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Abstract: With the development of deep learning and remote sensing technologies in recent years,
many semantic segmentation methods based on convolutional neural networks (CNNs) have been
applied to road extraction. However, previous deep learning-based road extraction methods primarily
used RGB imagery as an input and did not take advantage of the spectral information contained in
hyperspectral imagery. These methods can produce discontinuous outputs caused by objects with
similar spectral signatures to roads. In addition, the images obtained from different Earth remote
sensing sensors may have different spatial resolutions, enhancing the difficulty of the joint analysis.
This work proposes the Multiscale Fusion Attention Network (MSFANet) to overcome these problems.
Compared to traditional road extraction frameworks, the proposed MSFANet fuses information from
different spectra at multiple scales. In MSFANet, multispectral remote sensing data is used as an
additional input to the network, in addition to RGB remote sensing data, to obtain richer spectral
information. The Cross-source Feature Fusion Module (CFFM) is used to calibrate and fuse spectral
features at different scales, reducing the impact of noise and redundant features from different
inputs. The Multiscale Semantic Aggregation Decoder (MSAD) fuses multiscale features and global
context information from the upsampling process layer by layer, reducing information loss during
the multiscale feature fusion. The proposed MSFANet network was applied to the SpaceNet dataset
and self-annotated images from Chongzhou, a representative city in China. Our MSFANet performs
better over the baseline HRNet by a large margin of +6.38 IoU and +5.11 F1-score on the SpaceNet
dataset, +3.61 IoU and +2.32 F1-score on the self-annotated dataset (Chongzhou dataset). Moreover,
the effectiveness of MSFANet was also proven by comparative experiments with other studies.

Keywords: deep learning; semantic segmentation; attention mechanism; multispectral remote
sensing data

1. Introduction

Remote sensing technology and data play an essential role in Earth science research.
Its research on the automatic extraction of road information from remote sensing im-
ages has a wide range of application areas [1–4], such as autonomous driving [5], traffic
management [6] and updating GIS databases [7]. Roads in high-resolution remotely-sensed
images usually have the following characteristics: the road is elongated, has two distinct
edges, and the texture and grayscale inside the road are often different from those of
neighboring areas. Earlier work mainly considered mining road features in images, includ-
ing radial, geometric, topological, and textural [8–10], and morphological features [11,12]
and regional growth algorithms [13,14]. Yager et al. [15] implemented road recognition
using support vector machines based on edge features, but the accuracy was unsatisfactory.
Storvik et al. [16] effectively utilized different spatial resolution images acquired from
satellites by integrating multi-resolution image data and Bayesian classification algorithms.
The iterative conditional mode (ICM) algorithm gives the final road classification results.
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However, these well-designed methods are usually target-specific, have low robustness,
and are unsuitable for complex environments. The following problems exist in practice:
(1) manual feature design requires a lot of time and must be combined with expert knowl-
edge; (2) the effectiveness of these methods depends on several well-designed threshold
standards, and traditional methods achieve low accuracy in complex environments, given
that threshold settings fluctuate between different scenes.

Road extraction methods using deep learning have received much attention from
researchers recently. They have made impressive progress due to their ability to utilize
large amounts of data more efficiently than traditional methods. In deep learning methods,
the road extraction problem is described as a semantic segmentation problem, where each
pixel point of an image is assigned to a class to determine whether it is a road. Many
classical semantic segmentation models have been directly applied to the road extraction
problem, such as the fully convolutional network (FCN) [17], LinkNet [18], UNet [19], and
HRNet [20]. Some researchers have designed unique network structure roads for road
features. D-LinkNet expands the receptive field and integrates multi-scale features in the
central part while retaining detailed information. In DDU-Net [21], the introduced DCAM
uses dilated convolutions for receptive field expansion and multi-scale feature fusion, and
uses a spatial channel attention mechanism to realize attention perception. Therefore, more
details can be recovered from feature maps and the performance of road extraction in
complex environments can be improved. SDUNet [22] builds a structure-preserving model
called DULR to explore continuous cues at the spatial level and mitigate information loss,
predicting high-resolution road masks using the capabilities of feature encoding based on
dense blocks and spatial context information. However, the CNN-based road extraction
method is challenging to balance the resolution and perceptual range of the feature map.
Moreover, the detailed information contained in the feature map with global dependencies
will be continuously decreased when the convolutional layer depth increases. Expanding
the receptive field based on dilated convolutions and fusing road features at different
scales have proven to be feasible solutions. However, implementing high-precision road
extraction algorithms based on deep learning methods is still challenging.

In addition, with the continuous development of remote sensing technology, the
volume of remote sensing data has grown significantly. In contrast, a wealth of multi-
source and multimodal data has emerged, such as visible imagery (VIS), multispectral
imagery (MSI), synthetic aperture radar (SAR), and light detection and ranging (LiDAR).
Many researchers are keen to use these images to extract road information and have made
progress [23–25], but usually, these methods use only single-source data. Different data
sources can express different feature information of ground road objects, so fusing different
modalities obtained from multiple data sources can achieve better road extraction results.
Some approaches have started to explore how road extraction accuracy can benefit from
multimodal image information by using complementary features provided by different
types of remote sensors [26]. However, there are significant differences in the features
expressed between multimodal data generated by different sensors, which may introduce
multiple noises when using data from multiple sources. In addition, there are differences in
the image resolution of different modal data on the same feature due to sensor limitations.

