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Abstract: Under complex illumination conditions, the spectral data distributions of a given material
appear inconsistent in the hyperspectral images of the space target, making it difficult to achieve
accurate material identification using only spectral features and local spatial features. Aiming at
this problem, a material identification method based on an improved graph convolutional neural
network is proposed. Superpixel segmentation is conducted on the hyperspectral images to build
the multiscale joint topological graph of the space target global structure. Based on this, topological
graphs containing the global spatial features and spectral features of each pixel are generated, and
the pixel neighborhoods containing the local spatial features and spectral features are collected to
form material identification datasets that include both of these. Then, the graph convolutional neural
network (GCN) and the three-dimensional convolutional neural network (3-D CNN) are combined
into one model using strategies of addition, element-wise multiplication, or concatenation, and
the model is trained by the datasets to fuse and learn the three features. For the simulated data
and the measured data, the overall accuracy of the proposed method can be kept at 85–90%, and
their kappa coefficients remain around 0.8. This proves that the proposed method can improve the
material identification performance under complex illumination conditions with high accuracy and
strong robustness.

Keywords: space target; material identification; complex illumination conditions; graph convolutional
neural network

1. Introduction

Space target recognition is of great significance in the protection of the space en-
vironment as well as in the safe and sustainable development and utilization of space
resources [1]. In a variety of space observation methods, spectra contain a large amount
of information in the wavelength dimension, and they can provide a reliable basis for the
identification of the space target surface materials, thereby meeting the needs for space
security and determining space target behavior intention accurately [2,3]. Therefore, the de-
velopment of spectra-based space target material identification research is an important
topic in space target recognition.

The researchers hoped to identify materials by the difference in spectral reflectance
and have developed a series of methods based on spectral features, including comparative
analysis, statistical learning, deep learning, etc. The comparative analysis methods refer
to the design of specific identification methods by directly comparing the features of the
measurements and prior information. Abercromby et al. [4] used a short-wave infrared
telescope to acquire spectral observations on two satellites and found that an absorption
characteristic coincided with the absorption characteristic of the C-H bond in solar cell
material; the authors inferred that the two satellites had solar cells. Vananti et al. [5]
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proposed a preliminary classification using three different classes purely based on the
shape and appearance of the spectra.

Statistical learning methods refer to the establishment of probabilistic and statistical
models based on large amounts of dat and are utilized to predict and analyze the data.
Abercromby [6] and Deng [2] measured the visible spectra of geosynchronous orbit tar-
gets and made use of the partial least squares (PLS) method for material identification
with high accuracy. Nie [7] proposed a method based on the tucker decomposition (TD).
Velez-Reyes et al. [8,9] applied the SVD-based column subset selection (SVDSS) and the
constrained non-negative matrix factorization (CNMF) to identify simulated models.

Among the statistical learning methods, deep learning methods can mine the deep
correlation of data and are suitable for processing massive hyperspectral data. Li et al. [10]
applied the extreme learning machine (ELM), and Liu [11] applied the back-propagation
neural network (BPNN); they measured the hyperspectral curves of the material samples
under the solar simulator illumination in the experimental darkroom and demonstrated
the good performances of these methods. Then, as the convolutional neural network
(CNN) showed advantages in feature extraction, researchers turned their attention to the
CNN [12] and proposed a variety of CNN-based identification methods. Deng et al. [13]
and Gazak et al. [14] adopted a one-dimensional (1-D) CNN to deal with 1-D measured
data, in which only spectral features played a role.

However, with the development of research on the influencing factors of material
identification [15–18], it has been found that the applicability domain of methods using
only spectral features may be narrow. These methods require consistent spectral features
of the same material, but, because the space target materials are non-Lambertian objects,
the spectra of the same material can become different when the target is exposed to complex
illumination conditions consisting of sunlight and earthshine [19]. Many researchers have
experimentally proved this phenomenon and discussed its properties. Bédard et al. [20]
measured the photometric and spectral bidirectional reflectance distribution function
(BRDF) of small Canadian satellites in a controlled environment and found that the spectral
reflectance varied rapidly even with small changes in the light–object–sensor geometry.
Then, Bédard et al. [21] measured the red/blue color ratios of geostationary satellites
and proposed that spectral reflectance was dependent on the angle of the incident sunlight,
the angle of measuring, and the inherent characteristics of the material. Augustine et al. [22]
collected glint spectra of the geostationary satellite WildBlue-1 and found obvious differ-
ences in the relative intensities and profiles in the glint spectra between the two nights of
collection. This supported the point that solar illumination angles played a major role in
observed spectral features.

To solve this problem, the researchers subsequently proposed the use of a two-
dimensional (2-D) CNN and a three-dimensional (3-D) CNN to extract spatial–spectral
features of the space target for identification. Perez et al. [23] and Chen et al. [24] obtained
hyperspectral images with obvious spatial features through semi-physical simulations or
computer simulations and extracted the spatial–spectral features using Residual Network
(ResNet), a regional-based CNN (R-CNN), and other CNN-based models. These methods
reached high accuracies, but the spatial features applied are local and sensitive to imag-
ing conditions, which may lead to poor performance in other application scenarios with
different illumination conditions.

Therefore, to increase the accuracy and robustness of material identification, a method
based on the improved graph convolutional neural network is proposed for the material
identification problem under complex illumination conditions. The main contributions of
the proposed method are presented as follows:

1. The global spatial features of the space target are introduced, and they refer to the
position of a pixel in the global structure of the space target and the connection
relationship with each component. The global spatial features are strongly associated
with the materials.
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2. A multiscale, joint global-structure topological-graph-building method is designed.
The topological graphs generated from the superpixel segmentation results at different
scales are joined together, highlighting the size differences between different compo-
nents and improving the identification accuracy of materials on the small components.

3. The graph convolutional neural network (GCN) is introduced to learn the global
spatial–spectral features of the space target and combined with a 3-D CNN that can
learn local spatial–spectral features. They work together to improve the identification
performance under complex illumination conditions.

The rest of this article is organized as follows. Section 2 describes the related work and
our motivation. Section 3 describes the details of the proposed method. Section 4 describes
the experimental data, the experimental results of the proposed method, and some common
methods. Section 5 discusses the results, deficiencies, and possible improvements of the
proposed method. Finally, Section 6 describes the conclusion and our future work.

