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Abstract: During the past several decades, desertification and land degradation have become more
and more serious in Mongolia. The drivers of land use/cover change (LUCC), such as population
dynamics and climate change, are increasingly important to local sustainability studies. They can only
be properly analyzed at small scales that capture the socio-economic conditions. Several studies have
been carried out to examine the pattern of LUCC in Mongolia, but they have been focused on changes
in single land types at a local scale. Although some of them were carried out at the national scale, the
data interval is more than 10 years. A small-scale and year-by-year dataset of LUCC in Mongolia
is thus needed for comprehensive analyses. We obtained year-by-year land use/cover changes in
Mongolia from 1990 to 2021 using Landsat TM/OLI data. First, we established a random forest (RF)
model. Then, in order to improve the classification accuracy of the misclassification of cropland,
grassland, and built and barren areas, the classification and regression trees model (CART) was
introduced for post-processing. The results show that 17.6% of the land surface has changed at least
once among the six land categories from 1990 to 2021. While the area of barren land has significantly
increased, the grassland and forest areas have exhibited a decreasing trend in the past 32 years. The
other land types do not show promising changes. To determine the driving factors of LUCC, we
applied an RF feature importance ranking to environmental factors, physical factors, socioeconomic
factors, and accessibility factors. The mean annual precipitation (MAP), evapotranspiration (ET),
mean annual air temperature (MAAT), DEM, GDP, and distance to railway are the main driving
factors that have determined the distribution and changes in land types. Interestingly, unlike the
global anti-V-shaped pattern, we found that the land use/cover changes show an N-shaped trend
in Mongolia. These characteristics of land use/cover change in Mongolia are primarily due to the
agricultural policies and rapid urbanization. The results present comprehensive land use/cover
change information for Mongolia, and they are of great significance for policy-makers to formulate a
scientific sustainable development strategy and to alleviate the desertification of Mongolia.

Keywords: land use/cover; Google Earth engine; random forest model; Mongolia

1. Introduction

Land use/cover change (LUCC) is the result of the comprehensive action of natural
objective conditions and human socioeconomic activities, and its formation and evolution
process is affected by natural factors and human activities [1]. Over the past 30 years, global
warming has enhanced global vegetation greenness and human activities have accelerated
land degradation [2]. However, climate change has indeed aggravated desertification and
land degradation, especially in the middle and high latitudes of the northern hemisphere [3].
Land use change has affected almost one-third of the global land area in just six decades
(1960–2019) and, thus, desertification is around four times greater in its extent than previ-
ously estimated from long-term land change assessments [4]. The speed, scale, and spatial
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scope of human changes to the Earth’s surface have reached an unprecedented level [5,6].
At the same time, LUCC can affect the global water and heat balance and biodiversity, thus
affecting climate change and ecosystems at a regional and even global scale [7–9]. As an
important input parameter of global climate models, LUCC directly affects the accuracy
of the simulation and prediction of these models [10]. LUCC and its ecological impact
have also become the focus of international research [11,12]. Therefore, understanding
the causes, processes, and consequences of land use/cover change is crucial for a better
understanding of the climate system, climate effects, and sustainable development [13].

The Mongolian Plateau (MP) lies in an arid and desert belt of the hinterland of
Northeast Asia, within a horizontal crisscrossing zone of forest, grassland, and desert.
Climate warming and human actions both have negative impacts on the land cover of
Mongolia, and are accelerating land degradation [14]. Since 2002–2011, non-desertification
and severe desertification areas have increased [15]. By 2016, approximately 72% of the
land experienced desertification in Mongolia [16]. This increased to 76.8% in 2017, 24.1%
of which experienced slight desertification, 29.8% experienced moderate desertification,
16.8% experienced severe desertification, and 6.1% was heavily degraded [17]. The land
degradation of Mongolia has threatened the ecological environment and socioeconomic
activities. Thus, it is of great significance to clarify the present situation, and the change
processes and driving factors of land use/cover change in Mongolia.

In recent years, the long-term global dataset and various large-scale satellite data have
been combined with statistics and machine learning methods to monitor and identify the
LUCC of Mongolia and the entire MP. At present, the resolution of the existing global land
cover dataset is from 1 km to 10 m, e.g., FROM-GLC (10–30 m, 2015, 2017, China) [18],
Esri Land Cover (10 m, 2017–2021, ESA) [19], Globe land 30 (30 m, 2000, 2010, 2020,
China) [20], Global Land Survey (30 m, 1975–2012, USGS) [21], Climate Change Initiative
Land Cover V2 (300 m, 1992–2020, ESA) [22], and MODIS Land Cover Type/Dynamics
(0.5–1 km, 2001–2020, NASA) [23]. These global land cover data can visualize spatial
distribution, landscape patterns, and global land use trends. However, due to the limitation
of samples and classification models, the results of different models in the same area
are different [24,25]. Thus, fine classification and integration of land use/cover type on a
regional scale has been mapped in Mongolia. On a local scale, the long-term land use/cover
change is analyzed along the transect or economic corridor of the Mongolian plateau using
Landsat TM and MODIS data from the 1990s to 2020s [26]. At regional scales, land use
changes in Mongolia are mapped in combination with: (1) MODIS data and relevant
statistical data in 1992–2005 [27]; (2) ESA 300 m resolution land cover data and TM data in
1970s and 2005 [28,29]; (3) TM data and survey data in 1997, 2007, and 2017 [30]; and TM
and ETM+ using the NDVI thresholds method in 1990, 2000, 2010, and 2020 [31–33]. These
studies can improve our understanding and provide new knowledge of land use/cover
change in Mongolia over long periods. Generally speaking, the research on land use
classification methods based on remote sensing is also expanding. Traditional remote
sensing image classification methods, such as visual interpretation and statistics-based
classification methods, have very simple algorithms [34,35]. However, the classification
accuracy has reduced due to the phenomenon of foreign bodies. With the development of
artificial intelligence algorithm classification methods, such as neural networks, decision
tree classification, and the random forest method, the classification accuracy is higher than
that of traditional methods, which is beneficial to a wide range of research results [36,37].
This type of black box operation is prone to overfitting. The classification and regulation tree
(CART) method is applicable to a series of binary decisions formed in classification decisions
based on human rules [38–40]. The random forest method has low classification error
estimation for high-dimensional data [41,42]. Therefore, different methods are combined to
improve the accuracy of remote sensing image classification [1,34,35].

