (4)

RWI = 1−

n
∑

i=1
|yi − zi|

2
n
∑

i=1
|yi − y|

(5)

LCCC =
2rσyσz

σ2
y + σ2

z + (
_
y− _

z)2 (6)

where n is the number of samples, yi is the RAI index measured by the UAV, zi is the
RAI index predicted by the model,

_
y is the mean of the measured values,

_
z is the mean of

the predicted values, σy
2 is the variance of the measured values, σz

2 the variance of the
predicted values, and r is the Pearson correlation coefficient between the measured and
predicted values [96].

3. Results and Analysis
3.1. Comparison of RAI Estimation Results

The MLR, MLP neural nets, RF, and SVR methods were used to construct the RAI
estimation model. These four models were used to estimate the RAI of the plot area.
Figure 5 shows the distribution of RAI in the plot.
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Figure 5. Calculate RAI distribution of the sample plot using: (a) UAV image; (b) the MLR model;
(c) the MLP neural nets model; (d) the RF model; and (e) the SVR model.

According to RAI ≤ 0.1 (I), 0.1 < RAI ≤ 0.2 (II), 0.2 < RAI ≤ 0.3 (III), 0.3 < RAI ≤ 0.4
(IV), and RAI > 0.4 (V), the RAI of the sample plot was divided into five levels. The area of
the RAI estimated by different methods is shown in Table 1. The RAI index of the sample
plot interpreted and measured from the UAV image is the validation data. The sum of the
areas of levels IV and V is 4.89 × 104 m2, accounting for 19.56% of the total sample plot
area, and the areas of levels I and II are 17.66 × 104 m2, accounting for 70.64% of the total
sample plot area.
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Table 1. The area of different RAI levels was calculated and compared.

Model
RAI Level (I)

RAI ≤ 0.1
(II)

0.1 < RAI ≤ 0.2
(III)

0.2 < RAI ≤ 0.3
(IV)

0.3 < RAI ≤ 0.4
(V)

RAI > 0.4

Validation 13.12 4.54 2.45 1.62 3.27
MLR 8.54 7.22 5.53 2.71 1.00

MLP Neural Nets 9.44 7.96 3.51 1.82 2.27
RF 11.25 6.18 3.38 1.73 2.46

SVR 9.19 8.01 3.38 1.94 2.48

The unit of data in the table is 104 m2.

It can be seen from Table 1 that there are certain differences in the RAI predicted
by different methods. The prediction data of the MLR model have large errors with
the validation data at each level. For predicting the area of level V, the accuracy of the
three machine learning models is similar. Yet, they are about 30% smaller than the validation
data. The area of level IV predicted by the machine learning model is very close to the
verification data, and the difference between the prediction result of the RF model and the
reality is only 0.11 × 104 m2. In the validation data, the area of level III is 2.45 × 104 m2.
The prediction data of the machine learning model are larger than the validation data, and
RF and SVR are 3.38 × 104 m2, which are the closest to the validation data. The prediction
accuracy for level II is the lowest, and the error of MLR, MLP neural nets, and SVR models
is more than 50%. RF is also the model with the highest accuracy for predicting the area of
level I.

The predicted value is always smaller than the verified value when RAI > 0.4 or
RAI ≤ 0.1. The result is the opposite when 0.1 < RAI ≤ 0.4. The predicted value always
tends to be the middle number. Comparing the prediction results of four models, it can be
seen that the performance of MLP neural nets is obviously superior to the MLR model, but
it is not the best method to estimate RAI. The RF is the model with the highest accuracy,
and its prediction results are the closest to reality.

Twenty points were randomly selected in the sample plot, and the prediction results
of the four models are shown in Figure 6. The results show that four models, MLR, MLP
neural nets, RF, and SVR, can estimate RAI using satellite images in the study area. On the
whole, the estimated results of the model are slightly smaller than the UAV measurement
data, especially when the RAI is more significant than 0.35. The estimation results of the
RF model are most similar to the UAV measurements.
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3.2. Accuracy Assessment and Comparison

To illustrate the accuracy of estimating grassland RAI by various models at the study
site, Figure 7 shows scatterplots of predicted versus verified RAI. It can be observed that
the RF model has the highest saturation level.
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Figure 7. Comparison between the measured and predicted RAI using: (a) the MLR model; (b) the
MLP neural nets model; (c) the RF model; and (d) the SVR model.

The four models were used to predict the RAI of the plots, and the predictions were
compared with the validation data to calculate the four statistical criteria. The results of
the RAI estimation on the Sentinel-2A dataset using MLR, MLP neural nets, RF, and SVR
models are shown in Table 2. It shows that the prediction performance of the nonlinear
machine learning model is significantly better than the linear regression model. Comparing
the three machine learning models, RF model has the highest goodness of fit and the best
performance (R2 = 0.8263, RWI = 0.8210, LCCC = 0.8916, RMSE = 0.0840, MAE = 0.0549),
followed by the SVR model (R2 = 0.6921, RWI = 0.7191, LCCC = 0.8195, RMSE = 0.1118,
MAE = 0.0862), the MLP neural nets model (R2 = 0.6593, RWI = 0.6978, LCCC = 0.7899,
RMSE = 0.1319, MAE = 0.0803). In contrast, the lowest goodness of fit was found for the
MLR model (R2 = 0.3983, RWI = 0.6164, LCCC = 0.2695, RMSE = 0.1563, MAE = 0.1177).

Table 2. Validation results of the RAI model.