2. Related Work

In this section, we will describe the application scenarios of the proposed method
and introduce the relevant prior works related to complex illumination conditions. Then,
the current development state of GCN will be introduced.

2.1. Complex Illumination Conditions of the Space Target

Early spectroscopic measurements of the space targets were made through ground-
based telescopes [2,4–6], and the data obtained in this way were a single spectrum, so the
material identification methods can only rely on spectral features. At present, researchers
are gradually transitioning from ground-based detection to space-based detection [3,23,24],
and the close detection distance in space-based detection enables hyperspectral images to
show relatively rich spatial features. Existing material identification methods using spatial
features are usually designed under ideal imaging scenarios, in which the detector and
space target are relatively stationary during the measurement of hyperspectral images
(e.g., the detector is executing a hovering operation [25] on the space target with three-axis
stabilization). Our work is also conducted on this premise.

Sunlight [26] and earthshine [27,28] together constitute the illumination conditions of
the space target, as shown in Figure 1. As the space target materials are non-Lambertian
objects, the light reflected by the surface can generally be divided into a specular reflection
component and a diffuse reflection component [29]. Because the specular component
of sunlight can cause an image to be overexposed and unusable, in legible images, the
spectrometer receives the diffuse component of sunlight on each surface of the target.

Figure 1. Schematic of the space target attitude and illumination.
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As shown in Figure 2, commonly used materials for the space target exhibit the
Fresnel effect, i.e., as the incidence angle of light on the surface increases, the specular
component tends to be stronger, and the diffuse component tends to be weaker [30].
Therefore, when a surface has both sunlight and earthshine incidents at the same time,
the greater the incidence angle of the sunlight, the more prominent the influence of the
earthshine. In addition, mutual occlusion between the target components may cause
spectral inconsistencies of the same material.

Figure 2. Schematic of the Fresnel effect. When the incidence angle of light on the surface is larger,
the specular reflection component is stronger, and the diffuse reflection component is weaker.

In summary, in various illumination conditions, affected by the volume, structure,
and attitude of the space target, spectral data distributions are sensitive to the direction of
sunlight in the local coordinate system of the space target, and the spectral features of the
same material may be inconsistent across the surfaces with different orientations. The local
coordinate system is set as shown in Figure 3, where the origin is set at the center of the
space target model body.

Figure 3. Local coordinate system of the space target model.

To verify the above contents, we placed a space target scale-down model and an
imaging spectrometer (440–780 nm) in our laboratory and measured the hyperspectral
images of the model under different illumination conditions by adjusting the direction of
solar simulation light. The results show that there are indeed inconsistencies in the material
spectra under complex illumination conditions, which are specifically expressed as:

1. Under the same illumination conditions, the spectral features of the same material
can be very different, i.e., the gold mylar spectra on two surfaces with different
orientations shown in Figure 4.

2. Under the same illumination conditions, the spectral features of different materials
can be very similar, i.e., the spectra of the solar cell, antenna, and cooling area shown
in Figure 4.

3. Under different illumination conditions, the spectral features of the same material can
change dramatically, i.e., the gold mylar spectra in the two images shown in Figure 5.
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Figure 4. Normalized materials’ spectra in the hyperspectral image of the space target model.

(a)

(b)

Figure 5. Normalized spectra of gold mylar in the images with different illumination conditions:
(a) the first image; (b) the second image.

Because the spectral data distributions of the space target are no longer consistent, and
because the local spatial features have poor robustness to the changes in detection distance,
illumination conditions, and the target’s attitude, the spectral features and local spatial
features are no longer suitable as the only basis for material identification. We consider the
structural features of the space target as the connection relationships of the components,
and the connection relationship of two components means that the two components are
spatially next to each other. The distribution of different materials on the space target is
closely related to the structural features, and although under different relative attitudes
of the target, the global spatial features reflect the structural features to different degrees;
however, compared with the spectral features and local spatial features, the global spa-
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tial features change more slowly and regularly with the relative attitude. Therefore, we
decide to introduce the global spatial features of the space target as a powerful basis for
material identification.

2.2. Graph Convolutional Neural Network

In order to achieve accurate and stable identification of the space target materials
under complex illumination conditions, we introduce the GCN to learn the global spatial
features. Recently, the GCN has been widely used in hyperspectral image classification [31]
and achieved great success.

In hyperspectral image classification, early deep learning methods, such as the deep be-
lief network (DBN) [32], the recurrent neural network (RNN) [33], and the 1-D CNN [34,35],
only used the spectral features to effectively improve the classification performance, and the
subsequently developed 2-D CNN [36,37] and 3-D CNN [38–43] used the local spatial–
spectral features. However, researchers then noticed that the fixed-size convolution kernels
would make the extracted local spatial–spectral features lack adaptability to changing
scenarios, so some people chose to design the application strategies of the convolution
kernels [44], and some people turned to GCN [45] hoping that the problem could be solved
by applying global spatial features with the topological graph.

The topological graph G is an irregular data structure consisting of nodes, V , and
edges, E . During computing, a topological graph G = {A, X} is represented as a set of
an adjacency matrix A ∈ RNv×Nv and a node feature matrix X ∈ RNv×Nf, where Nv is
the number of nodes, and Nf is the length of the node features. The GCN can learn from
topological graphs, and the basic formulas of the GCN processing the topological graph
G = {A, X} are presented as:

dmm =
Nv−1

∑
n=0

amn (1)

X
′
= σ(ÃXW) (2)

where σ(·) is an activation function, Ch is the number of channels, dmm ∈ D, amn ∈ A,
D is the node degree matrix, Ã is the normalized adjacency matrix, ÃX is computed to
propagate node features based on the node connection relationships and the normalized
weights of Ã, and W ∈ RNv×Ch is a trainable weight matrix.

The initial solution for applying the GCN to hyperspectral images was to treat each
pixel as a node [46], but this brought an excessive amount of computation. So, the re-
searchers turned to building topological graphs through image segmentation [47–50].