The research on land use/cover change in Mongolia mainly focuses on forest decreas-
ing, grassland degradation, urban expansion, and water body and lake change [37–41].
Global warming, logging, grazing, wind erosion, and human activity are considered as
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the main driving factors [43–46]. Based on the national scale of Mongolia, most research
is based on the land use status classification system, cropland, forest, built area, water
area, barren land, and grassland [33,47]. They show that the land use in Mongolia is
mainly cropland, accounting for 50.5% and increasing gradually, followed by bare land,
accounting for 39.9% and gradually decreasing. In Northern Mongolia, due to the influ-
ence of climate change, forest area has gradually decreased by 5.4% and degenerated into
grassland, and glaciers have turned into water bodies [46,48]. In the past ten years, under
the influence of animal husbandry and socio-economic transformation, the area of barren
land has decreased by 16.9% and the area of grassland has increased by 17.8% [45,49]. The
change of bult area is mainly in the Ulaanbaatar, with an area increase of 140%. The latest
national-scale research is more than 10 years old [33,48,50], and there are no long-series
data available for year-by-year comparison. However, the large data span and lack of
continuous data have seriously affected the scientific understanding of the influencing
factors and leading factors of land use/cover change in Mongolia.

Therefore, we mapped the land use/cover of Mongolia year-by-year from 1990 to
2021 based on Landsat TM/OLI and the random forest method, and then analyzed the
patterns of land use change and driving factors. To improve the classification accuracy, a
CART decision tree algorithm (CART) was developed. The aim of this study was to better
measure the patterns and rates of the land use change in Mongolia and understand the
influence factors.

2. Materials and Methods
2.1. Study Area

Mongolia is located in north-central Asia and belongs to an arid desert belt (Figure 1).
It has an obvious continental climate with four distinct seasons. The average annual
temperature was about 1.2 ◦C and increased by about 0.5 ◦C during 1998 to 2021 [51].
Annual precipitation rarely exceeds 400 mm and is typically much lower in the south and
central desert and steppe regions. In the Gobi Desert, annual rainfall is only 40 mm [52].
The average altitude is 1580 m and the land use/cover types show transitional changes in
forest, grassland, and barren land from high latitude to low latitude. The area of Mongolia
is 1.56 million. According to the relevant statistics, grassland is the main type of land,
accounting for about 59%, followed by bare land, which accounts for 20.8% [53]. At present,
due to global warming and increased evaporation, a large number of rivers have dried
up, the soil types have obviously changed, the ecological environment is more fragile, and
desertification and other disasters are more likely to occur [54].
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2.2. Data Source

The types of land use in Mongolia referred to a previous study [56] and the interna-
tional general LUCC standard (GB/T21010-2017) [57]. We classified the land use types into
cropland, forestland, built area, water, barren land, and grassland. The Google Earth Engine
(GEE) platform provided the possibility for large-scale remote sensing data processing and
factors analysis [58]. The images from June to September were selected in GEE as data
sources for 1990–2012 from Landsat 5 TM and for 2013–2021 from Landsat 8 OLI. They were
preprocessed by geometric correction and atmospheric correction. Based on the study area,
the high-quality remote sensing images were screened in GEE [59]. We found that there
were at least 3 images in the same area. Then, median synthesis using a quality assessment
band (OA) was used to screen the images with a cloud cover of <20% [60].

The driving factors of LUCC were selected based on a previous study and native
environment. A previous study in Mongolia demonstrated that the MAAT, MAP, and
ET are the key influencing factors of LUCC [61]. The influence of temperature on plant
growth is comprehensive. It is not only an important condition for plant growth and
development, but it also affects the growth cycle and greening period of cropland, pas-
ture and forest vegetation, and the migration of the forest line [62–64]. Water is a critical
limiting factor in arid and semiarid grassland areas and influences the land use type and
regional climate [65,66]. The precipitation increasing by about 100–200 mm can alter the
vegetation cover of the desertic Gobi [67]. The ET is related to a number of ecosystem
processes, including photosynthesis, soil moisture, and latent heat transfer, and it plays an
important role in the process of LUCC [68,69]. Human activities, as an influencing factor,
have inhibited forest regrowth by fire or grazing [70]. The socioeconomic factors that are
often considered are GDP and demography factors [71–73] due to national development
policy and urbanization expansion. At the same time, Mongolia is dominated by herding
activities. The increase in human activities and the development of animal husbandry
on land degradation mainly influence the changes in grassland and built areas [70,74,75].
Thus, four types of influencing factors were selected: environmental factors, physical
factors, socioeconomic factors, and accessibility factors. The factors were MAAT, MAP, ET,
DEM, slope, aspect, GDP, population, livestock, distance to road, and distance to railway.
(1) The environmental factors, including the mean annual air temperature (MAAT), the
mean annual precipitation (MAP), and evapotranspiration (ET), were available from NOVA
and PML_V2 at a resolution of 30 m. (2) The physical factors included a digital eleva-
tion model (DEM) and the slope and aspect factors. A 30 m DEM was produced using
SRTM-V4.1 by NASA. Based on the DEM, the terrain factors were extracted to obtain the
corresponding slope and aspect. The aspect value range was 0–360◦. (3) The socioeconomic
factors comprised population, GDP, and livestock. The socioeconomic data were collected
by province from the National Bureau of Statistics of Mongolia. Then, we converted the
data into a raster dataset. (4) The accessibility factors, such as the distance to main roads
(Dis_road) and distance to railways (Dis_railway), were obtained from the GRIP web-
site. The GRIP dataset consisted of a global vector road dataset and a road density raster
dataset at a resolution of 8 km. The accessibility variables were calculated by Euclidean
distance in ArcGIS.