RAI Model R2 RWI LCCC RMSE MAE

MLR 0.3983 0.6164 0.5695 0.1563 0.1177
MLP Neural Nets 0.6593 0.6978 0.7899 0.1319 0.0803

RF 0.8263 0.8210 0.8916 0.0840 0.0549
SVR 0.6921 0.7191 0.8195 0.1118 0.0862
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4. Discussion
4.1. Advances and Innovations in This Study

In past research, the density of rodent holes [35], effective hole density [31], hole
coefficient [39], bare soil spot density [34], and other indices were calculated to evaluate
the population of grassland rodents or the impact of rodent activities on the grassland.
However, these indices could not well reflect the impact of rodent activities on grassland.
The RAI index was proposed for the first time in this study. It indicates the extent of the
impact of rodent activity on the surface landscape in an area. This may provide a theoretical
basis for future research.

In addition, traditional field surveys always take a long time, and it is difficult and
error-prone to manually measure the area of rodent mounds [97]. The UAV measurement
technology can map fine rodent holes and rodent mounds, so it can accurately estimate the
RAI [47]. However, UAV endurance is short, which means it cannot support RAI estimation
in large areas or for multiple periods [98]. Satellite imagery cannot be directly used to
obtain RAI information, such as rodent holes and mounds, because its spatial resolution is
much lower than that of UAV imagery. The main innovation of this study is to establish
the relationship between satellite remote sensing and UAV remote sensing. This study
is an exploration of estimating RAI using satellite remote sensing, which has rarely been
reported in previous studies. The machine learning model combining UAV and satellite
remote sensing proposed in this study is successful and has high fitting accuracy.

4.2. Select Input Variables for the Model

In existing research, NDVI, SAVI, NDWI, NDBI, and other spectral indexes are widely
used [50,52,76]. However, the situation in a rodent activity area is much more complex than
that of single vegetation coverage, so there is no conclusive conclusion on which factors
have an influence on RAI, and the causal mechanism of various factors affecting RAI is
unclear [48]. It is difficult to select the characteristic variables of the model. The SVR, RF,
and MLP algorithms selected in this study are non-causal machine learning methods. There
are no strict requirements for the causal mechanism of the input factors and independent
variables, and the invalid factors have little impact on the regression results [99]. The MLR
model can also gradually eliminate the variables with a small correlation. Therefore, as
many input variables as possible are selected in this study and then processed by models
with judgment and learning ability. This study selected 24 factors as input variables.

However, the MLP neural network model is susceptible to collinearity issues when
there are a lot of feature variables. This is the reason why the accuracy of MLP neural
nets is not high in this study. This is consistent with Zhang’s research results [100]. The
advantage of the RF model is that it can handle high-dimensional data without repeatedly
tuning parameters. Even if some feature variables are missing, the accuracy of the final
result can be maintained. Its main advantages are strong generalization, low collinearity
and outlier sensitivity, and difficulty in overfitting. This is consistent with the research
results of Han, who pointed out that compared with traditional methods, random forest is
not easily influenced by environmental noise and has high prediction accuracy [101].

4.3. Effectiveness of Machine Learning for Estimating RAI in Alpine Grassland

Because rodents are engaged in uninterrupted activities, it is difficult to obtain infor-
mation directly about rodent activities [51]. It is still challenging to estimate grassland RAI
using satellite remote sensing data in alpine grassland. In this study, four models were
established to estimate RAI in alpine grassland. R2, RWI, LCCC, RMSE, and MAE were
used to evaluate the estimation effect.

The prediction results of all four models are slightly smaller than the UAV validation
data, especially when the RAI is more significant than 0.35. The reason is that the grass
has some occlusions for the rodent hole and the rodent mound, but the resolution of the
satellite image is so low that it is impossible to make a judgment close to that of the UAV
image. The R2 and LCCC of the MLR model are 0.3983 and 0.2695, respectively, which
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not only shows that the linear regression model is unsuitable for grassland RAI remote
sensing estimation but also indicates that the linear relationship between grassland RAI
and spectral index is not apparent. This coincides with Melis’s research [102]. On the con-
trary, the three nonlinear regression machine learning models showed better performance
(R2 = 0.6593–0.8263; LCCC = 0.7899–0.8916), indicating an evident nonlinear relationship
between grassland RAI and Sentinel-2A satellite remote sensing data. This result is in
agreement with the findings reported in Reference [103].

4.4. Shortcomings and Prospects

This study was carried out in a sample plot, and good results were obtained, which
verified the effectiveness of using remote sensing technology to estimate alpine grassland
RAI. It provides a high-efficiency and low-cost research idea for the next step to estimate
the alpine grassland RAI on a large scale and in multiple stages. According to the research
of Pei [104], there will be some new problems to be solved when small-scale research is
promoted to large scale.

In the stage of processing the UAV image data, the traces of rodent activity are
interpreted manually. Although the accuracy is high and the closest to the natural situation,
the efficiency is very low. In order to realize the modeling of a larger area, the method of
extracting rat activity traces from UAV images needs to be improved to improve efficiency
while ensuring accuracy.

The sample plots selected for this study have flat terrain and few types of land cover,
including only grassland, roads, and streams. The interference of the model is small, which
ensures high prediction accuracy. However, it is unavoidable to encounter complex terrain
or many land cover types when the study area is large, which may affect the performance of
the model [99]. Therefore, in the next research plan, we will try to eliminate the interference
of other land covers. In addition, the model is optimized by combining various algorithms
to further improve the estimation accuracy and applied to estimate alpine grassland RAI
on a large scale.