In addition, researchers have proposed a number of strategies to improve the GCN-
based models. For instance, different types of features have been fused by integrating
different networks (e.g., CNN+GCN) [49,51,52]; multiscale features have been learned
through the construction of topological graphs of different scales or the application of graph
attention (GAT) [48,53]; the lack of data labeling has been addressed by self-correlated
learning and self-supervised learning [54,55]; and auto-regressive moving average (ARMA)
filters have been utilized to avoid over-smoothing of the GCN [56]. Appropriately adjusting
the structure and strategy of the model according to the application scenarios and needs
has effectively improved performance.

3. Methodology

The proposed material identification method, based on an improved graph convolu-
tional neural network, is proposed, as shown in Figure 6. First, we implement superpixel
segmentation on the hyperspectral images and produce a global-structure topological
graph with global spatial features. Next, the material identification datasets for each pixel
are created based on global-structure topological graphs and pixel neighborhoods, and they
are divided into the training set and test sets.

Then, the GCN and 3-D CNN are combined into one model, and it is trained by the
training set. The model learns the fusion features of the global spatial features, local spatial
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features, and spectral features to identify the material of each pixel. Finally, the test sets are
used to evaluate the performance of the proposed method.

Figure 6. An overview of the proposed method.

3.1. The Topological-Graph-Building Method of the Space Target Global Structure

A global-structure topological-graph-building method of the space target based on
superpixel segmentation is designed to extract the global spatial features. First, we need to
perform image segmentation, dividing pixels belonging to a given material on the same
surface into a cluster. Due to the large dispersion of the space target spectral data, the pixel-
by-pixel segmentation methods (e.g., threshold segmentation) may be ineffective, so the
superpixel segmentation method is adopted, and the distance and spectral features are
together used as the basis for segmentation. The unsupervised segmentation algorithm
Simple Linear Iterative Clustering (SLIC) [57] can obtain relatively regular superpixels and
control the number of superpixels; it also has a high overall evaluation of efficiency and
accuracy. Its simplicity and controllability facilitate the effective extraction of the global
spatial features, so it is employed to perform the image segmentation step.

SLIC is executed on the hyperspectral image I ∈ RM×N×C, where M × N is the
number of pixels in the image, and C is the number of bands. SLIC first sets an initial
number of cluster centers, K0 and then distributes the cluster centers evenly on the image;
next, it completes the segmentation through multiple iterations to obtain q0 superpixels
S0,i = {l0,0, l0,1, · · · , lp0,i−1}, 0 ≤ i < q0. S0,i conists of p0,i pixels l ∈ RC×1 that are close to
each other at a distance of D, where K0 is the main parameter affecting p0,i, and the larger
K0 is, the smaller p0,i is.

The distance Dij between the two pixels li and lj in SLIC is measured by Equations (3)–(5):

dl =
1
C
[(l0j − l0i )

2 + (l1j − l1i )
2 + · · ·+ (lC−1

j − lC−1
i )2] (3)

ds =
1
2
[(xj − xi)

2 + (yj − yi)
2] (4)

Dij =

√
εldl +

2K0

MN
ds (5)

where l0, l1 · · · , lC−1 are the grayscale values of the spectral bands; the spectral distance dl
is the mean squared error of l0, l1 · · · , lC−1, x,y are the location coordinates of pixels in the
images; the spatial distance ds is the mean squared error of x,y; and the distance scale factor
εl is utilized to adjust the emphasis on the spectral distance and the spatial distance. The
spectral and spatial distances are both considered during segmentation.

After segmentation, a global-structure topological graph G0 = {A0, X0} is built ac-
cording to S0,i. S0,i is set as a node, and the superpixel average spectrum l0,i is set as the
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features of the node. Then, we search for superpixels with adjacency: A line is drawn on
the image to connect the center points of two superpixels, S0,m and S0,n, and it will pass
through multiple pixels; of these pixels, if the proportion of the pixels belonging to S0,m
and S0,n exceeds the threshold (e.g., 0.6), the two superpixels can be considered adjacent,
and their nodes will be connected so that the spectral information of the components
and the structural information of the space target is fully reflected in the global-structural
topological graph G0.

To achieve spatial feature extraction of a small component structure, SLIC is executed
twice with the initial number of cluster centers K0 and K1 (K1 > K0) to obtain the multi-
level topological graphs G0 = {A0, X0} and G1 = {A1, X1}. The spectral information
and connection relationships of the large components are reflected in G0, and the spectral
information and connection relationships of the small components are reflected in G1.

We combine G0 and G1; then, the superpixels with an overlapping relationship are
searched for in turn, and their nodes are connected. Specifically, if the cluster center
l(x1,j, y1,j) of S1,j belongs to S0,i, i.e., l(x1,j, y1,j) ∈ S0,i, S1,j and S0,i have an overlapping
relationship, meaning that the small component represented by S1,j is on top of the large
component represented by S0,i, and their nodes are connected; thus, the multiscale, joint
global-structure topological graph G2 = {A2, X2} is generated.

The building process of the multiscale, joint global-structure topological graph is given
in Algorithm 1. In this process, the complexities of building graphs are much smaller
than creating superpixels, so the computational complexity mainly depends on SLIC,
i.e., O(M×N), which is linear with the number of pixels in I.

Algorithm 1 Multiscale, Joint Global-Structure Topological Graph

Input:
(1) Dataset: the hyperspectral image I ∈ RM×N×C;
(2) Parameters: the initial number of cluster centers K0 and K1(K1 > K0).

Procedure:
(1) Execute SLIC on I with K0 and (3)–(5) and obtain superpixels S0,i, 0 ≤ i < q0;

(2) Build the first global-structure topological graph G0 = {A0, X0};

(3) Execute SLIC on I with K1 and (3)–(5) and obtain superpixels S1,j, 0 ≤ j < q1;

(4) Build the second global-structure topological graph G1 = {A1, X1};

(5) Combine G0 and G1 to obtain A2 and X2;

(6) Connect S1,j and S0,i, who have overlapping relationship;

(7) Build the multiscale, joint global-structure topological graph G2 = {A2, X2};

Output:
The multiscale, joint global-structure topological graph G2 = {A2, X2}.

After the building of G2, the topological graphs Gl = {Al, Xl} for each pixel l are
generated according to G2. First, l is independently set as a superpixel Sl; next, the nodes
of Sl and S0,i are connected if they are adjacent, and the nodes of Sl and S1,j are connected
under the same condition. The topological graph Gl = {Al, Xl} contains the spectral
information of the pixel and reflects its global spatial features, such as its connection
relationship with components of different scales, and its location on the space target.

