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Abstract: Clouds are the major source of clutter in optical remote sensing (RS) images. Approximately
60% of the Earth’s surface is covered by clouds, with the equatorial and Tibetan Plateau regions being
the most affected. Although the implementation of techniques for cloud removal can significantly
improve the efficiency of remote sensing imagery, its use is severely restricted due to the poor
timeliness of time-series cloud removal techniques and the distortion-prone nature of single-frame
cloud removal techniques. To thoroughly remove thin clouds from remote sensing imagery, we
propose the Saliency Cloud Matting Convolutional Neural Network (SCM-CNN) from an image
fusion perspective. This network can automatically balance multiple loss functions, extract the cloud
opacity and cloud top reflectance intensity from cloudy remote sensing images, and recover ground
surface information under thin cloud cover through inverse operations. The SCM-CNN was trained
on simulated samples and validated on both simulated samples and Sentinel-2 images, achieving
average peak signal-to-noise ratios (PSNRs) of 30.04 and 25.32, respectively. Comparative studies
demonstrate that the SCM-CNN model is more effective in performing cloud removal on individual
remote sensing images, is robust, and can recover ground surface information under thin cloud
cover without compromising the original image. The method proposed in this article can be widely
promoted in regions with year-round cloud cover, providing data support for geological hazard,
vegetation, and frozen area studies, among others.

Keywords: image superposition; image matting; cloud removal; deep learning; remote sensing image

1. Introduction

Since the first remote sensing (RS) satellite termed Sputnik-1 was launched in 1957, the
collection of RS images from space has been uninterrupted [1]. The imaging mode of visible
RS images is most consistent with human visual perception. This characteristic has led to the
development of several ground detection techniques and continuous monitoring methods.
In addition, it has found considerable applications in disaster relief, geology, environmental
monitoring, and engineering construction, accompanied by extensive promotion and
adoption [2]. Nonetheless, the global surface cloud coverage can fluctuate between 58% [3]
and 61% [4], which, subsequently, leads to a reduction in the availability of most visible
remote sensing products.

Therefore, enhancing the efficacy of visible RS images is of utmost importance. Fur-
thermore, the process of cloud removal can be regarded as a type of image reconstruction,
which is heavily dependent on precise cloud detection [5]. The principal techniques for
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cloud removal can be divided into two primary categories based on the number of RS
images utilized: multi-temporal methods and single-image methods [6–9].

Cloud removal in time-series remote sensing images is a widely used method, partic-
ularly in big data platforms such as the Google Earth Engine, which involves combining
same-track images for efficient image element replacement. Researchers have established
various cloud removal restoration models, such as those using dictionary learning [10,11],
spatially and temporally weighted regression [12], low-rank representation [13], deep learn-
ing [9,14], and nonnegative matrix factorization [15]. Despite this, removing time-series
remote sensing images may result in inconsistent image tone and surface information due
to the temporal consistency and seasonal variability of remote sensing images, especially
in tropical and mountainous regions, where the number of cloud-free images is limited,
further exacerbating information variability.

Single remote sensing image cloud removal can be achieved using four primary meth-
ods: image enhancement, spatial interpolation, atmospheric transport model, and generate
adversarial network-based surface information reconstruction. Image enhancement meth-
ods alter contrast and weaken image components to suppress clouds, resulting in unrealistic
visual completion that cannot be used for remote sensing target detection and quantitative
analysis [16–18]. Spatial interpolation techniques such as Kriging spatial interpolation
and the neighborhood similar pixel interpolator can eliminate speckled clouds, but they
face challenges in effectively recovering the surface information under a wide range of
clouds [19–21]. Atmospheric transport models such as haze-optimized transformation and
dark channel defogging exploit prior knowledge and can effectively remove clouds, but
changes in the prior knowledge may lead to biased image estimates [7,8,22,23]. Generative
adversarial networks have shown promise in cloud removal and surface information re-
construction, but they do not recognize when thin and thick clouds coexist, resulting in
significant disparities between the output and original image [24–28].

Recently, researchers have proposed novel techniques for improving the stability of
remote sensing images through cloud removal. Li et al. developed a deep-learning-based
approach, CR-MSS, which leverages short-wave infrared to eliminate thin clouds from
high-resolution images [29]. Image matting technology has also made significant advances
in recent years [30–34], finding applications in fields such as image fusion [35], shadow
removal [36], semantic segmentation [37], image defogging [38], cloud estimation [39], and
beyond. By overlaying foreground and background images and measuring foreground
transparency, precise foreground information can be extracted.