5. Conclusions

This study investigates using Sentinel-2A satellite remote sensing multispectral and
UAV images to estimate the RAI of alpine grassland. In addition, four models, including
MLR, MLP neural nets, RF, and SVR, were investigated and compared. Based on the
findings of this study, the following conclusions are drawn.

(1) Compared to MLR, MLP, and SVR, the RF model can provide the highest prediction
accuracy for estimating the RAI of alpine grassland.

(2) The nonlinear relationship between RAI and the satellite spectral index is apparent.
Therefore, the machine learning model with nonlinear solid fitting ability is suitable
for estimating the RAI of alpine grassland.

(3) The alpine grassland RAI estimation model constructed by satellite remote sensing data
can quantitatively describe the rodent activity in a certain area, which can provide theo-
retical and technical support for further monitoring of rodent control in alpine grassland.

Author Contributions: G.D.: methodology, data curation, software, validation, formal analysis,
visualization, writing—original draft preparation. H.S.: methodology, investigation, resources,
writing—review and editing. W.X.: investigation, methodology, formal analysis, writing—original
draft preparation. Q.S.: supervision, resources, investigation. J.Q.: data curation, investigation,
supervision. All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by the National Natural Science Foundation of China (Grant No.
42271405) and the Science and Technology Department of Sichuan Province (Grant No. 2022NSFSC0231).

Data Availability Statement: The model developed in this study, as well as the data supporting the
reported results, can be obtained by contacting the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2023, 15, 1404 15 of 18

References
1. Wang, Q.; Yang, Y.; Liu, Y.Y.; Tong, L.J.; Zhang, Q.P.; Li, J.L. Assessing the impacts of drought on grassland net primary production

at the global scale. Sci. Rep. 2019, 9, 14041. [CrossRef] [PubMed]
2. Ren, J.Z.; Li, X.L.; Hou, F.J. Research progress and trend on grassland agroecology. Chin. J. Appl. Ecol. 2002, 13, 1017–1021.
3. Dong, S.K.; Shang, Z.H.; Gao, J.X.; Boone, R.B. Enhancing sustainability of grassland ecosystems through ecological restoration

and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2020, 287, 106684.
[CrossRef]

4. Liu, A.R.; Yang, T.; Xu, W.; Shangguan, Z.J.; Wang, J.Z.; Liu, H.Y.; Shi, Y.; Chu, H.Y.; He, J.S. Status, issues and prospects of
belowground biodiversity on the Tibetan alpine grassland. Biodivers. Sci. 2018, 26, 972–987. [CrossRef]

5. Xie, G.D.; Lu, C.X.; Xiao, Y.; Zheng, D. The economic evaluation of grassland ecosystem services in Qinghai-Tibet Plateau. Mt.
Res. 2003, 21, 50–55.

6. Yang, Q.; Liu, G.Y.; Giannetti, B.F.; Agostinho, F.; Almeida, C.M.V.B.; Casazza, M. Emergy-based ecosystem services valuation
and classification management applied to China's grasslands. Ecosyst. Serv. 2020, 42, 101073. [CrossRef]

7. Zhang, Y.P. Analysis on Spatial Distribution Patterns and Driving Forces of Degraded Alpine Grassland in the River Basin of the
Yellow River Source Zone. Ph.D. Thesis, Qinghai University, Xining, China, 2022.

8. Zhang, A.L. Response of Eco-Hydrology Evolution to Changing Environment in Grassland Watershed of Plateau Inland River.
Master’s Thesis, Inner MongoliaAgricultural University, Hohhot, China, 2020.

9. Zheng, Y.M.; Niu, Z.G.; Gong, P.; Li, M.N.; Hu, L.L.; Wang, L.; Yang, Y.X.; Gu, H.J.; Mu, J.R.; Dou, G.J.; et al. A method for alpine
wetland delineation and features of border: Zoig Plateau, China. Chin. Geogr. Sci. 2017, 27, 784–799. [CrossRef]

10. Xiang, S.; Guo, R.Q.; Wu, N.; Sun, S.C. Current status and future prospects of Zoige Marsh in Eastern Qinghai-Tibet Plateau. Ecol.
Eng. 2009, 35, 553–562. [CrossRef]

11. Sun, H.L.; Zheng, D.; Yao, T.D.; Zhang, Y.L. Protection and construction of the national ecological security shelter zone on Tibetan
Plateau. Acta Geogr. Sin. 2012, 67, 3–12.

12. Aho, K.; Huntly, N.; Moen, J.; Oksanen, T. Pikas (Ochotona princeps: Lagomorpha) as allogenic engineers in an alpine ecosystem.
Oecologia. 1998, 114, 405–409. [CrossRef]

13. Qin, Y.; Yi, S.; Ding, Y.; Zhang, W.; Qin, Y.; Chen, J.; Wang, Z. Effect of plateau pika disturbance and patchiness on ecosystem
carbon emissions in alpine meadow in the northeastern part of Qinghai–Tibetan Plateau. Biogeosciences 2019, 16, 1097–1109.