Then, the fixed-size neighborhoods Nel ∈ Rd1×d2×C of each pixel are taken, where
d1 × d2 is the size of the region centered on pixel l. Nel contain the spectral information and
local spatial features of the pixels. Gl and Nel of each pixel are collected to create material
identification datasets, Ds, which can be represented as:

Ds = {Gl0 , Nel0 ; Gl1 , Nel1 ; · · · ; GlM×N , NelM×N}. (6)
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At last, Ds are divided into training sets and test sets. Throughout the process of
creating Ds for I, the computational complexity is also O(M×N).

3.2. Identification Method Based on Fusion of GCN and 3-D CNN

The GCN is utilized to learn the spatial features of the space target global structure
and integrated with the spectral features and spatial features of the pixel neighborhood
learned by the 3-D CNN, breaking the bottleneck of a single model and solving the problem
of material identification difficulties caused by inconsistent distributions of spectral data.
The specific structure of the identification method is shown in Figure 7. The topological
graph Gl and the fixed-size neighborhoods Nel of a pixel are input to the identification
method, and a class confidence vector YClass ∈ R1×Cl is output, where Cl is the total number
of background and all material classes.

Figure 7. Flowchart for building the topological graph of the space target global structure.

In the 3-D CNN, Nel is input to the 3-D convolutional layer fC3(·) and the 3-D max-
pooling layer fMP3(·) repeatedly to learn the local spectral–spatial features. NC3 convolution
kernels WC3,kn ∈ RLC3

k1 ×LC3
k2 ×LC3

k3 (0 ≤ kn < NC3) slide for convolution on Nel in fC3(·),
and, then, the windows slide for max pooling on its output in fMP3(·). The formulas are
as follows:

NeC3
kn = σ[ fC3,kn(Nel)] (7)

NeP
kn = fMP3(NeC3

kn ) (8)

where σ(·) is the activation function ReLu, NeP
kn ∈ NeP, NeP ∈ RLP

1×LP
2×LP

3×NC3
. Immediately

NeP is input to fC3(·) and fMP3(·) several times more, and NeCNN ∈ RLC
1×LC

2×LC
3×NC3

is
output. For the 3-D CNN, when the dimensions of the input and the parameters of the layers
are determined, the number of calculations is determined. Therefore, the computational
complexity of the 3-D CNN for an image I ∈ RM×N×C is O(M×N).

In the GCN, Gl = {Al, Xl} is taken as the input. First, Xl = (l0, l1, · · · , lq0+q1
)T ∈

R(q0+q1+1)×C is input to the one-dimensional (1-D) convolutional layers fC1(·) and the 1-D
max-pooling layers fMP1(·) for extraction of the spectral features and a reduction in data
dimension. A convolution kernel WC1 ∈ R1×LC1

k slides for convolution on lm ∈ Xl in fC1(·),
and, then, a window slides for max pooling on its output in fMP1(·). The formulas are
as follows:

lC1
m = σ[ fC1(lm)] (9)
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ls
m = fMP1(l

C1
m ) (10)

where ls
m ∈ Xs

l , Xs
l = (ls

0, ls
1, · · · , ls

q0+q1
)T ∈ R(q0+q1+1)×Ls

. Through fC1(·) and fMP1(·),
the spectral features are extracted, and the number of elements in the node feature matrix
Xs

l has been reduced to Ls/C of the original Xl. Meanwhile, the number of weights and the
computational complexity of the next layer will decrease by the same proportion.

Next, Xs
l and Al are input to the graph convolutional layer fG(·) repeatedly to learn

the global spectral–spatial features in the topological graph Gl. The calculation formulas
for fG(·) are expressed as:

Ã = D-1/2AlD
-1/2 (11)

X
′
= σ(ÃXs

l W1 + Xs
l W2 + b) (12)

where the number of channels is Ch; D is the node degree matrix; and Ã is the symmetric
normalized adjacency matrix. ÃXs

l is computed to propagate node features based on node
connection relationships and the normalized weights of Ã. Then, ÃXs

l and Xs
l are weighted

and fused with two trainable weight matrices W1 ∈ RLs×Ch, W2 ∈ RLs×Ch and a trainable
bias matrix b ∈ R(q0+q1+1)×Ch. Finally, a new node feature matrix X

′ ∈ R(q0+q1+1)×Ch is
output. X

′
and Al are input to fG(·) several times more, and XGCN ∈ R(q0+q1+1)×Ch is

output. For the first fG(·), its computational complexity is O((Ne + Nv)× Ls × Ch) [45],
and, for the next several fG, their computational complexity is O((Ne + Nv)× Ch2), where
Ne and Nv are the numbers of edges and nodes in Gl. Although the scale of Gl is uncertain
for different images, the numbers of edges and nodes in Gl are usually much smaller than
the number of pixels in an image; therefore, the computational complexity of the GCN for
an image can also be O(M×N).

NeCNN, the output of the 3-D CNN, is input to the flattened layer fF(·) and the fully
connected layer fD(·) with Ch nodes. XGCN, the output of the GCN, is input to the global
average pooling layer fGAP(·). Then, they are fused using fusion strategies of addition
(-A), element-wise multiplication (-M), or concatenation (-C) [46]. The processes can be
formulated as:

YA = fGAP(X
GCN) + σ[ fF(NeCNN)WD] (13)

YM = fGAP(X
GCN)⊗ σ[ fF(NeCNN)WD] (14)

YC = fGAP(X
GCN)⊕ σ[ fF(NeCNN)WD] (15)

where WD is a trainable weight matrix in fD(·), and ⊗ and ⊕, respectively, represent element-
wise multiplication and concatenation. The function of WD is to adjust the contribution ratio
of the features extracted by the 3-D CNN and the GCN to the material identification.

At last, YF (i.e. YA, YM or YC) is input to the fully connected layer fS(·) with Cl nodes
and the activation function Softmax(·), and the formula can be written as:

YClass = Softmax(YFWS) (16)

where WS is a trainable weight matrix in fS(·), yClass
i ∈ YClass, ∑Cl−1

i=0 yClass
i = 1. If yClass

k ≥
yClass

i (0 ≤ i < Cl), the result of the material identification is output as follows:

result =

{
background, k = 0
kth material, 0 ≤ k < Cl

(17)

and the identification methods are constructed completely. According to the three fusion
strategies, the identification methods can be distinguished into the proposed method-A,
the proposed method-M, and the proposed method-C. In the entire process of material
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identification for an image, we can conclude that the computational complexity is O(M×
N), i.e., linear with the number of pixels in the image, and, therefore, there is no risk of a
sudden explosion of the calculation volume.