CNNs are highly competent in extracting image features as a result of their local
connectivity, parameter sharing, and translational invariance, resulting in a more compre-
hensive feature extraction compared to generative adversarial networks [40]. Moreover,
CNN optimization is simpler, and the model quickly and stably converges. In this study,
our primary goal is to estimate cloud opacity, which may be considered a type of noise (akin
to Perlin noise). While the discriminator can create a more natural, smooth, and visually
appealing generated image in generative adversarial networks, the generator can easily
generate noise signals to deceive the discriminator, which may result in limited significance
of the loss function presented by the discriminator and instability in the model training
process. Thus, we suggest employing a CNN to assess the background information and
extract the foreground information in the image. Based on this, we propose the “SCM-
CNN” (Saliency Cloud Matting Convolutional Neural Network) model that integrates deep
learning techniques with image matting for remote sensing image cloud recognition, cloud
opacity estimation, and cloud removal.

The conventional method for image matting necessitates the incorporation of a
“Trimap”, which involves the triple classification of images. To lessen the model’s depen-
dence on Trimaps, we employed a saliency monitoring network to enhance the
model’s applicability.

It is crucial to acknowledge that the surface characteristics will evolve over time, and
the levels of solar radiation and aerosol concentration will vary with each RS satellite
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observation. Obtaining an actual control group of overcast and clear images is unfeasible.
Therefore, creating an RS image that is as close to reality as possible is a prerequisite
for the SCM-CNN model to converge successfully. In this regard, we refer to Matting
dataset construction scenarios such as the alpha-matting dataset [41], the portrait image
matting dataset [42], and the traditional RS image process for generating samples for
cloud detection, such as L7 Irish [43] and L8 SPARCS [44], in this study. Cloud opacity is
determined based on the color range extracted from Sentinel-2 satellite images covering
the sea’s surface. Subsequently, the samples are aggregated into a single image to form
the precise label, and then the training and validation dataset required for the study are
constructed using the RGB band images of cloud-free Sentinel-2 as the base image.

The contributions of this article are summarized as follows.

1. We constructed a cloud-matting dataset generation method and created a set of
high-quality cloud-matting datasets based on Sentinel-2 imagery. The cloud-matting
dataset outperforms the commonly used semantic labels for cloud detection, by
effectively distinguishing the clouded and cloud-free areas in RS images with 100%
accuracy. Moreover, it accurately describes the mixing degree of image elements in
cloud-covered areas. As the cloud-matting dataset closely resembles cloud scenes
in real RS images, it enables various applications such as accurate cloud detection,
image reconstruction, and cloud opacity estimation.

2. This work presents an integrated model for cloud detection, cloud opacity estimation,
and cloud removal based on the principle of deep learning Image-matting. The model
utilizes the saliency detection function to eliminate the need for a “Trimap”, enabling
cloud removal from a different perspective. Cloud removal in this model relies on
cloud identification and similarity analysis with the original image. It effectively
recovers the surface area beneath thin clouds, even in scenarios of coexisting thick
and thin clouds.

3. The proposed method includes a “Channel Global Max/Average Pooling” structure
that estimates the reflection of the foreground pixel efficiently with minimal parame-
ters. The structure efficiently extracts the foreground pixel reflection with minimal
parameters from the feature map.

4. Our proposed method is a multi-objective loss function gradient optimization ap-
proach that calculates the gradient deviation of the loss function rather than relying
on the conventional weight linear combination of multiple loss functions. The model
gradient is updated accordingly.

The following is the organization of this article. Section 2 presents the superposition
model of the remote sensing (RS) images, the formulation of cloud removal under the image
matting framework, and the dataset and evaluation metrics that were utilized. Section 3
provides a detailed exposition of the experimental procedures and results. In Section 4,
we analyze the relative advantages and disadvantages of various methods and propose
possible enhancements. Finally, Section 5 draws conclusive remarks.

2. Materials and Methods
2.1. Dataset

The current cloud dataset is primarily designed for cloud detection, using a mask
to distinguish cloud areas from others. However, this dataset is unsuitable for cloud–fog
retrieval tasks, and its inherent bias may significantly reduce the accuracy of machine
learning models. To address these issues, we employ a colorimetric approach and Sentinel-
2 satellite ocean imagery to obtain simulated cloud images and establish a normalized
cloud opacity layer. By overlaying and merging opacity layers of cloud layers from multiple
scenes, we were able to generate highly realistic cloud simulations.