14. Wang, Q.; Yu, C.; Pang, X.P.; Jin, S.H.; Zhang, J.; Guo, Z.G. The disturbance and disturbance intensity of small and semi-fossorial
herbivores alter the belowground bud density of graminoids in alpine meadows. Ecol. Eng. 2018, 113, 35–42. [CrossRef]

15. Faiz, A.H.; Fakhar, I.A.; Faiz, L.Z. Burrowing Activity of Rodents Alter Soil Properties: A Case Study on the Short Tailed Mole Rat
(Nesokia indica) in Pothwar Plateau, Punjab, Pakistan. Pak. J. Zool. 2018, 50, 719–724. [CrossRef]

16. Pang, X.P.; Wang, Q.; Zhang, J.; Xu, H.P.; Zhang, W.N.; Wang, J.; Guo, Z.G. Responses of soil inorganic and organic carbon stocks
of alpine meadows to the disturbance by plateau pikas. Eur. J. Soil Sci. 2020, 71, 706–715. [CrossRef]

17. Retzer, V.; Reudenbach, C. Modelling the carrying capacity and coexistence of pika and livestock in the mountain steppe of the
South Gobi, Mongolia. Ecol. Model. 2005, 189, 89–104. [CrossRef]

18. Guo, Z.G.; Wang, Q.; Chen, H. Issues and suggestions for rodent control of the natural grassland in China. Pratacultural Sci. 2014,
31, 168–172.

19. Castillo, J.A.; Epps, C.W.; Jeffress, M.R.; Ray, C.; Rodhouse, T.J.; Schwalm, D. Replicated landscape genetic and network analyses
reveal wide variation in functional connectivity for American pikas. Ecol. Appl. 2016, 26, 1660–1676. [CrossRef]

20. Wei, X.H. Investigation and control of rodent damage on fenced grassland in Songduo Town, Nyingchi, Tibet. Pratacultural Sci.
2003, 20, 48–49.

21. Guo, W.J. The grassland rodent harmfulness and its control in Dangxiong county Tibet. Pratacultural Sci. 1999, 16, 48–50.
22. Su, J.H.; Liu, R.T.; Ji, W.H.; Jiao, T.; Cai, Z.S.; Hua, L.M. Stages and characteristics of grassland rodent pests control and research in

China. Pratacultural Sci. 2013, 30, 1116–1123.
23. Sun, X.H.; Zhao, Y.; Li, Q. Holocene peatland development and vegetation changes in the Zoige Basin, eastern Tibetan Plateau.

Sci. China-Earth Sci. 2017, 60, 1826–1837. [CrossRef]
24. Liu, W.; Yang, K.; Xu, G.W.; Xu, H.K.; Xie, H.Q.; Zhong, X.S.; Liu, A.R. Disturbing effects of Plateau zokor(Myospalax baileyi) on

grassland plant community in Ruoergai Plateau marshes. J. Sichuan Norm. Univ. (Nat. Sci.) 2020, 43, 84–88.
25. Qiang, W.Q. Evaluation of Soil Quality and Ecological Environment Effect of Typical Grassland in Western China. Master’s

Thesis, Xi’an University of Technology, Xi’an, China, 2020.
26. Dong, Z.B.; Hu, G.Y.; Yan, C.Z.; Wang, W.L.; Lu, J.F. Aeolian desertification and its causes in the Zoige Plateau of China's

Qinghai-Tibetan Plateau. Environ. Earth Sci. 2010, 59, 1731–1740. [CrossRef]
27. Wang, D.L.; Li, X.C.; Pan, D.F.; De, K.J. The ecological significance and controlling of rodent outbreaks in the Qinghai-Tibetan

Grasslands. J. Southwest Minzu Univ. (Nat. Sci. Ed.) 2016, 42, 237–245.
28. Brady, M.J.; Slade, N.A. Diversity of a grassland rodent community at varying temporal scales: The role of ecologically dominant

species. J. Mammal. 2001, 82, 974–983. [CrossRef]
29. Feliciano, B.R.; Fernandez, F.a.S.; De Freitas, D.; Figueiredo, M.S.L. Population dynamics of small rodents in a grassland between

fragments of Atlantic Forest in southeastern Brazil. Mamm. Biol. 2002, 67, 304–314. [CrossRef]

http://doi.org/10.1038/s41598-019-50584-4
http://www.ncbi.nlm.nih.gov/pubmed/31575904
http://doi.org/10.1016/j.agee.2019.106684
http://doi.org/10.17520/biods.2018119
http://doi.org/10.1016/j.ecoser.2020.101073
http://doi.org/10.1007/s11769-017-0897-3
http://doi.org/10.1016/j.ecoleng.2008.02.016
http://doi.org/10.1007/s004420050463
http://doi.org/10.1016/j.ecoleng.2018.01.003
http://doi.org/10.17582/journal.pjz/2018.50.719.724
http://doi.org/10.1111/ejss.12895
http://doi.org/10.1016/j.ecolmodel.2005.03.003
http://doi.org/10.1890/15-1452.1
http://doi.org/10.1007/s11430-017-9086-5
http://doi.org/10.1007/s12665-009-0155-9
http://doi.org/10.1644/1545-1542(2001)082&lt;0974:DOAGRC&gt;2.0.CO;2
http://doi.org/10.1078/1616-5047-00045


Remote Sens. 2023, 15, 1404 16 of 18

30. Southgate, R.; Masters, P. Fluctuations of rodent populations in response to rainfall and fire in a central Australian hummock
grassland dominated by Plectrachne schinzii. Wildl. Res. 1996, 23, 289–303. [CrossRef]

31. Pang, X.P.; Guo, Z.G. Plateau pika disturbances alter plant productivity and soil nutrients in alpine meadows of the Qinghai-
Tibetan Plateau, China. Rangel. J. 2017, 39, 133–144.

32. Zhang, W.N.; Jin, S.H.; Yu, C.; Pang, X.P.; Wang, J.; Guo, Z.G. Influence of the density of burrow entrances of plateau pika on the
concentration of soil nutrients in a Kobresia pygmaea meadow. Pratacultural Sci. 2018, 35, 1593–1601.