Inspired by the above discussion, a multiscale Fusion Attention Network (MSFANet)
that fuses complementary RGB Pansharpened images and multispectral images is proposed
in this paper. Specifically, MSFANet introduces additional multispectral data from which
road information is mined. The attention mechanism calibrates different modal data,
generates multiscale features, and mines the global contextual information to enhance
the semantic representation, providing a general and highly accurate solution for road
information extraction. The main contributions of this work are summarized as follows:

(1) Firstly, we designed the cross-source feature fusion module to generate feature maps
at different scales to exploit the semantic representation at different scales and cal-
ibrate RGB and multispectral features at different scales by a lightweight attention
mechanism to avoid the multiple noises generated by different data;
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(2) After the HRNet multiscale encoder, we construct a multiscale semantic aggregation
decoder to obtain global contextual information in spatial and spectral dimensions
using a self-attentive mechanism and fuse and decode feature maps and contextual
information at different scales layer by layer to optimize road segmentation results;

(3) By combining CFFM and MSAD, MSFANet’s performance evaluation implementation
on our self-built Chongzhou road dataset and SpaceNet road dataset can show that our
proposed model can improve the performance of road extraction and outperform the
state-of-the-art models while being competitive in terms of the number of parameters
and computational efficiency.

The rest of the paper is organized as follows. Section 2 discusses related work to
provide background knowledge for our proposed approach. Section 3 shows the overall
structure of our proposed MSFANet and the details of each module. Section 4 shows the
dataset, implementation details, and experimental results. The experimental results are
analyzed and discussed in Section 5. Finally, Section 6 concludes the study and discusses
future work.

2. Related Research

This section introduces some related work in our study, which consists of four parts:
Development of Semantic Segmentation Backbone, Segmentation in Remote Sensing Road
Extraction, Attention Mechanisms, and Multi-source Data in Remote Sensing Segmentation.

2.1. Development of Semantic Segmentation Backbone

With the development of deep learning and remote sensing image acquisition tech-
niques, novel methods based on convolutional neural networks have received significant
attention in road information extraction tasks. When using deep learning methods, the road
information extraction problem is described as a semantic segmentation problem, which
classifies each pixel on a remotely sensed image as a road or a background. The proposed
FCN [17] method provides a basic framework for the semantic segmentation model for
the first time: replacing the fully connected layer in traditional CNN with convolutional
layers and obtaining pixel-level segmentation results by upsampling feature maps. Based
on the FCN framework, some studies have further explored the potential of deep learning
methods, e.g., UNet [19] with symmetric encoder-decoder structure and skip connections;
PSPNet [27] combining multiscale features with contextual relationships; Deeplabv3+ [28]
considering an improved atrous spatial pyramid pooling structure and Xception network.
Moreover, HRNetV2 uses multiscale branching to reduce scale feature loss and improve
feature representation [20].

2.2. Segmentation in Remote Sensing Road Extraction

Few studies have designed more effective and targeted structures based on road
characteristics, considering the complexity of remote-sensing images. For example, D-
LinkNet [29] improves the original LinkNet [18] by adding the dilated convolution layer
and jump connections to expand the perceptual field while preserving detailed information.
Sat2Graph [30] combines segmentation-based and graph-based road extraction methods to
map the road extraction problem to detect road edges and vertices, solving the problem
of inferring stacked roads such as highway overpasses. HsgNet [31] introduces a Middle
Block with the self-attention mechanism in LinkNet to preserve global and second-order
spatial information considering the long span, connectivity, and slenderness of roads. In
SDUNet [22], a spatial inference module called DULR is introduced to enhance the spatial
relationships between different location features using spatial CNNs in four directions to
explore road spatial relationships and continuous surfaces. DBRANet [32] proposes a dual-
branch network module (DBNM) in the encoding stage to construct more effective features.
In the decoding stage, considering the meandering shape and unbalanced distribution of
roads in remote sensing images, a Regional Attention Network Module (RANM) is designed
to automatically learn the importance of each channel based on regional information. NL-
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LinkNet [33] proposes an efficient non-local LinkNet with non-local blocks (NLB), which
can understand the relationship between global features. This enables each spatial feature
to refer to all other contextual information, leading to more accurate road segmentation.
In general, existing deep learning road extraction methods mainly have the following
improvement strategies: increasing the receptive field of the deep network, mining the
spatial relationship of the road from the self-attention structure, and retaining feature
information from multi-scale features.

2.3. Attention Mechanisms

Since non-local [34], SENet [35], CCNet [36], and other models introduced attention
mechanisms into deep learning networks, many attention-based methods have been pro-
posed and proved to be beneficial to the improvement of semantic segmentation accuracy.
DANet [37] constructs a position attention module to learn the correlation of spatial features
through the self-attentive mechanism and proposes a channel attention module to model
the correlation of channel to integrate local features and global dependencies to improve
the feature representation of semantic segmentation. Li et al. [38] combine the attention
mechanism and pyramid structure to replace the complex null convolution and argue the
importance of global contextual information in semantic segmentation. The attention-based
mechanism enables the network to learn global and long-range semantic information,
compensating for the information loss generated by the convolutional operation but also
bringing a sizeable computational pressure, raising the number of parameters and inference
time of the network.

2.4. Multi-Source Data in Remote Sensing Segmentation

In addition, with the increase in the variety of sensors onboard remote sensing satel-
lites, multiple data sources can be obtained for the same area, such as depth images, SAR
images, hyperspectral images, LiDAR radar images, and DSM digital surface models. Some
research methods [26,39–41] are no longer limited to RGB remote sensing image data but
start considering other sources and even multi-source data. In MFNet [42], two multi-source
fusion modules, IMFintra and IMFinter, are designed to learn the complementary features
and cross-modal interdependencies between the two modalities using multi-source VHR
aerial images and LiDAR data. Cao et al. [43] developed a cross-modal feature recalibration
module (CFR) to aggregate IRRG and DSM data and avoid noise interference between
two sources of information. Osmar et al. [44] explored the application of combining mul-
tispectral and RGB data for panoramic segmentation on a beach environment, using a
Panoptic-FPN architecture with a ResNeXt-101 backbone to improve the segmentation
accuracy significantly.

3. Methodology

In this section, we first introduce the basic HRNet structure, then illustrate the frame-
work of our proposed MSFANet, and provide a detailed description of each module in
MSFANet.