Table 1 provides detailed descriptions of these variables with their corresponding
references. Figure 2 shows the availability of the Landsat images. Each dataset was
generated as a layer in the ArcGIS environment and converted into a 30 × 30 m grid for
model-fitting (Figure 3). The coordinate system was from a WGS-84, Baltic Sea level, and
UTM projection (an official and unique coordinate system in Mongolia) on 28 January 2009
at a resolution of N28. See ref [76] for the coordinates.
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Table 1. Data source description (All data accessed on 1 January 2022).

Data Type Time Data Sources Data Website Address

Image data

Landsat 5 (TM)SR 1990–2012 USGS www.usgs.gov
Landsat 8 (OLI)SR 2013–2021 USGS www.usgs.gov

DEM 2000 NASA https://srtm.csi.cgiar.org
Land use/cover 2000–2020 GlobeLand30 http://www.globallandcover.com/

Basic
geographic

data

Livestock,
Population 1990–2020 National Bureau of

Statistics of Mongolia http://en.nso.mn

ET 1990–2020 PML_V2, REA ET http://poles.tpdc.ac.cn/zh-hans

GDP 2000–2021 National Bureau of
Statistics of Mongolia http://en.nso.mn

Road 1990–2021 GRIP global roads
database

www.globio.info/download-grip-
dataset

MAAT, MAP 1990–2021 NOVA www.ncei.noaa.gov

Land use/cover area 1990–2021 Mongolian Statistical
Yearbook, CAS http://1212.mn
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Figure 2. Effective number of Landsat images (cloud cover below 20%) of Mongolia from 1990 to 2021.

2.3. Extraction of Land Use/Cover Type

Our study attempted to develop a long-term land use extraction model for Mongolia.
The extraction of land use/cover types with higher accuracy was carried out in the following
four steps:

Step I. Data pre-processing

In this study, we selected Landsat bands (1~7) for the classification (Table S1), e.g., blue,
green, red, near-infrared, short-wave infrared (SWIR_1/2), and one thermal infrared (TIR)
band. Further, surface bio-physical parameters, such as the normalized difference vegetation
index (NDVI), the bare soil index (BSI), the normalized difference moisture index (NDWI),
and the normalized building index (NDBI) were extracted. Finally, multi-bands imagery with
12 bands was produced for the image classification. The formulas are as follows:

NDVI =
NIR − R
NIR + R

(1)

www.usgs.gov
www.usgs.gov
https://srtm.csi.cgiar.org
http://www.globallandcover.com/
http://en.nso.mn
http://poles.tpdc.ac.cn/zh-hans
http://en.nso.mn
www.globio.info/download-grip-dataset
www.globio.info/download-grip-dataset
www.ncei.noaa.gov
http://1212.mn
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BSI =
ρ(SWIR + R)− ρ(NIR + B)
ρ(SWIR + R) + ρ(NIR + B)

(2)

NDBI =
SWIR − NIR
SWIR + NIR

(3)

MNDWI =
G − MIR
G + MIR

(4)

where NIR, MIR, G, R, B, and SWIR are the reflectance values of the near-infrared band, the
mid-infrared band, the green band, the infrared band, the blue band, and the short-wave
infrared band, respectively.

Step II. Creation of training and testing samples

Accurate classification is a challenging task, especially with the confusion over the
various spectral values such as for barren and built area land. The high-quality training
samples and verification samples are needed for feature classification in RF. Therefore, we
constructed a year-by-year sample library using visual interpretation in GEE. We used the
function (ee.ImageCollection) on the GEE platform to display the Landsat images year
by year. Then, the samples of each period in this study area were obtained by visual
interpretation. GEE automatically extracted band information of different land use types to
generate a sample library. The incorrect samples included in the different land types were
deleted by the spectral characteristic curves, which were obtained with the mean band
curve (Table 2). Finally, more than 2000 samples were selected from each year to establish a
sample library. The sample types included cropland, forest, built area, water, barren land,
and grassland. Then, 70% of the sample points were used as training samples for training
classifiers and 30% as verification samples for accuracy verification [77,78].
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Table 2. Characteristics of land use types.

ID Land Type Characteristic Image Map Spectrum Curve

1 Cropland Land mainly planted with crops,
including other economic trees
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Step III. Random forest

Random forest algorithm was widely used in land use/cover classification. Its basic
principle is to construct a set of decision tree classifiers, and each decision tree will give a
classification choice. The problem of decision tree over-fitting was improved by the voting
mechanism of multiple decision trees, the majority voting mechanism strategy was used
to obtain the final output [79], and bootstrap aggregation was used to modify the sample
distribution, improving the generalization ability [80]. For the RF, all the training data were
placed in a black box and then randomly picked to train the model [81]. Compared with
other machine learning methods, the RF classification algorithm has better robustness and
can run effectively on large datasets [82]. Moreover, some scholars have achieved excellent
research results by using the RF algorithm on GEE to classify land use [83,84].