33. Wangdwei, M.; Steele, B.; Harris, R.B. Demographic responses of plateau pikas to vegetation cover and land use in the Tibet
Autonomous Region, China. J. Mammal. 2013, 94, 1077–1086.

34. Yu, C.; Zhang, J.; Pang, X.P.; Wang, Q.; Zhou, Y.P.; Guo, Z.G. Soil disturbance and disturbance intensity: Response of soil nutrient
concentrations of alpine meadow to plateau pika bioturbation in the Qinghai-Tibetan Plateau, China. Geoderma 2017, 307, 98–106.
[CrossRef]

35. Chen, J.; Wang, Z.Q.; Wang, Y.; Li, B.; Zhaxi, X.Z.; Luo, S.; Zhang, M.W. Methods for investigating the density of the plateau pika
in Northern Tibetan Plateau. Plant Prot. 2008, 34, 114–117.

36. Li, W.J.; Zhang, Y.M. Impacts of plateau pikas on soil organic matter and moisture content in alpine meadow. Acta Theriol. Sin.
2006, 26, 331–337.

37. Sun, F.D.; Guo, Z.G.; Shang, Z.H.; Long, R.J. Effects of density of burrowing Plateau pikas (Ochotona curzoniae) on soil physical
and chemical properties of alpine meadow soil. Acta Pedol. Sin. 2010, 47, 378–383.

38. Niu, K.C.; Feng, F.; Xu, Q.; Zhang, S.T. Impoverished soil supports more plateau pika through lowered diversity of plant
functional traits in Tibetan alpine meadows. Agric. Ecosyst. Environ. 2019, 285, 106621. [CrossRef]

39. Liu, W.; Xu, Q.M.; Wang, X.; Zhao, J.Z.; Zhou, L. Influence of burrowing activity of plateau pikas (Ochotona curzoniae) on
nitrogen in soils. Acta Theriol. Sin. 2010, 30, 35–44.

40. Liu, R. Occurrence and control measures of rodents in Ordos grassland. Grassl. Prataculture 2011, 23, 10–13.
41. Sun, F.D.; Gou, W.L.; Li, F.; Zhu, C.; Lu, H.; Chen, W.Y. Plateau pika population survey and its control threshold in the alpine

meadow ecosystems of the Tibetan Plateau. Sichuan J. Zool. 2016, 35, 825–832.
42. Zhou, X.L.; An, R.; Chen, Y.H.; Al, Z.T.; Huang, L.J. Identification of Rat Holes in the Typical Area of "Three-River Headwa-

ters”Region By UAV Remote Sensing. J. Subtrop. Resour. Environ. 2018, 13, 85–92.
43. Sun, D. Dynamic Monitoring and Change Analysis of Mouse-Hole by Eolagurus Luteus Based on Low Altitude Remote Sensing.

Master’s Thesis, Xinjiang University, Ürümqi, China, 2019.
44. Ma, T.; Zheng, J.H.; Wen, A.M.; Chen, M.; Liu, Z.J. Group coverage of burrow entrances and distribution characteristics of desert

forest-dwelling Rhombomys opimus based on unmanned aerial vehicle (UAV) low-altitude remote sensing: A case study at the
southern margin of the Gurbantunggut Desert in Xinjiang. Acta Ecol. Sin. 2018, 38, 953–963.

45. Dong, G.; Di, W.; Cheng, W.X. Information extraction and comparison of zokor damage in Zoige grassland based on low-altitude
remote sensing. J. Sichuan Norm. Univ. (Nat. Sci.) 2022, 45, 110–118.

46. Xuan, J.W.; Zheng, J.H.; Ni, Y.F.; Mu, C. Research on remote sensing monitoring of grassland rodents based on dynamic delta
wing platform. China Plant Prot. 2015, 35, 52–55.

47. Hua, R.; Zhou, R.; Bao, D.E.H.; Dong, K.C.; Tang, Z.S.; Hua, L.M. A study of UAV remote sensing technology for classifying the
level of plateau pika damage to alpine rangeland. Acta Prataculturae Sin. 2022, 31, 165–176.

48. Angelopoulou, T.; Tziolas, N.; Balafoutis, A.; Zalidis, G.; Bochtis, D. Remote sensing techniques for soil organic carbon estimation:
A review. Remote Sens. 2019, 11, 676. [CrossRef]

49. Li, P.X.; Zheng, J.H.; Ni, Y.F.; Wu, J.G.; Wumaier, W.; Aihemaijiang, A.; Nasongcaoketu. Estimating area of grassland rodent
damage gangeland and rat wastelands based on remote sensing in Altun Mountain, Xinjiang, China. Xinjiang Agric. Sci. 2016, 53,
1346–1355.

50. He, Y.Q.; Huang, X.D.; Hou, X.M.; Feng, Q.S.; Wang, W.; Guo, Z.G.; Liang, T.G. Monitoring grassland rodents with 3S technologies.
Acta Prataculturae Sin. 2013, 22, 33–40.