After that, the model parameters are trained multiple times using the training sets
and the cross-entropy loss function. To improve the accuracy while retaining the training
speed, the decayed learning rate of exponential decay [58] is applied, and the learning rate
is gradually reduced during the training as follows:

Lr = 0.001× 0.95Ct (18)

where Lr is the learning rate, and Ct is the cycle training time. The early stopping [59]
is applied in the same manner as the stopping strategy of the training to avoid model
parameters overfitting.

After training, the material class prediction for the test set is conducted using the
proposed method-A, -M, and -C. Then, the identification performance is demonstrated,
evaluated, and analyzed.

3.3. Data Quality Assessment

We chose spectral separability to describe the degree of data inconsistency. The higher
the spectral separability, the lower the data inconsistency, and the less difficult it is to
identify materials. The ratio of the inter-class distance to the intra-class distance is calculated
to describe the spectral separability J of the materials in a dataset. The formulas are
presented as:

m(i) =
1

Ni

Ni−1

∑
j=0

X(i)
j (19)

m =
1
M

M−1

∑
i=0

m(i) (20)

Pi =
Ni

∑M−1
k=0 Nk

(21)

SB =
M−1

∑
i=0

Pi(m
(i) −m)(m(i) −m)T (22)

SW =
M−1

∑
i=0

Pi
1

Ni

Ni−1

∑
j=0

(X(i)
j −m(i))(X(i)

j −m(i))T (23)

J =
tr(SB)

tr(SW)
(24)

where M is the total number of the materials in the dataset, Ni is the total number of spectra
for the ith material, and X(i)

j ∈ R1×C is the jth spectra of the ith material.

4. Results
4.1. Experimental Data

The experimental data include simulated data and measured data. The simulated
data were space target spectral images created through computer simulation, and the
measured data were acquired by measuring the satellite scale-down model in the laboratory.
The satellite scale-down model is a simulation model whose materials are different from
the real materials of the space targets, but it can be used to verify the effectiveness of the
identification methods.

The simulated data and the measured data are used to evaluate the identification per-
formance of the proposed method (-A, -M, and -C). In this field, researchers often use their
own datasets, and these datasets have different qualities and different imaging conditions;
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at the same time, there is a lack of benchmarks to uniformly compare the performances
of all methods. Therefore, we applied several representative methods of different types
as comparative methods, including the 3-D CNN [12–14,23,24], the CNMF [9], and the
TD [7], wherein the proposed method and the 3-D CNN are fully supervised, the CNMF is
semi-supervised, and the TD is unsupervised.

4.1.1. Simulated Data

We generated hyperspectral simulated data based on high-fidelity panchromatic
simulated images of the “Tango” spacecraft released by the ESA, as shown in Figure 8.
When computer simulating, a unique reflectance spectrum was set for each material,
and changes in the illumination conditions were simulated by adjusting the proportion of
sunlight and earthshine in incident light. The simulated model of the space target with
different attitudes was labeled with material classes, and a spectrum was added to each
pixel according to the label and set lighting conditions. Although different incidence spectra
were used in different images, the incident spectra were the same for different surfaces on
the target in an image. Then, the image was down-sampled to form simulated hyperspectral
images with different illumination conditions and different spatial resolutions.

The band range of the simulated data is from 440 nm to 780 nm, and the spectral
resolution is 10 nm. The material classes in the space target simulated images are solar cell,
gold mylar, and antenna. The normalized materials’ spectra of these are shown in Figure 9,
where the spectral features of the three materials are different from each other.

(a) (b)

Figure 8. Examples of the simulated data: (a) example 1; (b) example 2.

Figure 9. Examples of normalized materials’ spectra in the simulated data.

4.1.2. Measured Data

During the laboratory measurement, incandescent lamps were chosen to simulate
earthshine, and a tungsten halogen lamp was aimed at the satellite model to simulate
sunlight, as shown in Figures 10 and 11. The direction from the halogen tungsten lamp to
the satellite model and the attitude of the satellite model together determined the angle of
incidence of the tungsten halogen lamp to simulate the complex illumination situation of
the space target in the space environment.
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Figure 10. Laboratory measurement scene.

Figure 11. Spectra of the incandescent lamp and the tungsten halogen lamp.

The position and orientation of the tungsten halogen lamp and the attitude of the
model were changed to simulate the changes in the spectral data distributions produced by
different shooting times, attitudes of the space target, and other conditions, as shown in
Figure 12. Then, the measured hyperspectral images of different illumination conditions
and different spatial resolutions were obtained by adjusting the spatial resolution of the
measuring instrument.

(a) (b)

Figure 12. Examples of the measured data: (a) example 1; (b) example 2.

The measured data band range is from 440 nm to 780 nm, and the spectral resolution
is 10 nm. The material classes in the measured data are solar cell, gold mylar, antenna,
and cooling area. The normalized materials’ spectra of these are shown in Figure 13, where
the spectral features of the gold mylar on the vertical incidence surface and the oblique
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incidence surface of the tungsten halogen lamp are quite different, and the spectral features
of the other materials are similar.

Figure 13. Examples of normalized materials’ spectra in the measured data.

4.2. Analysis of Identification Results

The F1-measure [60], overall accuracy (OA), average accuracy (AA), and kappa coeffi-
cient [61] are applied as evaluation indexes. The F1-measure is calculated for each material.

4.2.1. Simulated Data

Five simulated hyperspectral images were generated; two of them were chosen for
training, and three of them for testing. We divided the images into four datasets, which are
the training set (T0), the test set 1 (T1), the test set 2 (T2), and the test set 3 (T3). Among these,
the imaging conditions of T1 were the same as those of T0; the illumination conditions of T2
were changed compared with T0; and the spatial resolution of T3 was decreased compared
to T0. Additionally, the parameter describing the illumination conditions is the ratio of the
sunlight irradiance to the earthshine irradiance in the incident light, and the parameters of
the simulated data are shown in Table 1.