Cloud-Free Image Construction: Our objective was to remove thin clouds under less
cloudy mountainous conditions. To achieve this, we used a dataset of 24 Sentinel-2 remote
sensing images covering the southeastern Tibetan region. The images were processed with
S2Cloudless to detect clouds and calculate cloud shadows based on satellite incidence
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angles and surface dark pixel information. A sliding window of a 512 × 512 pixel size
with a step of 256 pixels was then used to traverse the images, generating cut-out remote
sensing images without clouds and cloud shadows and discarding those with clouds or
cloud shadows.

Cloud Opacity Image Construction: Some researchers utilized manual masking [9]
or Perlin noise [45] to generate cloud images, while simulating cloud images that approx-
imated real cloud distributions. Therefore, we extracted cloud distributions from actual
ocean surface remote sensing images to simplify the process and reduce errors. Multiple
Sentinel-2 remote sensing images were selected, and the opacity of clouds was extracted
using a color range. The opacity of clouds was normalized, and image closing operations
were performed to eliminate holes caused by convective cloud shadows. Multiple cloud
opacity images with different cloud thicknesses and shapes were obtained by multiple
extractions and merging.

Simulating Cloud Image Generation: In Sentinel-2 images, there is no evident distinc-
tion between the red, green, and blue bands of cloud areas. They exhibit a strong linear
relationship with some perturbations around the linear regression function. In Figure 1a,
we randomly selected some points for fitting, and the results indicated that there was
little difference in pixel brightness between the red, green, and blue bands in the range
of 4000–8000 pixels. As red, green, and blue all belong to the visible light band, their
wavelengths vary slightly, resulting in similar penetration capabilities for clouds. Therefore,
pixel value perturbations are more likely caused by factors such as surface objects, particles
in the cloud layer, and aerosols. Simulating these perturbations is a complex task. To avoid
human errors and simplify the model, we assume that the RGB bands of cloud layers in RS
images have the same opacity value. According to the assumption in Section 2.2 that εcloud
can be a constant in a local area, we simulated cloud images based on reference formula
ε = (1− α)εground + αεcloud, where εcloud ∈ [4000, 8000] and α are 512 × 512 random blocks
in the opacity map of cloud layers, as shown in Figure 1b.
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Figure 1. (a) Pixel value statistics of red, green, and blue wave segments in Sentinel-2’s cloud
region. Two sets of linear regression calculations were carried out based on the red band, and the
values of 4000–8000 pixels were instantiated. (b) dataset generation for cloud matting. The first row
contains the bottom image of a Sentinel-2 RS image without clouds (Background); the second row
is foreground pixel reflection intensity multiplied by the cloud opacity (Foreground); the third row
contains the generated RS image with clouds.

2.2. Superposition Model of RS Images

In Figure 2, the cloud represents the foreground image, while the surface object acts as
the background image, with the cloud’s opacity being corresponding to the foreground
image’s opacity (α). As a result, the satellite RS image is formed after superimposing the
background pixel reflection signal (εground) and the foreground pixel reflection signal (εcloud).
The thin cloud effect is created by combining the multiplicative factor that attenuates the
light from below the clouds and the additive factor that adds reflected light at the cloud tops.

ε = (1− α)εground + αεcloud, (1)
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Figure 2. RS image imaging process schematic diagram. α is the opacity of the foreground, and the
foreground and background pixel reflection signals are εcloud and εground, respectively.

This paper adopts image matting for RS image cloud removal, and the cloud shadow
is not considered for the time being. If assuming that cloud shadow does not exist, Equation
(1) is a simplified model which has three unknowns. Substantially, we only need to obtain
the α and εcloud to calculate εground.

εground =
ε− εcloud

1− α
+ εcloud, (2)
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Nevertheless, it should be noted that εcloud is independent of α if we use α to solve the
derivative at both ends of Equation (2).

∂εground

∂α
=

ε− εcloud + (1− α)∂ε/∂α

(1− α)2 , (3)

Equation (3) shows the relationship between εground and α after each cloud removal
restoration process in the image. When α→ 1 , the denominator is infinitely close to 0, and
even a small perturbation will lead to a significant error, reducing the model’s reliability.
For that reason, we classify clouds into thin clouds (α ≤ 0.5) and thick clouds (1 ≥ α > 0.5),
according to their opacity.

2.3. Overview of SCM-CNN

The SCM-CNN model suggested in this research performs three significant roles,
which are as follows.