Land use/cover was performed by using the ee.smileRandomForest function in GEE
API, which only needs to determine two parameters: the number of classification trees
and the number of characteristic variables input when nodes splitting [83,85]. In order
to prevent over-fitting, we tested the number of trees with a threshold of 50 trees. When
the number of trees exceeded 100, the model trended to stable. Therefore, 150 trees were
finally selected for RF classification, and 6 random variables were selected from the best
split when each tree grows.

Step IV. Post-processing of classification

By analyzing the land use/cover classification of the RF, we found that the barren
land, built area, grassland, and cropland were misclassified. Therefore, we post-processed
the classification results to improve the accuracy of land cover classification. Firstly, we
divided the areas that may have been built area or cropland using the CART (Classification
and Regression Trees) decision-making method in GEE. Then, the divided areas were



Remote Sens. 2023, 15, 1813 8 of 22

further classified by RF through the constructed sample library. The CART method is often
applied to land use classification [86]. The CART method usually includes a selection of
variables, decision tree generation, and pruning of the decision tree [87]. The accuracy of
the analysis can be improved by observing the classification results when modifying the
node threshold of the decision tree or optimizing the training data [88]. We found that the
cropland was characterized by NDVI ranging from 0.25 to 0.45, while the NDBI values
of the built areas were all greater than 0.1, and the BSI value was greater than 0.12. Thus,
we constructed a CART decision tree based on the thresholds of the NDVI, NDBI, and
BSI. We briefly divided the three areas using the CART. First, the cropland and grassland
were divided by the NDVI, in which 0.25 < NDVI < 0.45 was classified as the first partition
(including all croplands and part-grasslands). NDBI > 0.1 and BSI > 0.12 were defined
as the second partition (including all built areas and part-barren). Other types of land
were defined as the third partition. Finally, we used the RF method to reclassify the land
use/cover types of the first and second partitions independently, and updated this part of
the area using the imagePlough.updateMaskd function in GEE to obtain the final land use
classification result.

In addition, we calculated the influence of each variable on the heterogeneity of the
observed values at each node of the classification tree by using MeanDecreaseGini on the
R platform [89]. The greater the value, the greater the importance of the variable, so we
used MeanDecreaseGini to verify the importance of different factors to land use types and
rank them. We used the function of Importance() in the R statistical software package
to calculate the MeanDecreaseGini value between each driving factor and land use type.
Finally, visual representation of the importance of variables was carried out by using the
varImpPlot function in the R statistical software package.

2.4. Accuracy Evaluation

A confusion matrix is often used to evaluate the accuracy of each land cover type [90].
For single-date maps, a confusion matrix was built in GEE to evaluate the accuracy of
LUCC classification, and then the overall accuracy (OA), producer accuracy (PA), user
ac-curacy (UA), and Kappa coefficient of the quantitative indicators were calculated [85].
UA is the probability that a value predicted to be in a certain class really is that class. PA
refers to the probability that a value in a given class was classified correctly. For the change
of land use type, the accuracy was evaluated with the method of [91]. We selected the
samples of the changed areas considering 18 reporting themes in 6 land use/cover types
on 2015 and 2021 (Table S2). Then, the change accuracy was analyzed by three indexes:
land use gain, loss, and no change. Gain refers to some type of increase, loss refers to some
type of decrease, and no change refers to no change during the study period. For example,
between 2015 and 2020, cropland loss means a change from cropland to any other class,
cropland gain means a change to cropland from any other class, and no change means no
change in cropland during this period. Then, the confusion matrix for the accuracy of the
change of land use types in two periods was calculated. Moreover, five typical areas in two
existing land use products (Google Earth and GlobeLand30) were selected to evaluate the
spatial distribution of classification [87]. The related formulas were as follows:

UA =
Xij

Xj
× 100% (5)

PA =
Xij

Xi
× 100% (6)

OA =
sd
n
× 100% (7)

Kappa =
po − pe

1 − pe
(8)
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where Xij is the observed value of the ith row and the jth column in the confusion matrix;
Xi, Xj represent the marginal totals of the i-th row and the j-th column, respectively; Xii
represents the observed value of the i-th row and the i-th column in the confusion matrix; po
equals OA; and pe is the ratio of the product sum of the actual sample number of each class
and the predicted sample number of each class to the square of the total sample number n.

2.5. Land Use/Cover Change Dynamic Degree

Based on the statistics of the area changes in different land use/cover change types in
each grid, the dynamic degree model and conversion matrix were used to analyze land
use change processes. The dynamic degree model developed by [92] was divided into
single and comprehensive models to describe the expansion and shrinkage of types of land
use. The single land use dynamic degree model (K) can quantity one land use type during
a specified period, while the comprehensive land use dynamic degree (LC) was used to
characterize the rate and amplitude of land use change in the study area. The formulae are
as follows:

K=
LUa−LUb

LUa
× 1

T
× 100% (9)

LC =

[
∑n

i=1 ∆LUi−j

2·∑n
i=1 ∆LUi

]
× 1

T
× 100% (10)

Here, LUa and LUb are the areas of this land use type in the initial year (a) and end
year (b) of the study period; LUi is the area of the i types; ∆LUi−j. is the area of the i-th type
that is converted to another type; n is the number of types; and T is the study period, which
is five years.

We used ArcGIS spatial analysis to superimpose the land use types in different periods,
obtain the structural characteristics and transfer the matrix of land use change, and show
the transformation relationship between different land use types in two periods in the form
of charts.

In brief, based on the Landsat dataset and the Google Earth Engine platform (GEE),
we took the random forest as the main body of the classifier and combined the regression
trees (CART), obtained the land types of Mongolia over nearly 30 years, and analyzed the
patterns and dynamic and driving forces. The brief details of the methodology applied in
this research are presented in Figure 4.
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3. Result
3.1. Land Use/Cover Pattern

Land use/cover in Mongolia is classified into six types: cropland, forest, built area,
water, barren land, and grassland. Grassland, barren land, and forest areas are the main
land use/cover types in Mongolia.