Table 1. Simulation data parameters.

T0 T1 T2 T3

Illumination conditions 10:1 10:1 20:3 10:1

Spatial resolution(cm/pixel) 3.2 3.2 3.2 6.4

The dimensions of the input data, the dimensions of the output data, and the parame-
ters chosen in the proposed method are shown in Table 2. The material identification results
of the simulated data are shown in Figure 14. Since the results of the proposed methods
(-A, -M, and -C) are similar, and the proposed method-A performs best, only the results of
it are shown.

In the simulated data, as shown in Table 3 and Figure 15, the identification perfor-
mances of the solar cell and gold mylar in the proposed method and the comparative
methods are always good, and the performance of the antenna in the proposed method is
better than that in the comparative methods. Further, the results of the proposed method-A
are better than the proposed method-M and the proposed method-C.
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Table 2. The table of dimensions and parameters in the proposed method on the simulated data.

Dimensions and Parameters
Steps

Simulated Data Measured Data

Inputs

1. The hyperspectral image I ∈
R150×240×90;

1. The hyperspectral image I ∈
R100×220×90;

2. The topological graph Gl = {Al, Xl},
Al ∈ Rq×q, Xl ∈ Rq×90, 16 ≤ q ≤ 22;

2. The topological graph Gl = {Al, Xl},
Al ∈ Rq×q, Xl ∈ Rq×90, 23 ≤ q ≤ 42;

3. The fixed-size neighborhoods Nel ∈
R5×5×90.

3. The fixed-size neighborhoods Nel ∈
R5×5×90.

SLIC
1. The initial number of cluster centers

K0 = 30, K1 = 60;
1. The initial number of cluster centers

K0 = 27, K1 = 55;
2. The distance scale factor εl = 9/40. 2. The distance scale factor εl = 9/40.

The

1. The 3-D convolutional layer fC3(·) with WC3,kn ∈ R3×3×3 (0 ≤ kn < 16) and step sizes
1, 1, and 1;

Network

2. The 3-D max-pooling layer fMP3(·) with the windows of sizes 1×1×3 and step sizes 1,
1, and 3;

3. The 1-D convolutional layers fC1(·) with WC1 ∈ R1×3 and step size 1;
4. The 1-D max-pooling layers fMP1(·) with the window of size 3 and step size 3;
5. The graph convolutional layer fG(·) with the number of channels Ch = 32;
6. The fully connected layer fD(·) with the number of nodes Ch = 32;

7. The fully connected layer fS(·) with the
number of nodes Cl = 4.

7. The fully connected layer fS(·) with the
number of nodes Cl = 5.

Output 1. The class confidence vector YClass ∈
R1×4.

1. The class confidence vector YClass ∈
R1×5.

(a)

(b)

Figure 14. Examples of material identification results using the simulated data: (a) example 1;
(b) example 2.
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Table 3. F1-measure (%) table of the simulated data.

Class

The Proposed Method

-A -M -C

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3

Solar cell 97 96 97 93 95 93 94 89 97 95 95 91
Gold mylar 97 99 94 82 96 98 86 69 97 99 93 78

Antenna 81 78 80 66 67 65 55 40 81 73 41 85

Class
3-D CNN CNMF TD

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3

Solar cell 93 89 94 93 95 88 95 94 90 86 90 88
Gold mylar 96 98 90 82 92 97 94 88 77 87 78 78

Antenna 25 20 26 34 12 2 0 17 0 0 0 0

Figure 15. F1-measure chart of the simulated data.

As shown in Table 4 and Figure 16, the OAs of the proposed method and the compara-
tive methods are close, but the AA and the kappa coefficient of the proposed method are
basically higher than the comparative methods. This shows that the proposed methods, es-
pecially the proposed method-A, outperform the comparative methods on the identification
performance of the material with small samples.

Table 4. Identification performance table of the simulated data (OA-AA-KAPPA).

Method
OA(%) AA(%) Kappa

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3

The -A 96.8 97.7 95.9 88.7 90.7 91.7 89.0 80.7 0.940 0.945 0.908 0.759
proposed -M 94.2 95.8 91.2 79.9 88.7 91.3 77.0 67.3 0.893 0.902 0.794 0.589
method -C 96.1 97.2 93.0 87.1 93.3 92.7 73.0 80.3 0.928 0.934 0.840 0.717

3-D CNN 92.0 93.9 92.5 86.9 70.1 69.3 70.7 68.0 0.849 0.850 0.826 0.737
CNMF 92.1 91.3 93.1 89.4 66.3 64.7 65.0 65.0 0.819 0.799 0.840 0.773

TD 84.4 80.2 84.6 83.0 56.3 58.7 57.0 56.3 0.632 0.628 0.641 0.633
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Figure 16. Identification performance chart of the simulated data (OA-AA-Kappa).

4.2.2. Measured Data

Four kinds of data were measured, including the training set (T0), the test set 1 (T1),
the test set 2 (T2), and the test set 3 (T3). Among them, the imaging conditions of T1 were the
same as those of T0; the illumination conditions of T2 were changed compared with T0; and
the spatial resolution of T3 was decreased compared with T0. Additionally, the parameter
describing the illumination conditions is the incidence direction of the tungsten halogen
lamp in the local coordinate system of the space target model, and the parameters of the
measured data are shown in Table 5.

Table 5. Measured data parameters.

T0 T1 T2 T3

Illumination conditions + Y-axis; − Z-axis − Z-axis − X-axis + Y-axis

Spatial resolution (cm/pixel) 5.4 5.4 5.4 10.8

The dimensions of the input data, the dimensions of the output data, and the parame-
ters chosen in the proposed method are shown in Table 2. The material identification results
of the measured data are shown in Figure 17. For the same reason as the simulated data,
among the proposed methods (-A, -M, and -C), only the results of the proposed method-A
are shown.

In the measured data, as shown in Table 6 and Figure 18, the identification perfor-
mances of the solar cell and gold mylar in the proposed method are always good and better
than in the CNMF and the TD. In the 3-D CNN, the change in the illumination conditions
and the reduction in the spatial resolution led to a significant decrease in the identifica-
tion performances of the solar cell and gold mylar. The performances of the antenna and
cooling area in the proposed method-A are better than those in the comparative methods.
Additionally, the change in the illumination conditions and the reduction in the spatial
resolution led to the reduction in the performances of the antenna and cooling area in the
proposed method-M and the proposed method-C.