51. Pianalto, F.S.; Yool, S.R. Sonoran Desert rodent abundance response to surface temperature derived from remote sensing. J. Arid
Environ. 2017, 141, 76–85. [CrossRef]

52. Andreo, V.; Belgiu, M.; Brito Hoyos, D.; Osei, F.; Provensal, C.; Stein, A. Rodents and satellites: Predicting mice abundance and
distribution with Sentinel-2 data. Ecol. Inform. 2019, 51, 157–167. [CrossRef]

53. Bardhan, A.; Samui, P.; Ghosh, K.; Gandomi, A.H.; Bhattacharyya, S. ELM-based adaptive neuro swarm intelligence techniques
for predicting the California bearing ratio of soils in soaked conditions. Appl. Soft Comput. 2021, 110, 107595. [CrossRef]

54. Raja, M.N.A.; Shukla, S.K. Predicting the settlement of geosynthetic-reinforced soil foundations using evolutionary artificial
intelligence technique. Geotext. Geomembr. 2021, 49, 1280–1293. [CrossRef]

55. Raja, M.N.A.; Shukla, S.K. Multivariate adaptive regression splines model for reinforced soil foundations. Geosynth. Int. 2021, 28,
368–390. [CrossRef]

56. Kardani, N.; Bardhan, A.; Samui, P.; Nazem, M.; Zhou, A.; Armaghani, D.J. A novel technique based on the improved firefly
algorithm coupled with extreme learning machine (ELM-IFF) for predicting the thermal conductivity of soil. Eng. Comput. 2022,
38, 3321–3340. [CrossRef]

57. Raja, M.N.A.; Shukla, S.K. An extreme learning machine model for geosynthetic-reinforced sandy soil foundations. Proc. Inst. Civ.
Eng.-Geotech. Eng. 2022, 175, 383–403. [CrossRef]

http://doi.org/10.1071/WR9960289
http://doi.org/10.1016/j.geoderma.2017.07.041
http://doi.org/10.1016/j.agee.2019.106621
http://doi.org/10.3390/rs11060676
http://doi.org/10.1016/j.jaridenv.2017.02.006
http://doi.org/10.1016/j.ecoinf.2019.03.001
http://doi.org/10.1016/j.asoc.2021.107595
http://doi.org/10.1016/j.geotexmem.2021.04.007
http://doi.org/10.1680/jgein.20.00049
http://doi.org/10.1007/s00366-021-01329-3
http://doi.org/10.1680/jgeen.19.00297


Remote Sens. 2023, 15, 1404 17 of 18

58. Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. Isprs J. Photogramm. Remote Sens. 2011, 66,
247–259. [CrossRef]

59. Yuan, H.H.; Yang, G.J.; Li, C.C.; Wang, Y.J.; Liu, J.G.; Yu, H.Y.; Feng, H.K.; Xu, B.; Zhao, X.Q.; Yang, X.D. Retrieving soybean
leaf area index from unmanned aerial vehicle hyperspectral remote sensing: Analysis of RF, ANN, and SVM regression models.
Remote Sens. 2017, 9, 309. [CrossRef]

60. Zhu, X.L.; Liu, D.S. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. Isprs J.
Photogramm. Remote Sens. 2015, 102, 222–231. [CrossRef]

61. Sha, Z.Y.; Wang, Y.W.; Bai, Y.F.; Zhao, Y.J.; Jin, H.; Na, Y.; Meng, X.L. Comparison of leaf area index inversion for grassland
vegetation through remotely sensed spectra by unmanned aerial vehicle and field-based spectroradiometer. J. Plant Ecol. 2019, 12,
395–408. [CrossRef]

62. Li, P.; Zhu, Q.; Peng, C.H.; Zhang, J.; Wang, M.; Zhang, J.J.; Ding, J.H.; Zhou, X.L. Change in autumn vegetation phenology and
the climate controls from 1982 to 2012 on the Qinghai-Tibet Plateau. Front. Plant Sci. 2020, 10, 1677. [CrossRef]

63. Bai, J.P. Research on Ecological Recovery Procedure and Ecosystem Service Function of Desertifi Cation Grassland Governance
Area in Zoige County. Master’s Thesis, Sichuan Agricultural University, Chengdu, China, 2013.

64. Luan, J.W.; Cui, L.J.; Xiang, C.H.; Wu, J.H.; Song, H.T.; Ma, Q.F. Soil carbon stocks and quality across intact and degraded alpine
wetlands in Zoige, east Qinghai-Tibet Plateau. Wetl. Ecol. Manag. 2014, 22, 427–438. [CrossRef]

65. Hu, G.Y.; Yu, L.P.; Dong, Z.B.; Lu, J.F.; Li, J.Y.; Wang, Y.X.; Lai, Z.L. Holocene aeolian activity in the Zoige Basin, northeastern
Tibetan Plateau, China. Catena 2018, 160, 321–328. [CrossRef]

66. Wu, C.Y.; Chen, W.; Cao, C.X.; Tian, R.; Liu, D.; Bao, D.M. Diagnosis of wetland ecosystem health in the Zoige Wetland, Sichuan
of China. Wetlands 2018, 38, 469–484. [CrossRef]

67. Shen, G.; Yang, X.C.; Jin, Y.X.; Xu, B.; Zhou, Q.B. Remote sensing and evaluation of the wetland ecological degradation process of
the Zoige Plateau Wetland in China. Ecol. Indic. 2019, 104, 48–58. [CrossRef]

68. He, L. Study on the Remote Sensing Retrieval of Aboveground Biomass in the ZoigegrassLand Based on PROSAIL and GPR
Models. Doctor Thesis, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China, 2020.