The spatial distribution of land use/cover in Mongolia from 1990 to 2021 is shown in
Figure 5 and Figure S1, and Table 3. Generally speaking, the area of grassland is the largest,
accounting for more than 43% of the national area mainly in the central and northern
regions of Mongolia. Barren land occupies more than 40%, mainly as arid barren land
and desert distributed in southern Mongolia. Sporadic grassland is distributed in the
basins and Gobi areas. More than 7% is forest land, mainly distributed in the north of the
Kent-Hang’ai Mountain. The water bodies mainly comprise plateau lakes. The cropland
and built areas are the smallest, making up about 1% of the whole country. Generally
speaking, the grassland, barren land, and forest areas in Mongolia are the most widely
distributed types, accounting for more than 95%. The land use/cover type pattern from
north to south is a transitional distribution of forest–grassland–barren land.
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To intuitively reflect the spatial characteristics of LUCC, we used the grid calculator of
ArcGIS to calculate the spatial distribution map of mutual transformation between different
land use/cover. The land use change pattern in Mongolia from 1990 to 2021 is shown in
Table 3 and Figure 6. We estimate that 27.5 × 104 km2 of the land surface in Mongolia,
accounting for 17.6%, changed at least once among the six land categories from 1990 to
2021. The grassland, water, cropland, and built areas exhibited a growing trend, while
the barren land and forest areas decreased. Among all types, the amplitude of land use
change was the smallest for forest land and the largest for built areas. The area of barren
land decreased by 6.2 × 104 km2, mainly in central Mongolia. The forest area decreased by
0.5 × 104 km2, mainly in the Selenge Valley in northern Mongolia. Meanwhile, grassland
and water area increased. The grassland increased by 6.6 × 104 km2, mainly in eastern
Mongolia. The water area increased by 1007 km2, which was mainly related to the changed
area of lakes on the plateau. The area with the least amount of change was the built area,
but it increased dramatically from 499 km2 to 1242 km2, representing approximately twice
the growth rate of the other areas. On the time scale, taking 2005 as the boundary, the
barren area first showed an increasing and then decreasing trend. In addition, compared to
1990, the increase in barren land mainly occurred in the East Govi and North Donogovi
provinces. The change in the grassland area first showed a decreasing and then increasing
trend, and the increase in grassland mainly occurred in northern Mongolia, particularly in
the Selenge prefecture.
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Table 3. The areas of different land use types in Mongolia from 1990 to 2021.

1990 1995 2000

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Cropland 11,985 0.73 9972 0.60 11,881 0.71
Forest 129,645 7.93 141,098 8.56 120,431 7.36

Built area 499 0.03 539 0.03 651 0.04
Water 16,462 1.01 16,989 1.03 17,872 1.09
Barren 723,413 44.25 696,490 42.26 770,983 47.14

Grassland 752,708 46.05 783,298 47.52 710,830 43.47

2005 2010 2015 2021

Area (km2)
Proportion

(%) Area (km2)
Proportion

(%) Area (km2)
Proportion

(%) Area (km2)
Proportion

(%)

10,901 0.67 10,761 0.66 11,703 0.71 12,720 0.77
116,992 7.15 116,854 7.15 129,406 7.91 124,524 7.61

647 0.04 800 0.05 1037 0.06 1242 0.08
16,649 1.02 16,425 1.01 17,860 1.09 17,469 1.07
777,381 47.50 754,526 46.10 725,936 44.35 661,066 40.40
714,031 43.62 737,004 45.03 751,015 45.88 819,205 50.07
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3.2. Land Use/Cover Change Dynamic

In order to explain the degree of LUCC, the comprehensive and single land use
dynamic degrees were calculated on the classification scale (Figure 7A). Over the past
32 years, the comprehensive land use dynamic degree had an N-shaped trend. Three stages
of change were presented. It increased significantly from 0.36% to 0.88% in 1990–2000, then
dramatically reduced to 0.09% in 2000–2005. Subsequently, the dynamic degree increased
continuously, and the land use/cover change dynamic were 0.24%, 0.29%, and 0.61%.
Considering the dynamic degree of single land use, the built areas showed an overall
growth tendency. It began to increase substantially after 2005 and reached a peak of 4.94%
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in 2010–2015. Cropland decreased in 2005 and then increased. The forest area decreased
the most from 1995 to 2000 and gradually increased after 2010. The water area was in
a state change, with the biggest change from 1995 to 2000 showing an increasing trend.
The barren land increased first and then decreased, with the largest decrease in 2015–2021.
The grassland decreased the most in 1995–2000, and the growth rate was the largest in
2015–2021. Generally speaking, the comprehensive land use dynamic degree of Mongolia
over the past 32 years showed an upward trend before 1990–2000, and a downward trend
from 1995 to 2010. It showed an upward trend from 2005 to 2021. In terms of land types,
the increase in built areas began to increase after 2005, reaching a maximum in 2010–2015;
cropland also began to increase, especially after 2010.
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red lines, the arrow direction represents the transfer direction of land use types, and the percentage
indicates how many land use types have not changed during the two periods.
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In order to reflect the specific situation of mutual transformation among the different
land use/cover change types, we determined the area conversion of each type in each
period using a transfer matrix (Figure 7B). It can be seen that, over the past 32 years, area
change in Mongolia was mainly a mutual transformation between grassland and barren
land. From 1995 to 2000, grassland was mainly transformed into barren land in 2010–2015,
and the opposite occurred from 2010 to 2015. The final statistics show that from 1990 to
2021, the area of barren land converted into grassland was 1.1 × 105 km2. Other land types
were also transformed, but this was not obvious because of their small size.