3.1. The Structure of HRNet

As shown in Figure 1, the input of HRNet [20] (size as H ×W × C) is first reduced in
size to 1

4 by Stem Block (two convolutional layers with 3× 3 convolutional kernels and
two strides), and the number of channels of the feature map is increased to 64. Then,
HRNet starts from the high-scale feature branch, keeps the high-resolution features, and
downsamples the high-scale feature map to provide the other three parallel-scale feature
branches. In addition, the feature maps are fused between the different scale branches, and
the fusion method is shown in Figure 2, namely low-scale feature upsampling to a large
scale via nearest neighbor interpolation upsampling and 1 × 1 convolution, and relatively
high-scale features downsampling to low scale by convolution.
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Figure 1. The structure of HRNet, the rectangular blocks represent the feature map, the color of the rect-
angular blocks illustrates the different scale branches in HRNet, and ‘→’ refers to convolution operations.

HRNet-How to 
fusion in differ 
layer:

Feature maps

Upsampling(1 × 1)

Conv(3×3)

Figure 2. Explains how HRNet fuses information from different scales; Conv (3 × 3) is the convo-
lution of stride 3 × 3 and upsampling (1 × 1) is the combination of nearest neighbor interpolation
upsampling and 1 × 1 convolution.

The resolution and number of channels on each branch are H
4 ×

W
4 × C, H

8 ×
W
8 × 2C,

H
16 ×

W
16 × 4C, and H

32 ×
W
32 × 8C. In the HRNet paper, the value of the number of channels

C can be set by oneself, and it is divided into HRNet_W18 (W18 indicates the width,
which means the number of channels is 18), HRNet_W32 and HRNet_W48. To obtain the
semantic segmentation output, HRNet upsamples the output of the feature on the four
branches to the same size and then mixes them to generate the prediction results. This
article uses the HRNet_W32 encoder because it balances operational efficiency and network
performance. The multi-branch parallel structure of HRNet considers the acquisition of
spatial information. Still, it cannot consider the global contextual information, and the final
decoder part loses much multiscale information due to simple scaling.

3.2. Architecture of MSFANet

In order to improve the shortcomings of HRNet and introduce a multi-source data
input, we designed the structure of MSFANet. Figure 3 shows the network structure
of MSFANet, which mainly consists of cross-source feature fusion, HRNet encoder, and
multiscale semantic aggregation. Firstly, the multiple-scale feature maps are obtained on
RGB and hyperspectral images by stacking convolutional layers separately. The Cross-
source Feature Recalibration Module (CFRM) achieves feature recalibration and fusion
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at each scale. Second, HRNet is a feature encoder to obtain semantic information at four
scales. However, here HRNet does not directly derive segmentation results but aims to
obtain semantic features of different branches. Next, multiscale semantic aggregation is
used to reconstruct the high-resolution features, expand the perceptual field, and obtain
the contextual information using the dual-attention structure. Then, progressively fuse the
four scale branches using the low-to-high structure to obtain the segmentation results.

St
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SFM
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Dual Attention
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Stem block
Basic block
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C Concatenate

High-scale branch feature Medium-scale branch feature

Low-scale branch feature Final-scale branch feature 

Basic block×4
Final Layer

Cross Source Feature Fusion Multiscale Semantic Aggregation Decoder

↑

↑ 4× Upsampling

Figure 3. The overall structure of MSFANet.

3.3. Cross-Source Feature Fusion Module

When we use RGB images and hyperspectral images as network inputs, the apparent
problem is the difference in the resolution of the two images. In addition, the additional
data, although providing more information, also introduces more noise leading to bias in
extracting features. Introducing multiple data sources focuses on how to solve these two
problems. The Cross-source Feature Fusion Module (CFFM) solves the problem in two
ways: (1) by generating feature maps to exploit the semantic representation at different
scales, and (2) by fusing multi-source data (RGB and multispectral images) using additional
multispectral data to complement the features to enhance the feature representation. The
structure of the CFFM is shown on the right of Figure 3.

For this purpose, we first extract feature maps at different scales from RGB and
hyperspectral images using the convolution module, respectively. Then, we fuse the RGB
and hyperspectral feature map pairs at the same scale by Cross-source Feature Recalibration
Module (CFRM), where the attention mechanism is used to calibrate the two feature maps.
As shown in Figure 4, we generate two feature vectors from the RGB and hyperspectral
feature maps with the same channels as the input feature maps. The feature vectors are
used to learn the dependency on each channel and adjust the feature maps according to the
dependency. The parameters of the feature vectors can be continuously updated with the
training process to filter the noise and highlight the key information. As shown on the left
side of Figure 3, the fusion of features at three scales is achieved, providing the calibrated
fused feature information at different resolutions from low to high. The fused features
are used as input to the HRNet encoder. The method of generating feature vectors is
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shown in Figure 4, which consists of two main parts: Squeeze and Excitation. Squeeze(Fsq)
compresses the original feature map to the dimension of 1× C× C:

zc = Fsq(Fc) =
1

W × H

W

∑
i=1

H

∑
j=1

Fc(i, j) (1)

where zc is the compressed vector, c represents the cth element of z, and W and H are the
width and height of the original feature map.

FRGB
H ∗ 𝑊𝑊 ∗ 𝐶𝐶

𝐹𝐹𝑠𝑠𝑠𝑠(�)
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1∗1∗ C 1∗1∗ C

1∗1∗ C 1∗1∗ C

Figure 4. The process of Cross-source Feature Recalibration Module (CFRM).

Excitation (Fex) contains two fully connected layers with two nonlinear activation
functions, and the feature vector learns the required weight information from Excitation,
whose formula is given. The final fused feature information is the sum of the RGB and
hyperspectral recalibration feature maps.

S = Fex(z, W) = σ(g(z, W)) = σ(W2, δ(W1, z)) (2)

Ff used = SRGB · FRGB + SMSI · FMSI (3)

3.4. Multiscale Semantic Aggregation Decoder

When HRNet performs semantic segmentation, one obvious problem is that in the
final encoder part, it only upsamples four different scales of feature maps to the highest
resolution and then performs the Concat operation. It then obtains the segmentation results
in a convolutional layer. The disadvantage is obvious: the decoding process needs to
be simplified, but we must take full advantage of the information in the different scale
branches. In addition, the direct up-sampling to the highest resolution also results in much
information loss. The lowest branch feature map requires an 8× up-sampling, which is an
unacceptable loss.