69. He, L.; Li, A.N.; Yin, G.F.; Nan, X.; Bian, J.H. Retrieval of Grassland Aboveground Biomass through Inversion of the PROSAIL
Model with MODIS Imagery. Remote Sens. 2019, 11, 1597. [CrossRef]

70. Bruun, T.B.; Elberling, B.; De Neergaard, A.; Magid, J. Organic carbon dynamics in different soil types after conversion of forest to
agri-culture. Land Degrad. Dev. 2015, 26, 272–283. [CrossRef]

71. Tu, M.G.; Lu, H.; Shang, M. Monitoring grassland desertification in Zoige County using Landsat and UAV image. Pol. J. Environ.
Stud. 2021, 30, 5789–5799. [CrossRef]

72. Yan, Z.L.; Zhou, L.; Sun, Y.; Liu, W.; Zhou, H.K. A research about the population dynamic model of Ochotona curzoniae in alpine
meadows of source region of Yangtze and Y ellow River. J. Grassl. Forage Sci. 2005, 114, 17–19.

73. Dong, G. Comparison on Methods of Extracting Rodent Damage Information in Zoige Grassland Based on Low-Altitude Remote
Sensing. Master’s Thesis, Sichuan Normal University, Chengdu, China, 2019.

74. Xiong, R.D. Study on the Estimation of the Damage Degree of Rats in Zoige Alpine Grassland Based on Low-Altitude Remote
Sensing. Master’s Thesis, Sichuan Normal University, Chengdu, China, 2020.

75. Yang, L.L. Application of Aerial Photogrammetry Based on Light and Small Unmanned Aerial Vehicle in Geometric Information
Survey of High and Steep Slope. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2017.

76. Porcasi, X.; Calderon, G.; Lamfri, M.; Gardenal, N.; Polop, J.; Sabattini, M.; Scavuzzo, C.M. The use of satellite data in modeling
population dynamics and prevalence of infection in the rodent reservoir of Junin virus. Ecol. Model. 2005, 185, 437–449. [CrossRef]

77. Liu, H.X.; Zhang, A.B.; Liu, C.; Zhao, Y.L.; Zhao, A.Z.; Wang, D.L. Analysis of the time-lag effects of climate factors on grassland
productivity in Inner Mongolia. Glob. Ecol. Conserv. 2021, 30, e01751. [CrossRef]

78. Eberly, L.E. Multiple linear regression. Methods Mol. Biol. 2007, 404, 165–187.
79. Slinker, B.K.; Glantz, S.A. Multiple linear regression is a useful alternative to traditional analyses of variance. Am. J. Physiol. 1988,

255, R353–R367. [CrossRef]
80. Pandis, N. Multiple linear regression analysis. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 581. [CrossRef] [PubMed]
81. Delogu, R.; Fanni, A.; Montisci, A. Geometrical synthesis of MLP neural networks. Neurocomputing 2008, 71, 919–930. [CrossRef]
82. Zare, M.; Pourghasemi, H.R.; Vafakhah, M.; Pradhan, B. Landslide susceptibility mapping at Vaz Watershed (Iran) using an

artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms.
Arab. J. Geosci. 2013, 6, 2873–2888. [CrossRef]

83. Pham, B.T.; Shirzadi, A.; Bui, D.T.; Prakash, I.; Dholakia, M.B. A hybrid machine learning ensemble approach based on a Radial
Basis Function neural network and Rotation Forest for landslide susceptibility modeling: A case study in the Himalayan area,
India. Int. J. Sediment Res. 2018, 33, 157–170. [CrossRef]

84. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
85. Heung, B.; Bulmer, C.E.; Schmidt, M.G. Predictive soil parent material mapping at a regional-scale: A Random Forest approach.

Geoderma 2014, 214, 141–154. [CrossRef]
86. Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of

a random forest classifier for land-cover classification. Isprs J. Photogramm. Remote Sens. 2012, 67, 93–104. [CrossRef]

http://doi.org/10.1016/j.isprsjprs.2010.11.001
http://doi.org/10.3390/rs9040309
http://doi.org/10.1016/j.isprsjprs.2014.08.014
http://doi.org/10.1093/jpe/rty036
http://doi.org/10.3389/fpls.2019.01677
http://doi.org/10.1007/s11273-014-9344-8
http://doi.org/10.1016/j.catena.2017.10.005
http://doi.org/10.1007/s13157-018-0992-y
http://doi.org/10.1016/j.ecolind.2019.04.063
http://doi.org/10.3390/rs11131597
http://doi.org/10.1002/ldr.2205
http://doi.org/10.15244/pjoes/136184
http://doi.org/10.1016/j.ecolmodel.2005.01.005
http://doi.org/10.1016/j.gecco.2021.e01751
http://doi.org/10.1152/ajpregu.1988.255.3.R353
http://doi.org/10.1016/j.ajodo.2016.01.012
http://www.ncbi.nlm.nih.gov/pubmed/27021463
http://doi.org/10.1016/j.neucom.2007.02.006
http://doi.org/10.1007/s12517-012-0610-x
http://doi.org/10.1016/j.ijsrc.2017.09.008
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/j.geoderma.2013.09.016
http://doi.org/10.1016/j.isprsjprs.2011.11.002


Remote Sens. 2023, 15, 1404 18 of 18

87. Probst, P.; Wright, M.N.; Boulesteix, A.-L. Hyperparameters and tuning strategies for random forest. Wiley Interdiscip. Rev.-Data
Min. Knowl. Discov. 2019, 9, e1301. [CrossRef]

88. Speiser, J.L.; Miller, M.E.; Tooze, J.; Ip, E. A comparison of random forest variable selection methods for classification prediction
modeling. Expert Syst. Appl. 2019, 134, 93–101. [CrossRef]

89. Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
90. Meng, B.P.; Gao, J.L.; Liang, T.G.; Cui, X.; Ge, J.; Yin, J.P.; Feng, Q.S.; Xie, H.J. Modeling of Alpine Grassland Cover Based on