As shown in Table 7 and Figure 19, The performances of the OA, AA, and kappa
coefficient on the measured data also show the advantage of the proposed method on the
identification performance of the materials with small samples. The kappa coefficient of the
proposed method stays around 0.8. The performances of the CNMF and the TD are poor,
and the kappa coefficients are always below 0.6. The performance of the 3-D CNN is close
to the proposed method on T0 and T1, but the changes in the illumination conditions and
the reduction in the space resolution lead to a significant decrease in its performance on T2
and T3. This shows that the prediction results of the proposed methods are substantially
consistent with the labels, and the 3-D CNN is more resistant to changes in the imaging
conditions than the comparative methods, especially the proposed method-A.
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(a)

(b)

Figure 17. Examples of material identification results using the measured data (a) example 1; (b) example 2.

Table 6. F1-measure (%) table of the measured data.

Class

The Proposed Method

-A -M -C

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3

Solar cell 98 98 95 96 97 96 91 88 97 96 86 95
Gold mylar 89 86 89 90 93 90 92 89 93 91 88 92

Antenna 79 64 66 76 83 55 54 38 79 57 0 46
Cooling area 67 53 42 40 61 42 2 28 63 40 0 29

Class
3-D CNN CNMF TD

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3

Solar cell 94 97 65 42 84 66 60 82 91 87 88 75
Gold mylar 92 90 67 70 63 63 59 71 72 67 70 69

Antenna 14 17 0 32 7 1 2 1 0 0 0 0
Cooling area 41 22 18 11 25 18 13 6 19 0 12 0
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Figure 18. F1-measure chart of the measured data.

Table 7. Identification performance table of the measured data (OA-AA-KAPPA).

Method
OA(%) AA(%) Kappa

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3

The -A 89.9 87.7 87.4 89.4 86.3 81.3 76.8 72.8 0.837 0.799 0.791 0.817
proposed -M 92.2 89.3 87.6 84.3 92.8 79.0 58.0 71.5 0.864 0.813 0.774 0.722
method -C 92.8 90.5 85.0 90.3 91.8 74.3 44.8 71.0 0.875 0.830 0.715 0.825

3-D CNN 86.5 86.3 58.9 55.5 59.5 56.5 50.5 40.3 0.773 0.767 0.350 0.242
CNMF 71.8 56.3 53.8 69.4 49.5 40.8 37.0 41.5 0.500 0.331 0.232 0.492

TD 74.8 74.2 69.0 69.2 49.5 38.5 47.3 37.3 0.582 0.536 0.515 0.428

Figure 19. Identification performance chart of the measured data (OA-AA-Kappa).

4.3. Data Quality Assessment Results

We calculated the spectral separability of the two experimental data using Equa-
tions (19)–(24). The calculation results are shown in Table 8.

Table 8. The spectral separability of the materials.

tr(SB) tr(SW) J

Simulated data 7.7473 1.6508 4.6930
Measured data 0.7777 2.4307 0.3199
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5. Discussion
5.1. The Influence Analysis of Illumination Conditions on the Data Distributions

When measuring, the model attitude is adjusted to change the incidence angle of
the tungsten halogen lamp, and the hyperspectral images are taken while the incidence
relative direction is close to the negative X-axis, the positive Y-axis, and the negative Z-axis.
The spectra of each material in the measured data are clustered by the k-means clustering
algorithm, and the average grayscale values of the clusters are calculated. The grayscale
values of the materials in different incidence directions and different spatial resolutions are
shown in Figure 20.

From Figure 20, it is found that the gold mylar and solar cell on the space target model
cover a wide area and high sample amounts, which can better reflect the influence of the
incidence direction on the data distributions. The average spectra of the left solar cell,
the right solar cell, and the gold mylar on the different surfaces of the model body in the
datasets with different incidence directions are calculated and normalized, as shown in
Figures 21–24.

It is observed that the spectral data distributions of the left solar cell and the right solar
cell are relatively consistent, and there are differences in the spectra of the gold mylar on
different surfaces. This is because the solar cells are always oriented in the same direction,
while the gold mylar faces different directions on different surfaces. On the different
surfaces of the model body, the incidence angles of the gold mylar are different, thus the
problem of inconsistent distributions of the spectral data is clearly observed.

Additionally, because the distributions of the solar cell and gold mylar on the space
target model are symmetrical along the X-axis, the spectral features are similar when the
incidence direction is close to the YOZ plane, as shown in Figures 22–24. When the incidence
relative direction is close to the negative X-axis, they change significantly, as shown in
Figure 21. This indicates that the incidence direction of sunlight has a great influence on the
spectral data distributions of hyperspectral images, and it is closely related to the structural
features of the space target too.

5.2. Comparison of the Results between the Experimental Datasets

The simulated data are designed with simplified illumination and reflection models
and contain hyperspectral images under ideal imaging conditions. Therefore, in the simu-
lated data, the spectral data distributions of the same material in the same set are consistent.
On the contrary, the illumination conditions and material reflection characteristics of the
measured data are complex. According to the discussion in Section 5.1, in the measured
data, the spectral data distributions of the same material in the same set are inconsistent.

As shown in the calculation results in Table 8, the separability of the simulated data
is significantly greater than that of the measured data. Many methods can achieve good
results on data with high separability, but only a method that performs equally well on
data with low separability is really suitable for space target material identification.

The kappa coefficients of the proposed method-A, the 3-D CNN, the CNMF, and the TD
on the simulated data and the measured data are compared, as shown in Figures 16 and 19.
In the simulated data, the kappa coefficients of the four methods are all high, and there
is a downward trend from the proposed method-A to the 3-D CNN to the CNMF to the
TD. This shows that, under ideal conditions, these methods have good results, and the
proposed method-A has only a slight advantage.

Compared with the simulated data, the kappa coefficients of each method in the
measured data have decreased, and the proposed method-A has the smallest decrease. This
indicates that the proposed method-A can achieve good identification performance under
complex illumination conditions and has obvious advantages over the comparative methods.