We propose a Multiscale Semantic Aggregation Decoder (MSAD) to address this
problem. The structure of MSAD can be seen on the right side of Figure 3. First, we use
the global context-aware module to construct the global information of the network in
spatial and channel dimensions from the feature maps of the lowest-resolution branches.
The structure of the global context-aware module contains a convolutional branch and
a dual self-attention branch, which is inspired by DANet [37]. It consists of a position
self-attention module (PAM) and a channel self-attention module (CAM), which improves
the focus on the road target and enhances the network’s capability. Introducing PAM
and CAM allows us to capture spatial global dependence information and the importance
of different channel dimensions. In the dual attention branch, the feature map output
by the HRNet encoder is subjected to PAM and CAM computations to obtain the spatial
dependency between any two positions in the feature map and the channel dependency
between any two channels. Finally, the outputs of the two attention modules are fused to
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further improve the feature representation. The formula for the dual attention module is
as follows:

FDA = FPAM + FCAM = PAM(Fin) + CAM(Fin) (4)

where FDA is the output of the dual self-attention module, FPAM and FCAM are the feature
maps computed by PAM and CAM, respectively, the PAM() and CAM() representing the
position and channel attention operations, Fin is the input of the dual self-attention module.

For later description, we agree on the following notation: C, H, and W denote the
channel, height, and width of the feature map for computing attention. Q, K, and V refer
to the attention mechanism’s query, key, and value features. The structure of the PAM is
shown in Figure 5. In the PAM, the input of C× H×W generates three feature maps. After
two of them are convolved, the number of channels becomes C

8 × H ×W, which is used as
the Q and K in the attention mechanism to compute the spatial attention probability map of
shape (H×W)× (H×W). PAM uses a spatial attention map to select aggregating contexts.
PAM also has a global contextual view. Semantic features improve intra-class compactness
and semantic consistency. Subsequently, reshape the attention graph and obtain the final
prediction graph. The structure of the PAM calculation is shown in Equations (5) and (6),
where AttPAM is the attention probability map obtained by PAM, Input is the input to
the PAM module, and FPAM is the result of the feature map calculated by PAM. .reshape()
is a reshape operation. The subscripts represent the dimensions of the corresponding
feature maps.

AttPAM = so f tmax(Q(HW×C) · K(C×HW)) (5)

FPAM = (V(C×HW) · AttPAM).reshape(C× H ×W) + Input(C×H×W) (6)

𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

C
8

× 𝐻𝐻 × 𝑊𝑊

𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

(H × W)× (H × W)

𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

Softmax
Conv

transpose

C
8

× 𝐻𝐻 × 𝑊𝑊

Figure 5. Illustration of the structure of PAM.

The structure of CAM is shown in Figure 6 and is similar to PAM. However, the
computed feature probability map is C×C, which aims to focus on the connection between
different feature channels. CAM is similar in structure to PAM, the first difference being that
there are fewer channels, so there is no need to change the shape of the feature map using
convolution to reduce the number of operations. The other difference is that the shape of the
generated attention weight map is changed, as CAM focuses on the connections between the
different channels of the features. In the network structure, CAM establishes the influence
relationship between the features of different channels by swapping the position of the dot
product of the location attention module and the shape of the generated attention weight
map is (C × C). Because of the variation in the feature probability map, CAM does not
need to reduce the dimensionality of Q and K using the convolution operation to reduce
the computation. The structure of CAM calculation is shown in Equations (7) and (8).
where AttCAM is the attention probability map obtained by CAM, Input is the input to the
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CAM module, and FCAM is the result of the feature map calculated by CAM. .reshape()
is a reshape operation. The subscripts represent the dimensions of the corresponding
feature maps.

AttCAM = so f tmax(Q(C×HW) · K(HW×C)) (7)

FCAM = (AttCAM ·V(C×HW)).reshape(C× H ×W) + Input(C×H×W) (8)

𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

𝐶𝐶 × 𝐶𝐶

𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

Softmaxreshape
reshape

transpose

Figure 6. Illustration of the structure of CAM.

After the global context-aware module, the obtained feature maps are progressively
fused with different branch feature maps by the Smooth Fusion Module (SFM). The struc-
ture of the Smooth Fusion Module is shown in Figure 7. The purpose of the SFM is to
continuously connect multiscale information from different branches to enhance the fea-
ture representation of the network by gently increasing the resolution of the feature map
without losing too much information due to aggressive upsampling operations. Finally, we
concatenate all the feature maps after SFM to enhance the global information representation
of each feature map and thoroughly learn the feature information at different scales. After
that, we obtain the road segmentation results from the final feature maps output by the last
layer of convolution.

ReLUBatch NormalizationConv(3x3)

↑ 2X Upsampling

↑

ADD

2𝐶𝐶 ×
𝐻𝐻
2

×
𝑊𝑊
2

𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

2𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊 𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

Figure 7. Illustration of the structure of the Smooth Fusion Module.
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4. Experiments

We validate the effectiveness of MSFANet by conducting comprehensive experiments
on our Chongzhou road dataset and the publicly available SpaceNet road dataset [45].
We compare the proposed method with other road extraction methods. In addition, we
use HRNet and our method for ablation experiments. In addition to the experiments
of the proposed method, we compared seven deep learning methods: LinkNet [18],
DLinkNet [29], HRNet [20], CCNet [36], DANet [37], DBRANet [32] and NLLinkNet [33].
D-LinkNet, DBRANet and NLLinkNet are models focusing on road extraction from remote
sensing images. CCNet and DANet are characterized by the use of self-attention structures.
HRNet is the baseline method of our proposed method. All comparison networks follow
the architecture in the original papers, i.e., we did not change their structure. We conducted
two separate experiments on Chongzhou and SpaceNet datasets. The first experiment was
conducted on the Chongzhou dataset, and the second experiment was conducted on the
SpaceNet dataset. In order to ensure fairness, no pre-trained weights and no additional
data were used in the training process.