In conclusion, over the past 32 years, the comprehensive dynamic degree in Mongolia
showed an N-shaped trend, and 2005 was a turning point. Built area changed dramatically.
Particularly from 2010 to 2015, there was obvious mutual transformation between grassland
and barren land, and grassland increased and barren land decreased, which indicates that
desertification control in Mongolia achieved good results.

3.3. Influencing Factors of LUCC

Based on the R platform, we used the RF algorithm to rank the relative importance of
11 driving factors on land use/cover change (Figure 8). It can be seen that the MAAT, ET,
and MAP were the main driving factors in the past 32 years, and the sum of the relative
importance of these three categories was more than 50%. As far as environmental factors
are concerned, the relative influence of the MAAT, ET, and MAP is high. The environmental
factors were the most important factors affecting the land use/cover change types. In
terms of the physical factors, the DEM had an obviously high influence, and most of the
forests were distributed in 1000–2000 m a.s.l., while the grassland was mainly located above
3000 m a.s.l. in southern Mongolia. Considering the socioeconomic and accessibility factors,
the Dis_railway, GDP, and livestock factors had great influence on the LUCC, which is
mainly related to policy and lifestyle in Mongolia.
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4. Discussion
4.1. Validation

Based on the RF, we calculated the confusion matrix to evaluate the accuracy of
each land type. According to the accuracy of the producers and users, the random forest
classification had the highest accuracy for forests, water, and barren land. On the whole,
the overall accuracy rate and kappa coefficient were more than 76% and 0.7 (Table 4 and
Table S2), which met our research needs. Comparing the Google Earth and GlobeLand30
data [93] (Table 5), it was found that the patterns of different types were similar, while
there were some errors between the cropland and water land types, which may have been
related to different image dates or image sensors. The difference between the PA and
UA can be seen in Table 4. This is because the image features of cropland are similar to
those of grassland [94]. Moreover, cropland changed greatly, and its abandonment also
led to a greater degree of fragmentation, which interferes with the division of these two
land types. Meanwhile, we compared the recent land use areas in Mongolia. Our results
are basically consistent with those of [32] and different from those of [48], especially for
cropland, grassland, and barren land (Table 6). This may be related to the effect of different
approaches, as [48] used the NDVI threshold method to identify the land types, and the
threshold value is affected by many uncertain factors, e.g., times, images, and places.

Table 4. Accuracy verification.

LUCC
Type

Accuracy
Type 1990 1995 2000 2005 2010 2015 2021

Cropland PA (%) 74 62 63 59 64 59 70
UA (%) 94 94 92 94 94 93 94

Forest
PA (%) 80 75 78 75 75 82 86
UA (%) 88 83 89 84 85 90 85

Built area
PA (%) 66 59 77 61 61 60 70
UA (%) 100 100 95 100 100 100 98

Water
PA (%) 93 93 92 93 94 89 89
UA (%) 98 97 96 97 95 94 99

Barren
PA (%) 88 83 87 89 89 85 83
UA (%) 95 89 84 88 89 88 91

Grassland
PA (%) 91 88 83 87 87 87 87
UA (%) 73 66 68 68 69 67 71

OA (%) −− 84.63 78.32 80.01 79.94 80.63 79.83 82.42
Kappa −− 0.7677 0.7127 0.7382 0.7349 0.7445 0.7332 0.7689

Table 5. Verification of classification results.

Data Source Classification Result Comparison

Google Earth

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 25 
 

 

Table 5. Verification of classification results. 

Data Source Classification Result Comparison 

Google Earth 

 

 
 

    

Our paper 

 

 
 

 

 
 

 

 
 

 

 
 

 

GlobeLand30 

 

 
 

    

Table 6. Comparison of land use changes in Mongolia and other regions. 

Regions Year Interval 
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2000–2015 5 −0.2 −1.0 +0.7 +2.3 +22.5 +0.4 [95] 

Central Asia 1995–2015 10 +16.1 −0.1 −3.0 −0.2 +223.5 −4.0 [96] 

North and 

West Africa 
1985–1995 10 +3.6 −1.5 +64.4 +82.7 +169.4 +1.2 [97] 

Global 2001–2012 12 −0.5 −1.2 +2.0 +1.0 −0.1 −6.2 [98] 

Note: “+” means an increasing trend, and “−” means a decreasing trend. 

4.2. Reasons for Land Use Change 

One of the significant factors leading to vegetation change in Mongolia is climate 

change [52]. Over the past 32 years, we found that the MAP and ET had the greatest in-

fluence on land types, followed by MAAT (Figure 8). We found that cropland in Mongolia 

only accounts for 1% of the whole country, which is closely related to the typical arid 

environment of Mongolia. The overall forest in Mongolia still shows a slight decreasing 

trend, and the proportion of grassland types is gradually increasing. This is consistent 

with the results of [48] and [33]. In Mongolia, the MAP in the growing period of plants 

has decreased by 33 mm since 1961 [99]. The grassland changes in Mongolia are mainly 

due to global climate change [33]. Over the past 70 years, the MAAT in Mongolia has 

increased by 2.1 °C, resulting in an increased loss of soil moisture through evapotranspi-

ration [100]. Meanwhile, the increase in temperature and the decrease in precipitation has 

led to a dry climate, which affects surface evaporation and plant growth. Although the 

significance of temperature was slightly lower, the change in temperature did have a 

greater impact on some areas [27]. Meanwhile, the special characteristics of LUCC are 

consistent with the regions in Mongolia with decreasing precipitation and increasing tem-

perature [101]. 
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Table 6. Comparison of land use changes in Mongolia and other regions.