In the global spatial features extraction of the space target, the global-structur topo-
logical graph was built by segmenting hyperspectral images, and it is insensitive to the
changes in the data distributions caused by the spatial resolution and illumination condi-
tions. By learning the global spatial features of the space target, the proposed method-A can
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obtain high robustness, and it can better meet the requirements of the space target material
identification with complex illumination conditions and spatial resolution changes.

(a)

(b)

(c)

(d)

Figure 20. Distributions of grayscale values of different materials in different incidence directions and
spatial resolutions: (a) high spatial resolution, negative X-axis; (b) high spatial resolution, positive
Y-axis; (c) high spatial resolution, negative Z-axis; (d) low spatial resolution, positive Y-axis.
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(a) (b)

Figure 21. Spectral data distributions of high spatial resolution and negative X-axis incidence: (a) left
and right solar cells; (b) gold mylar on different surfaces.

(a) (b)

Figure 22. Spectral data distributions of high spatial resolution and positive Y-axis incidence: (a) left
and right solar cells; (b) gold mylar on different surfaces.

(a) (b)

Figure 23. Spectral data distributions of high spatial resolution and negative Z-axis incidence; (a) left
and right solar cells; (b) gold mylar on different surfaces.

(a) (b)

Figure 24. Spectral data distributions of low spatial resolution and positive Y-axis incidence: (a) left
and right solar cells; (b) gold mylar on different surfaces.

5.3. Deficiencies and Improvements under Non-Ideal Imaging Conditions

The proposed method has the ability to handle the material identification of the space
target with three-axis stabilization under complex illumination conditions when executing
hovering operations. However, in fact, the imaging conditions of the space targets cannot
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always be so ideal. We list the main factors that may affect the material identification
performance during imaging and propose possible strategies to address these issues.

5.3.1. Image Degradation

Image degradation exists in the hyperspectral imaging system, resulting in the loss of
spatial and spectral features of the space target, thereby reducing the accuracy of material
identification. Our team has researched and developed staring imaging spectrometers
based on an acousto-optic tunable filter (AOTF) and measured the linear diffusion function
and spectral response function of the spectrometers [62]. Therefore, we plan to design image
restoration methods using the degradation function of the spectrometer as prior knowledge.

5.3.2. Background Distractions

The background types for space target images include a space background, earth
background, and limb background [63]. In addition to the space background with uniform
low grayscale values, both the earth background and limb background have complex
texture features and change frequently with the atmospheric environment. As the example
image shows in Figure 25, it is conceivable that, without processing of the background, the
earth background and limb background will interfere with the representation of the target
structural features when building the space target topological graph.

Therefore, complete background removal is one of the requirements to ensure the
performance of the proposed method. Additionally, because the grayscale values and
texture features of the earth background and limb background are so variable, it is difficult
to cover the backgrounds in all images with one method.

We recommend contrastive learning [64] to solve this problem. As shown in Figure 25,
the pixels of the space target are set as positive samples, and the other pixels are set as
negative samples. Each image is trained to differentiate the feature distance between
positive and negative samples, making it easy to distinguish between positive and negative
samples to accurately remove background pixels.

Figure 25. Increase the differences between target features and background features through con-
trastive learning.

5.3.3. Rapid Changes in Imaging Conditions

In some detection scenarios, imaging conditions may be in continuous high-speed
changes, which cannot be ignored in hyperspectral imaging. For example, in rendezvous
and proximity operations (RPO) [65], the imaging distance gradually decreases; in fly-
around operations [66], the direction of imaging is constantly changed; and in accompa-
nying flights [67], the rapid rotation of the space target leads to a constant change in its
relative attitude to the detector.
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In the above scenarios, the data acquired by scanning imaging spectrometers may
become quite difficult to interpret. Additionally, the staring imaging spectrometer can
intuitively acquire the spatial features of the target in each frame, as shown in Figure 26,
so the structural features and spectral features can be extracted by operating on the image
space for identification.

Figure 26. Schematic of staring hyperspectral images with decreasing imaging distance.

When processing staring hyperspectral images, we consider improving on the pro-
posed method. On the one hand, when building topological graphs, every single frame
image requires separate superpixel segmentation and topological graph building; then,
all of the topological graphs will be connected selectively and merged together. On the
other hand, the self-attention mechanism will be added to the GCN to enhance its ability
to capture long-range interactions (LRI) [68] in graphs and learn the changes in structural
features. In addition, we believe that it is possible to identify the motion status of the space
target by the changes in structural features.

6. Conclusions

Under complex illumination conditions, the spectral features of materials in hyperspec-
tral images become inconsistent. These phenomena are specifically expressed as obvious
spectral feature differences of the same material, high spectral feature similarities of dif-
ferent materials, and intense changing of spectral features under different illumination
conditions. Therefore, it is difficult to achieve accurate material identification only via
spectral features and local spatial features.

Aiming at this problem, a material identification method based on an improved graph
convolutional neural network is proposed. Superpixel segmentation is conducted on the
hyperspectral images to build the multiscale, joint topological graph of the space target
global structure. Based on this topological graph, material identification datasets including
the topological graphs and neighborhoods of each pixel are obtained. These datasets
contain the global spatial features, the local spatial features, and the spectral features.
The proposed network model of the GCN and the 3-D CNN fusing with the strategies
of -A, -M, or -C is constructed. Additionally, it is trained to learn the best weights of the
three features. The simulated data and the measured data are used to demonstrate the
performance of the proposed methods (-A, -M, and -C), and the 3-D CNN, the CNMF, and
the TD are chosen as comparative methods. The overall accuracy of the proposed methods
can be kept at 85–90%, and their kappa coefficients remain around 0.8, among which the
proposed method-A has the best overall performance. Moreover, in the simulated data,
the proposed methods and the comparative methods all perform well; in the measured
data, the proposed methods perform more strongly than the comparative methods. This
indicates that the proposed methods can improve the material identification performance
under complex illumination conditions with high accuracy and strong robustness.

In future work, we plan to measure more hyperspectral images of the space target
under different imaging conditions and verify the performances of the proposed method
and other advanced methods on these images, determining the state-of-the-art (SOTA)
methods and making the proposed method more convincing. Additionally, we will research
the material identification of the space target under non-ideal imaging conditions to further
improve the applicable scope and robustness of the proposed method, conduct space target
status recognition, and pose estimation research.
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