4.1. Dataset Descriptions
4.1.1. Chongzhou Road Dataset

The remote sensing image source for our self-constructed Chongzhou dataset is from
the Worldview3 satellite taken on 13 May 2018, in the Chongzhou region of Sichuan
Province, China. The high-resolution WV-3 image contains eight (1.2 m) spectral bands
and one panchromatic band (0.3 m), and each band and the corresponding wavelengths are
shown in Table 1. We apply the panchromatic sharpening method to obtain high-resolution
RGB-pansharpening images, combining the spatial information of the panchromatic band
and the spectral information of the multispectral band. Therefore, this dataset contains two
source images, the three-band RGB-pansharpening image and the eight-band hyperspectral
image. For convenience, the three-band RGB-pansharpening image will be directly referred
to as the RGB image in subsequent papers.

Table 1. Worldview3 sensor bands with corresponding wavelengths.

Band Name Spectral Band

Panchromatic Band 450–800 nm
Coastal Blue 400–450 nm

Blue 450–510 nm
Green 510–580 nm
Yellow 585–625 nm

Red 630–690 nm
Red edge 705–745 nm
Near-IR1 770–895 nm
Near-IR2 860–1040 nm

The three-band RGB image size is 22,904 × 23,592, corresponding to the eight-band
hyperspectral data size of 5726 × 5898. We crop the image to extend the dataset by
using a 1024× 1024 cropping area on the RGB data, and to keep the cropped areas still corre-
sponding to each other, the cropping area on the hyperspectral data
is 256 × 256. The cropped data are divided into training, validation, and test sets. We
performed data enhancement on the training set, including rotation and flip operations.
Finally, we obtained a training set containing 4140 training images, 92 validation images,
and 180 test images. An example of imagery from the Chongzhou dataset can be seen in
Figure 8.
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Figure 8. Overview of the Chongzhou dataset area from (a) the whole area of the Chongzhou data,
the box is the sub-area of the display; (b) RGB-pansharpening image of sub-area; (c) panchromatic
band image of sub-area; (d) coastal blue band image of sub-area; (e) blue band image of sub-area;
(f) green band image of sub-area; (g) yellow band image of sub-area; (h) red band image of sub-area;
(i) red edge band image of sub-area; (j) near-IR1 band image of sub-area; (k) near-IR2 band image of
sub-area.

4.1.2. Spacenet Road Dataset

The Spacenet dataset [45] provides WorldView3 satellite data for four regions, Las
Vegas, Paris, Shanghai, and Khartoum with three-band RGB-pansharpening images with a
ground resolution of 30 cm/pixel and a pixel resolution of 1300× 1300 per image and eight-
band hyperspectral images with a ground resolution of 120cm/pixel and a pixel resolution
of 325× 325 per image. Since the Spacenet dataset provides annotations of road centerlines,
we need to pre-process the dataset to apply it to semantic segmentation. First, we convert
the 11-bit images of the original dataset to eight-bit images, create a road mask based
on the road centerlines, and obtain a new dataset. To increase the train set and facilitate
training, we create four 512× 512 cropping regions for each RGB-pansharpening image and
four 128 × 128 cropping regions on the hyperspectral images in the corresponding regions.
Then, we divided the dataset into training, test, and validation sets according to the
Batra et al. [46] division for training. Finally, we obtained about 18,000 training images,
3500 test images and about 1,200 validation images. Some images of different regions in
the SpaceNet dataset are shown in Figure 9.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 9. Overview of the SpaceNet dataset area from (a,b) Khartoum; (c,d) Shanghai; (e,f) Paris;
(g,h) Vegas.

4.2. Implementation Details and Metrics

Table 2 shows the experimental setup on two training sets, all models were trained
and tested on an NVIDIA 3090TI 24GB graphics card, and we implemented the proposed
models and other network architectures in the Pytorch framework. We use the poly learning
rate policy to improve the efficiency of training, which is represented as follows:

lr = initial_lr(1− iter
max_iter

)power (9)

lr refers to the learning rate. Furthermore, initial_lr is the initial learning rate set as 0.001
at training time, iter is calculated based on the current epoch, max_iter is the product
of the training epoch, and the number of training set images. Power is set to 0.9 as a
hyperparameter.

Table 2. Experiment settings.

System Ubuntu 18.04.6

HPC Resource NVIDIA GeForce RTX 3090 Ti

DL Framework Pytorch V1.11.0

Compiler Python V3.9.12

Optimizer AdamW

Loss Function CEloss

Learning Rate 0.001

LR Policy PolyLR

Batch Size 4 (ChongZhou), 8 (SpaceNet)

We use the cross-entropy loss as the loss function, defined as Equation (10). Where N
is the total number of classes, y and y’ are the semantic labels and the network’s predic-
tions, respectively.

Lce = −
1
N

N

∑
i=0

(y log y
′
+ (1− y) log (1− y

′
)) (10)
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Since roads occupy only a tiny part of the image in the road segmentation task and
most of it is background, which leads to severe class imbalance, it is more appropriate to
use F1 score, mIoU, and road IoU metrics to judge the network effect. During the testing
phase, we evaluate the network performance using five metrics: Precision, Recall, F1_score,
IoU, and mIoU. The formula is shown below:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(11)

F1_score =
2× precision× recall

precision + recall
(12)

IoU =
TP

TP + FP + FN
(13)

mIoU =
1

k + 1

k

∑
i=0

TP
TP + FP + FN

(14)

P, N, TP, FP, and FN represent the positive, negative, true positive, false positive, and
false negative pixels in the prediction map, respectively.