Regions Year Interval
Land Use Change Rate (%)

Reference
Cropland Forest Grassland Water Built Barren

Mongolia 1990–2021 1 +8.5 −2.5 +8.5 +7.1 +156.1 −8.6 This paper
Mongolia 1990–2020 10 −27.0 −5.4 +18.4 −8.1 +150.7 −15.2 [48]

Mongolian Plateau 1990–2020 10 +4.9 −1.5 +10.5 −0.6 +47.2 −13.4 [32]
Inner Mongolia 2000–2015 5 −0.2 −1.0 +0.7 +2.3 +22.5 +0.4 [95]

Central Asia 1995–2015 10 +16.1 −0.1 −3.0 −0.2 +223.5 −4.0 [96]
North and West Africa 1985–1995 10 +3.6 −1.5 +64.4 +82.7 +169.4 +1.2 [97]

Global 2001–2012 12 −0.5 −1.2 +2.0 +1.0 −0.1 −6.2 [98]

Note: “+” means an increasing trend, and “−” means a decreasing trend.

At present, the evaluation of error and uncertainty of land use data also included
change accuracy [92]. We verified the change accuracy of land cover types, taking 2015
and 2021 as an example (Table S4). It was shown that the no-change-reporting themes had
higher agreement and that the change-reporting themes had lower agreement. During
the 2015–2021 change periods, forest gain UA was between 80% and 86%. Barren loss
PA approached 90.95%. PA for most of the remaining reporting themes ranged from
70% to 80% with agriculture gain and water gain being exceptions, with PA below 65%.
The change accuracy may be related to the fragmentation and distribution of land types.
The UA of water and grassland was lower; the UA of most of the remaining reporting
themes ranged from 70% to 80%. Obviously, the no-change themes had higher consistency.
The research showed that UA and PA may be higher in homogeneous regions for the
changing region, while the accuracy was lower in heterogeneous regions (such as a single
isolated pixel) [86,93].

We selected numbers using parameter optimization. RF can accurately and robustly
process high-dimensional and multicollinear data [94]. Over-fitting does not increase
according to the number of trees in the RF model, but it tends to be stable with more
trees [95]. Therefore, we took 50 trees as increments and finally chose 150 trees to participate
in the classification. We improved the accuracy of the image classification using the CART
method, but the image quality, natural environment, and dispersion rate may still have
affected the accuracy of the classification, especially for the cropland and built area (Table 4
and Table S3). However, the spatial distribution of cropland in Mongolia is discrete. The
distribution of cropland and grassland is mixed and led to misclassification. In addition,
cropland and grassland have similar spectral characteristics in the growing season, which
also affects the classification accuracy. A previous study also found that the classification
accuracy of cropland fluctuated greatly compared to other types [96]. For example, the PA
of cropland was different between 1990 and 1995, as seen in Table 4. The built land is also
very discrete, which is similar to the spectral information of barren land, which also affects
the classification accuracy, e.g., the PA and UA.

This method is generally used for large-scale land use classification research. However,
the selection of images in different months of the growing season, the influence of cloud
cover and the imbalance of sample points will still affect the accuracy. Additionally, solving
the problem of land use/cover types with similar spectral characteristics and realize further
fine classification is still the focus of current research.

4.2. Reasons for Land Use Change

One of the significant factors leading to vegetation change in Mongolia is climate
change [52]. Over the past 32 years, we found that the MAP and ET had the greatest
influence on land types, followed by MAAT (Figure 8). We found that cropland in Mongolia
only accounts for 1% of the whole country, which is closely related to the typical arid
environment of Mongolia. The overall forest in Mongolia still shows a slight decreasing
trend, and the proportion of grassland types is gradually increasing. This is consistent with
the results of [33,48]. In Mongolia, the MAP in the growing period of plants has decreased
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by 33 mm since 1961 [99]. The grassland changes in Mongolia are mainly due to global
climate change [33]. Over the past 70 years, the MAAT in Mongolia has increased by 2.1 ◦C,
resulting in an increased loss of soil moisture through evapotranspiration [100]. Meanwhile,
the increase in temperature and the decrease in precipitation has led to a dry climate, which
affects surface evaporation and plant growth. Although the significance of temperature
was slightly lower, the change in temperature did have a greater impact on some areas [27].
Meanwhile, the special characteristics of LUCC are consistent with the regions in Mongolia
with decreasing precipitation and increasing temperature [101].

Socioeconomic factors also play a key role in land use/cover change in Mongolia.
After 1995, grassland in Mongolia showed a trend of degradation, which was mainly related
to Mongolia’s emphasis on economic development at that time (Figure 7 and Table 3). This
is consistent with the results of [102] and may be related to the continuous advancement
of privatization and overgrazing and the development of animal husbandry [103]. The
concept of “development before governance” has had a profound impact on Mongolia
and may have led to increasing built areas and decreasing cropland from 1990 to 2010,
showing opposite trends [104,105]. In order to increase its GDP, Mongolia began to exploit
mineral resources in large quantities and built railways to facilitate the transportation of
resources, which caused great damage to the environment and, thus, had a great impact
on land types [106]. Therefore, the significant influences of GDP and Dis_railway on land
use/cover types appear to have gradually increased. The implementation of the “Four
Modernizations” policy in 2010 led to a sharp increase in the built areas of Ulaanbaatar.

Overall, it holds that the changes in Mongolia are restricted by natural factors such as
climate, but they are also driven by policy and economic development.