Unmanned Aerial Vehicle Technology and Multi-Factor Methods: A Case Study in the East of Tibetan Plateau, China. Remote
Sens. 2018, 10, 320. [CrossRef]

91. Gu, T.L.; Chen, H.Y.; Chang, L.; Li, L. Intrusion detection system based on improved abc algorithm with tabu search. Ieej Trans.
Electr. Electron. Eng. 2019, 14, 1652–1660. [CrossRef]

92. Tien Bui, D.; Tuan, T.A.; Hoang, N.-D.; Thanh, N.Q.; Nguyen, D.B.; Liem, N.V.; Pradhan, B. Spatial prediction of rainfall-induced
landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference
model and artificial bee colony optimization. Landslides. 2017, 14, 447–458. [CrossRef]

93. Tien Bui, D.; Le, K.-T.T.; Nguyen, V.C.; Le, H.D.; Revhaug, I. Tropical forest fire susceptibility mapping at the Cat Ba National
Park area, Hai Phong City, Vietnam, using GIS-Based kernel logistic regression. Remote Sens. 2016, 8, 347. [CrossRef]

94. Vafaei, S.; Soosani, J.; Adeli, K.; Fadaei, H.; Naghavi, H.; Pham, T.D.; Bui, D.T. Improving Accuracy Estimation of Forest
Aboveground Biomass Based on Incorporation of ALOS-2 PALSAR-2 and Sentinel-2A Imagery and Machine Learning: A Case
Study of the Hyrcanian Forest Area (Iran). Remote Sens. 2018, 10, 172. [CrossRef]

95. Lin, L.I. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [CrossRef] [PubMed]
96. Wang, B.; Waters, C.; Orgill, S.; Cowie, A.; Clark, A.; Liu, D.; Simpson, M.; Mcgowen, I.; Sides, T. Estimating soil organic carbon

stocks using different modelling techniques in the semi-arid rangelands of eastern Australia. Ecol. Indic. 2018, 88, 425–438.
[CrossRef]

97. Ling, H.X. Study on occurrence of Aletai Grassland rodent in Aletai Xinjiang. Grass-Feed. Livest. 2014, 88, 49–51.
98. Liu, X.Y. Identification and Hazard Asessmennt of Ancient Landslides Based on Multi-Source Remote Sensing Technology. Ph.D.

Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2020.
99. Shi, H.Y.; Pan, Q.; Luo, G.P.; Hellwich, O.; Chen, C.B.; Van De Voorde, T.; Kurban, A.; De Maeyer, P.; Wu, S.X. Analysis of the

Impacts of Environmental Factors on Rat Hole Density in the Northern Slope of the Tienshan Mountains with Satellite Remote
Sensing Data. Remote Sens. 2021, 13, 4709. [CrossRef]

100. Zhang, F.; Zhang, Y.Y.; Chen, J.X.; Zhai, X.Y.; Hu, Q.F. Performance of multiple machine learning model simulation of process
characteristic indicators of different flood types. Prog. Geogr. 2022, 41, 1239–1250. [CrossRef]

101. Han, T.; Jiang, D.X.; Zhao, Q.; Wang, L.; Yin, K. Comparison of random forest, artificial neural networks and support vector
machine for intelligent diagnosis of rotating machinery. Trans. Inst. Meas. Control. 2018, 40, 2681–2693. [CrossRef]

102. Melis, C.; Szafranska, P.A.; Jedrzejewska, B.; Barton, K. Biogeographical variation in the population density of wild boar (Sus
scrofa) in western Eurasia. J. Biogeogr. 2006, 33, 803–811. [CrossRef]

103. Baltensperger, A.P.; Huettmann, F. Predictive spatial niche and biodiversity hotspot models for small mammal communities in
Alaska: Applying machine-learning to conservation planning. Landsc. Ecol. 2015, 30, 681–697. [CrossRef]

104. Pei, Y.J. Accuracy Evaluation of Monitoring Rocky Desertification in Southeastern Yunnan Using Multi-Scale Remote Sensing.
Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2014.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1002/widm.1301
http://doi.org/10.1016/j.eswa.2019.05.028
http://doi.org/10.1007/BF00994018
http://doi.org/10.3390/rs10020320
http://doi.org/10.1002/tee.22987
http://doi.org/10.1007/s10346-016-0711-9
http://doi.org/10.3390/rs8040347
http://doi.org/10.3390/rs10020172
http://doi.org/10.2307/2532051
http://www.ncbi.nlm.nih.gov/pubmed/2720055
http://doi.org/10.1016/j.ecolind.2018.01.049
http://doi.org/10.3390/rs13224709
http://doi.org/10.18306/dlkxjz.2022.07.008
http://doi.org/10.1177/0142331217708242
http://doi.org/10.1111/j.1365-2699.2006.01434.x
http://doi.org/10.1007/s10980-014-0150-8

	Introduction 
	Data and Method 
	Study Area 
	Data Collection and Processing 
	UAV Data Acquisition and Processing 
	Collection and Processing of Sentinel-2A Data 

	Methodology 
	Multiple Linear Regression 
	Multi-Layer Perception Neural Network 
	Random Forest 
	Support Vector Regression 
	Model Assessment 


	Results and Analysis 
	Comparison of RAI Estimation Results 
	Accuracy Assessment and Comparison 

	Discussion 
	Advances and Innovations in This Study 
	Select Input Variables for the Model 
	Effectiveness of Machine Learning for Estimating RAI in Alpine Grassland 
	Shortcomings and Prospects 

	Conclusions 
	References