4.3. Results and Analysis

Table 3 presents the quantitative experimental results of the six evaluation models on
the Chongzhou data set. In addition to our proposed method, we also tested and compared
it with the other seven methods: LinkNet [18], D-LinkNet [29], HRNet [20], CCNet [36],
DANet [37], DBRANet [32], and NL-LinkNet [33]. Table 2 shows that our proposed method
outperforms LinkNet, D-LinkNet, HRNet, CCNet, DANet, DBRANet, and NL-LinkNet in
terms of F1 score by 3.88%, 1.48%, 2.32%, 0.82%, 3.73%, 0.39%, and 1.7%. In IoU, it is better
than LinkNet, D-LinkNet, HRNet, CCNet, DANet, DBRANet, and NL-LinkNet, with 5.9%,
2.33%, 3.61%, 1.29%, 5.75%, 0.6% and 2.65%. In terms of recall, CCNet is slightly higher
than our method. However, in terms of accuracy, IoU, mIoU and F1 score, our method
performs better than the other methods.

Figure 10 shows the segmentation results of each network based on each Chongzhou
dataset. The segmentation results are divided into three categories after comparing with
the labels:

(1) TP is the result of correct segmentation, colored green.
(2) FP is the result of labeled background but identified as a road during segmentation,

colored blue.
(3) FN is the result of the road not being identified during segmentation, colored red.

Figure 10 shows that MSFANet performs well for road extraction in multiple complex
scenes with high robustness. The figure shows that most road areas can be extracted
correctly by these six methods, but there are still some segmentation errors. The analysis of
these errors also shows the excellence of MSFANet compared with other methods.
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Table 3. Evaluation results obtained by IoU (%), mIoU (%), F1-score (%), precision (%) and recall (%)
on the Chongzhou and SpaceNet datasets. Best results are shown in bold.

Method IoU mIoU Recall Precision F1

ChongZhou Dataset

LinkNet [18] 72.87 85.99 85.60 83.00 84.28

DLinkNet
[29] 76.44 87.85 89.30 84.20 86.68

HRNet [20] 75.16 87.19 89.10 82.80 85.84

CCNet [36] 77.48 88.39 90.50 84.40 87.34

DANet [37] 73.02 86.07 85.60 83.30 84.43

DBRANet
[32] 78.17 88.74 90.50 85.20 87.77

NLLinkNet
[33] 76.12 87.68 89.30 83.80 86.46

Ours 78.77 89.05 90.20 86.20 88.16

SpaceNet Dataset

LinkNet 58.13 76.55 69.70 77.70 73.48

DLinkNet 59.79 77.44 72.80 77.00 74.84

HRNet 55.07 74.88 65.30 77.80 71.00

CCNet 59.27 77.18 71.40 77.80 74.46

DANet 60.16 77.66 72.90 77.50 75.13

DBRANet 59.66 76.83 88.20 71.00 73.97

NLLinkNet 58.77 76.87 76.70 71.50 74.01

Ours 61.45 78.38 74.50 77.80 76.11

(a)                       (b) (c) (d) (e) (f) (g) (h)                     (i)                       (j)

TP FP FN

Figure 10. Results of road extraction on the Chongzhou dataset. (a) RGB satellite imagery. (b) Ground
truth. (c) LinkNet. (d) D-LinkNet. (e) HRNet. (f) CCNet. (g) DANet. (h) DBRANet. (i) NL-LinkNet.
(j) MSFANet.
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From the first rows, based on MSFANet, we can benefit from the extraction of diverse
information from different spectra, improve the connectivity and smoothness of the road
extraction in the occluded region, and suppress the generation of some erroneous extrac-
tions. The second row shows the results of different methods for segmentation when the
road is occluded by shadows and other dense features (complex background scenes). It can
be seen that the difficulty of recognition in the heavily occluded area increases significantly,
and the three methods, HRNet, CCNet, and DANet, can hardly recognize the specific area.
Our proposed method is more effective in extracting this part of the road. In the third
and fourth rows, examples are shown to evaluate the effectiveness of each method when
the road colors (RGB, visual) are similar or when the semantic information around the
road is very similar, generating interference. All six networks produce some degree of
incorrect segmentation results in these regions due to the interference of similar information.
However, MSFANet is more effective in suppressing some false recognition and optimizing
the segmentation fineness in some regions.

In addition to the experiments on our self-built Chongzhou dataset to illustrate the
model’s generalization, we also conducted tests on the publicly available SpaceNet. The
quantitative results of the eight methods on the SpaceNet dataset are also shown in Table 3.
In terms of IoU metrics, MSFANet outperforms HRNet, LinkNet, D-LinkNet, CCNet,
DANet, DBRANet and NL-LinkNet by 6.38%, 3.32%, 1.66%, 2.18%, 1.29%, 1.79%, and
2.68%, respectively. Regarding F1 scores, MSFANet is higher than HRNet, LinkNet, D-
LinkNet, CCNet, and DANet by 5.11%, 2.63%, 1.27%, 1.65%, 0.98%, 2.14%, and 2.1%,
respectively. The increase in metrics proves the superiority of MSFANet on the SpaceNet
dataset.

Recall indicates the percentage of correctly predicted roads. The recall value of MS-
FANet on the SpaceNet dataset is at the same level as other methods, proving the MSFANet
network’s segmentation ability. As for the accuracy rate, MSFANet significantly improved
compared to other methods. The accuracy rate illustrates the correctness of all the road pre-
diction results, showing that MSFANet can suppress the error of identifying the background
as a road on the SpaceNet dataset.

From Figure 11, MSFANet segmentation in SpaceNet has an advantage in suppressing
errors. In addition, it can be seen from the second and third rows that the segmentation
results obtained by MSFANet identify some regions that are difficult to identify by other
networks. Compared with other models, our results show better continuity on the road, as
in the first and fourth rows. In the fourth row, the road feature in the lower right corner is
difficult to recognize on the RGB image, which makes the other reference models produce
incorrect segmentation. In contrast, MSFANet can extract road results better due to the
introduction of multispectral data and global contextual information.