4.3. Analysis of the LUCC Pattern in Mongolia and Globally

To evaluate the land use/cover change in Mongolia, we summarized the global and
regional land changes, such as the surrounding areas of Mongolia and some representative
arid areas (Table 6). Globally, barren land and forest land show a decreasing trend. The
area of barren land in arid areas such as Mongolia and the Mongolian Plateau has reduced
significantly, and the same is true for the global barren land. These changes may be
related to global greening [107,108]. However, at present, desertification is still a global
phenomenon that cannot be ignored, as it will destroy global biodiversity and aggravate
the occurrence of natural disasters [109]. Land use/cover change was the highest for built
land and lowest for forest areas during the studied time period in Mongolia, Central Asia,
and Africa. Forest land shows a continuous decreasing trend, especially in arid areas
such as Mongolia and East Africa. During rapid urbanization in developing countries,
the area of built land is greatly increased. According to the research presented here, the
natural degradation of forest has exceeded deforestation, which poses a great threat to the
natural environment [110]. Although the proportion of grassland has started to increase in
Mongolia, this is mainly due to the implementation of a series of new policies and ecological
projects by both the Chinese and Mongolian governments [111]. From the perspective of
global change, desertification is still an urgent problem to be solved.

Generally speaking, global water and grassland areas show a growth trend, while
barren land is decreasing, indicating that global desertification control has achieved initial
results. Cropland areas have also begun to increase, but global forest degradation still
needs to be solved. According to a regional analysis of East Africa and the Mongolian
Plateau, although desertification control in arid and semi-arid areas has achieved results, it
cannot be ignored, and forest degradation is still obvious.

The LUCC pattern in Mongolia shows an N-shaped trend and can be divided into
three stages—declining in 1995–2005 and increasing in 1990–2000 and 2005–2021. Mean-
while, the dynamics of global land use/cover change show an upside-down V-shaped
pattern, accelerating during 1960–2005 and decelerating from 2006 to 2019 [4]. This is
contrary to the global land use/cover change processes outlined by [4] from 1995 to 2010.
This may be related to policies, rapid urbanization, and climate change factors. The policy
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and urbanization development in Mongolia have influenced the land use dynamic degree.
Mongolia’s urbanization started late, and its urbanization rate began to increase signifi-
cantly after 2005 and 2015 [112]. However, the data show that since 2005, land use/cover
change has started to rise, which is due to the global economic crisis; this has led to an
increased demand for biofuels and minerals. Unlike other countries that depend on imports
(EU, China), Mongolia started to exploit resources to speed up its development, which
led to changes in land types to different degrees [113]. Regarding the food demand in
Mongolia, global food production changed from agricultural technology intensification to
global market and trade growth, especially in 1990 [114]. However, under the influence of
the Four Modernizations policy and drought, cropland in Mongolia decreased by 21% from
1994 to 1999 [115]. Grassland restoration has mainly been due to the implementation of the
Green Great Wall Project [116]. Due to the implementation of returning farmland to forests
and grasslands, grasslands have been expanded from farmland, but from the results, most
grassland area in Mongolia still comes from former forests and barren land. The results of
this policy are consistent with those of [87]. Generally speaking, the recent implementation
of environmental policy has been helpful to realize the sustainable development of grass-
land. Specifically, the grassland–barren land boundary has gradually recovered since 2010,
and the grassland area has started to increase steadily.

Rising temperatures and decreasing precipitation have had a great influence on the
land use/cover change in Mongolia [100]. In 1998, the climate of the Mongolian Plateau
was identified as being at a turning point from wet to dry, which made Mongolia transition
from a wet period to a more severe drought period [117], and the area of barren land
increased between 1995 and 2000. After 2005, rainfall began to change from a downward
trend to an upward trend [118]. According to the drought grade, the areas with a high
frequency of severe drought (6–11%) are mainly located in southern Mongolia and central
and western Mongolia. In addition, from 2001 to 2009, land degradation in Mongolia was
frequent [119]. During 1990–2000, Mongolia experienced a turning point of rainy and arid
years. The forest and grassland areas increased first and then decreased, and the land
use/cover changed greatly. From 2000 to 2005, the grassland area remained relatively
stable, and the change range of land use/cover in Mongolia decreased. After 2010, the
barren area in Mongolia continued to decrease, the grassland area steadily increased, and
the desertification process was effectively controlled. The conclusion drawn in this study
studies are similar to the conclusions of [48].

5. Conclusions

In our study, we integrated the random forest method and a classification and
regression tree model for identifying the land use/cover type in Mongolia between 1990
and 2021. By comparing the land use/cover change patterns and the dynamic and driving
factors in different years, we determined the land use change and the significance of
influencing factors on land use over the past 32 years. The results are as follows: (1) The
grassland, barren land, and forest areas in Mongolia are the most widely distributed types,
accounting for more than 95% of the land. (2) Over the past 32 years, 17.6% of the land
surface changed at least once among the six land categories, and the land use dynamic
degree had an N-shaped trend. (3) Grassland, water, cropland, and built areas exhibited a
growing trend, while barren land and forest areas decreased. (4) The MAP, ET, and MAAT
are the main environmental factors that determined the distribution and changes of land
types, while Dis_railway and GDP are the main socioeconomic and accessibility factors
that influenced the change patterns of land use. Meanwhile, the physical environment
also plays a key role.

Land use and land cover change are significant for a range of themes and issues central
to the study of global environmental change and sustainable development strategy. It is
widely acknowledged that a better understanding of land use dynamics over the next
30–50 years is central to the debate on sustainability. We mapped the land use change in
Mongolia over the past 32 years at a resolution of 30 m and explained the spatial patterns
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and change processes, which is valuable for understanding the change information and
desertification of Mongolia and the Mongolian Plateau.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/rs15071813/s1, Figure S1: Spatial distribution of land
use type in Mongolia from 1990 to 2021. The lack of land use type in 2012 due to the missing of remote
sensing images; Table S1: Landsat5 and Landsat8 band parameters; Table S2: Reporting themes for
accuracy results. Table S3: Verification of classification accuracy. Table S4: UA and PA of LUCC.
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