Compared with other networks, MSFANet obtains better segmentation results in many
cases, even in complex scenes. On the one hand, introducing multispectral data allows
MSFANet to optimize the extraction of some occlusion and semantic information similar
to regions. On the other hand, the fusion of multiscale features and the consideration of
contextual information refine the extraction results. Overall, MSFANet extracts complete
and connected roads than other methods. It also achieves better results for narrow roads
and occlusion problems where the roads are close to the background features.
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(a)                     (b) (c) (d) (e) (f) (g) (h)                       (i)                      (j) 

TP FP FN

Figure 11. Results of road extraction on the SpaceNet dataset. (a) RGB satellite imagery. (b) Ground
truth. (c) LinkNet. (d) D-LinkNet. (e) HRNet. (f) CCNet. (g) DANet. (h) DBRANet. (i) NL-LinkNet.
(j) MSFANet.

4.4. Ablation Study

To demonstrate the effectiveness of introducing multispectral data and our proposed
module, we performed two ablation experiments on the Chongzhou and SpaceNet datasets.
The following experiments were executed using the same setup. The experiments are shown
in Table 4, with X indicating that the corresponding module is used. Multispectral means
adding multispectral data as input, CFFM means using Cross-source Feature Fusion Module,
and MSAD means the decoder part is the Multiscale Semantic Aggregation Decoder.

Table 4. Ablation study results obtained by IoU (%), mIoU (%), F1-score (%), precision (%) and recall
(%) on two datasets. Best results are shown in bold.

Methods Multi
Spectral CFFM MSAD IoU mIoU F1 Precision Recall

Chongzhou dataset

HRNet 75.16 87.19 85.84 82.80 89.10
HRNet X 77.69 88.50 87.47 84.90 90.20

MSFANet X 77.03 88.16 89.90 84.30 87.01
MSFANet X X 75.87 87.55 86.29 84.00 88.70
MSFANet X X 77.90 88.60 87.60 85.60 89.70
MSFANet X X X 78.77 89.05 88.16 86.20 90.20

SpaceNet dataset

HRNet 55.07 74.88 71.00 65.30 77.80
HRNet X 55.81 75.23 71.66 67.70 76.10

MSFANet X 60.52 77.88 75.41 72.90 78.10
MSFANet X X 57.74 76.25 73.21 71.60 74.90
MSFANet X X 59.84 77.40 74.90 74.80 75.00
MSFANet X X X 61.45 78.38 76.11 74.50 77.80

The results of the ablation experiments on the SpaceNet dataset are also shown in
Table 4. Compared with the baseline HRNet, IoU increased by 0.74%, and F1 scores
increased by 0.66% when adding multispectral data as input. The IoU and F1 of MSFANet
without multispectral data increased by 2.67% and 2.21%, respectively. In the absence of
MSAD, IoU increased by 4.77%, and F1 increased by 3.9% relative to the baseline HRNet



Remote Sens. 2023, 15, 1978 17 of 23

method. Our improved method increased IoU by 6.38% and F1 by 5.11%, respectively, to
the baseline.

The segmentation results of the two ablation experiments are shown in
Figures 12 and 13. The figure shows that many roads challenging to identify on RGB
images have low segmentation accuracy when multispectral data are not as input. More-
over, introducing the multiscale Fusion Attention Decoder facilitates the optimization of
road connectivity, which is an essential requirement in road segmentation. In summary,
both the multispectral data and the proposed module introduced in MSFANet led to improved
road segmentation results compared with the HRNet network based on RGB data.

(a) (b) (c) (d)

(e) (f) (g)
TP FP FN

(h)

Figure 12. Results of ablation experiments on the Chongzhou dataset. (a) RGB satellite imagery.
(b) Ground truth. (c) HRNet. (d) HRNet with multispectral input. (e) MSFANet without multispectral
input and CFFM. (f) MSFANet without multispectral input. (g) MSFANet without MFAD module.
(h) MSFANet.

(a) (b) (c) (d)

(e) (f) (g)

TP FP FN
(h)

Figure 13. Results of ablation experiments on the SpaceNet dataset. (a) RGB satellite imagery.
(b) Ground truth. (c) HRNet. (d) HRNet with multispectral input. (e) MSFANet without multispectral
input and CFFM. (f) MSFANet without multispectral input. (g) MSFANet without MFAD module.
(h) MSFANet.

Secondly, an interesting experiment contradistinction can be found in rows three and
four of Table 4. When MSFANet includes only the MSAD structure, its accuracy is higher
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than when MSFANet does not include CFFM. An intuitive explanation for this result is
that MSAD effectively improves the accuracy of the proposed method. However, when
multispectral data is directly introduced, the noise and redundant feature information
contained in it leads to a decrease in accuracy. The experimental results of the MSFANet
structure containing both multispectral input and CFFM provide further evidence: the
accuracy of the proposed method is further improved in this case.

5. Discussion
5.1. Visualization Analysis

To further illustrate the advantages of MSFANet and the effectiveness of the adopted
global attention mechanism, we applied Grad-CAM [47] to HRNet and MSFANet using
images from the Chongzhou dataset. Grad-CAM is a visualization method based on the
Class Activation Mapping (CAM) [48] visualization method, which calculates the weight
of feature maps in spatial location based on gradients to express significant relationships.

Figure 14 shows the results of the visualization. The image’s highlighted region
indicates the region the model cares about for a specific category. The closer to red indicates
that the model cares about this region, while the darker region in the image indicates the
region the model does not care. The closer to blue indicates that the model does not care
about this region. In Figure 14, we see that MSFANet’s Grad-CAM mask covers the road
objects better than HRNet’s Grad-mask. Furthermore, MSFANet shows higher weights on
most roads, indicating that MSFANet can extract road targets more accurately.

(a) (b) (c) (d)

Figure 14. Grad-CAM visualization results for (a) the RGB image, (b) the result of fusing the RGB
image with HRNet’s Grad-CAM mask, (c) the result of fusing the RGB image with MSFANet’s
Grad-CAM mask and (d) the label.

We can observe from Figure 14 the following:
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(1) The comparison of activation maps in columns (b) and (c) shows that our proposed
method can learn richer road features, including more detailed semantic represen-
tation information. Compare the activation map with the RGB images and labels in
columns (a) and (d). It can be found that our model can extract more road features
when the road is occluded, which improves the continuity of road extraction. Specific
examples include the road in the upper left corner of the first row that is shaded by
trees, and the road on the right in the second row that is shaded by building shadows.

(2) For other features similar to roads, in our proposed method, the network has better
road extract capability and will not misclassify similar features as roads. This can
be demonstrated from the activation map in the third row. For the land area similar
to the road in the upper left corner of the image, the activation map of MSFANet
has a lower weight in this area, and no misidentification occurs, which improves the
accuracy of the road extraction result.

(3) At the position where the roads are connected, such as the lower right corner of the
first row, the weight of the activation graph at the connection node is lower in the
proposed method. This problem will affect the accuracy of road extraction, and it will
also be solved in our follow-up research.

5.2. Computational Efficiency

We validated the execution time of each network we tested based on the method given
by Chen et al. [49] by using the test network to predict 200 images consecutively with the
batch size set to 1. The final execution time is the average of the total running time, i.e., the
execution time of the network for a single image.

In addition, we calculated the number of parameters constituted by each network. We
compared these data in Table 5, where the IoU metrics given in Table 5 are the test results
of each network on the Chongzhou dataset. Compared with other methods, MSFANet is
the best in terms of IoU (the best performance of road segmentation results), with a slight
increase in parameters compared to HRNet. The running time (execution time) is at the
same level as HRNet. Compared to other methods, the inference time of MSFANet is at the
medium level.

Table 5. Inference time, number of network parameters and IoU metrics of different methods.

Methods Inference Time
(ms/per Image) Parameters (M) IoU (%)

LinkNet 23.4 21.643 72.87

D-LinkNet 93.6 217.65 76.44

HRNet 51.8 29.538 75.16

CCNet 241.8 70.942 77.48

DANet 47.7 47.436 73.02

DBRANet 51.2 47.68 78.17

NLinkNet 42.8 21.82 76.12

MSFANet 48.4 30.25 78.77

To visualize the superiority of MSFANet in terms of computational efficiency, we plot
the information in Table 5 into two graphs, Figures 15 and 16. The vertical coordinates are
both IoU (%), and the horizontal coordinates are the inference time and network parameters.
On both graphs, the closer the coordinates are to the upper left corner indicates that the
network is more accurate and has higher computational efficiency. The two tables show
that MSFANet achieves a better balance of inference time, the number of parameters, and
inference accuracy than other networks.
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Figure 15. The inference time and IoU of each network.

Figure 16. Number of parameters and IoU for each network.

5.3. Summary of MSFANet

Considering the information and different characteristics carried by RGB images and
hyperspectral images, we propose a road extraction network MSFANet, which has the
following advantages:

(1) Use RGB and hyperspectral images as the input of the road extraction network, use
CFFM to calibrate RGB and hyperspectral multi-scale features, and fuse the same scale
features. It avoids the loss of features caused by the mutual influence of RGB image
and hyperspectral image in the feature extraction part due to the huge difference.

(2) MSAD is designed in the decoding stage after the HRNet encoder. The information
loss during upsampling is reduced by a progressive stage fusion strategy. The in-
cluded dual self-attention structure can establish the global relationship between
pixels in remote sensing images.

(3) From the analysis of our experimental results, our method can extract the road features
blocked by obstacles, and the ground objects that can be transplanted and similar to
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the road features are misclassified, which improved the extraction capabilities of the
entire road extraction model.

The above experiments and analysis prove the effectiveness of our algorithm. How-
ever, our method has some shortcomings. The results cannot be extracted well at the center
points where the roads are connected, such as the second and fourth rows of Figure 11.
In addition, the accuracy of network extraction has improved compared with previous
algorithms, but there is still a lot of room for improvement. Therefore, based on the
above deficiencies, we will further improve the method to adapt to different situations in
the future.

6. Conclusions

This paper proposes a multiscale fusion attention network (MSFANet) for multispec-
tral data. We consider the importance of multiscale information and global contextual
information. Different modules are designed in MSFANet to overcome the problems
after introducing multispectral data. The Cross-source Feature Fusion Module aims to
fuse RGB and multispectral data and resolve the errors caused by resolution and spectral
differences during fusion. By introducing the Multiscale Fusion Attention Decoder, we
use multiscale features and contextual image information to optimize the segmentation
results. Through experimental validation and testing on our self-constructed Chongzhou
and SpaceNet public datasets, MSFANet achieves a high prediction accuracy (78.77% IoU
and 88.16% F1 score on the Chongzhou dataset, 61.45% IoU and 76.11% F1 score on
SpaceNet dataset). In addition, inference speed and parameters (inference 48.4 ms per
image and 30.25M parameters) are competitive with the compared superior methods.
Through the analysis of ablation experiments, the improvement of the proposed method in
road extraction is further demonstrated. The introduction of additional multispectral data
can provide rich spectral information, but it needs to reintegrate and fuse features through
CFFM, otherwise it will cause the decline of road extraction accuracy. In addition, MSAD’s
progressive fusion strategy can reduce the information loss in the upsampling process and
optimize the road extraction results. Overall, MSFANet achieves better performance than
other state-of-the-art networks with a slight increase in the number of parameters than the
baseline network. From the visual analysis of Grad-CAM and test results, MSFANet has
better connectivity and integrity than roads extracted by other methods when the road is
blocked by obstacles or the information of the features near the road is similar to the road.

In the subsequent work, we will improve the accuracy rate of the network fusion
spectral information and introduce more remote sensing data with different modes, such
as Synthetic Aperture Radar (SAR) and Digital Surface Model (DSM). Future research will
be conducted on multi-source data fusion with semantic segmentation as the core.
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