I. Cloud matting: The central focus of the research presented in this paper is the
concept of cloud matting, which ultimately leads to cloud opacity. In order to reduce
model complexity, we have discontinued the use of the “Trimap” input and “Trimap”
generating strategy, although this decision has resulted in significant challenges for model
inference. To address this issue, we propose the use of a salient target detection function,
which has proven to be highly effective in detecting the desired target type. This approach
involves learning multi-scale features from datasets with diverse backgrounds and cloud
combinations of varying brightness and opacity followed by the merging the multi-features
of pixel similarity and spatial similarity to produce high-precision cloud matting results.

II. Cloud Maximum Digital Number (CMaxDN) value: On a local scale, foreground
pixel reflection intensity is a constant approximation to solar radiation. Thus, we assume
that the maximum brightness of clouds (εcloud) in a scene of RS images is consistent and
may, likewise, be viewed as a constant.

This assumption can greatly simplify model operation. Because of hardware con-
straints, the convolutional neural network cannot simultaneously read and write the entire
RS image. We usually train the model by image slicing, thus ε̃cloud = max

Ω
εcloud(γ) is used

in the actual operation, γ representing the solar radiation, Ω representing the slicing range
of the image, and ε̃cloud indicating the maximum reflected brightness of the cloud within
the slicing range.

III. Cloud removal: Cloud removal and cloud matting are inextricably linked.
Equation (3) explores the relationship between the εground and α, demonstrating that a
single RS image cannot restore surface information that thick clouds have covered. Com-
bining Equation (3) and observing the generated cloud images, we found that even slight
disturbances in the estimation of cloud opacity of a single image with α > 0.8 could greatly
affect the result of cloud removal. That is to say that the effect of cloud removal for some
single images with α > 0.8 is poor. In order to improve the reliability of the model for cloud
removal and image restoration, we adopted the method of setting a threshold to constrain
the range of α values considered, and the process for cloud removal and restoration is
shown in Equation (4).

εground =
ε− εcloud

1−min(α, 0.8)
+ εcloud, (4)

2.4. Model and Algorithm

SCM-CNN employs a superior saliency detection network capable of analyzing RS
images from many sizes and scenes and fusing multi-stage features. As depicted in
Figure 3a, the SCM-CNN consists of two primary components: the automatic production
of the cloud-matting mask and the slice maximum digital number estimation. SCM-CNN’s
backbone network is U2Net [46], and the RSU (Residual U-block) is employed for feature
extraction and feature fusion. The traditional Residual block (RES) can be expressed
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as h(x) = f2( f1(x)) + x, where h(x) denotes the mapping result of the input feature’s
expectation; f1 f2 denote the two-weight layers, respectively. Each residual operation
of RSU adopts a U-shaped structure, and the overall operation of RSU is expressed as
hRSU(x) = u( f1(x)) + f1(x). Each residual operation yields global multi-scale features,
and the RES module is superior in the model perception field and feature redundancy. The
FLOPs of the RSU module are similar to the RES module, which can be faster for training
and model inference (15FPS, with the input size of 512 × 512 × 3 on P4000 GPU). The
model reference Feature Pyramid Networks (FPN) structure has 12 outputs, and a total of 14
outputs are obtained after further stacking to obtain two outputs of fusion features. Seven
outputs represent the cloud-matting mask, and the others represent the CMaxDN value.
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Figure 3. (a) SCM-CNN(U2Net) model. (b) Channel global Average and Max Pooling. Where C, W,
and H represent the number of channels, width and height of the image, respectively. Firstly, each
channel of the feature map is fused into one neuron, and secondly, multiple neurons are further fused
into one neuron. Furthermore, this neuron is the CMaxDN.

The CMaxDN is a piece of intrinsic information contained within the feature map.
However, using the convolutional branch to perform operations based on the feature
maps leads to a considerable increase in computational complexity since there are a large
number of feature maps. To simplify the calculation process and obtain the CMaxDN
value comprehensively based on multi-channel feature maps, we have designed a structure
known as “Channel Global Average/Max Pooling”, as shown in Figure 3b.
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Typically, the CMaxDN value approached the global brightest value. Therefore, we
used global max pooling to obtain the brightest value of the feature map. However, there
are times when CMaxDN was greater than the brightest value of the feature map, such as
in the case of low cloud opacity. In these scenarios, we hope that the model could extract
more realistic CMaxDN values from the feature map. Consequently, we utilized global
average pooling to summarize the feature map information.

In addition, we incorporated two Linear layers to fuse the maximum/average pooling
values obtained from each feature map. Nonlinear transformation was then performed
using the Relu activation function. Finally, we fused the multiple outputs of the Feature
Pyramid Networks (FPN) to obtain the predicted CMaxDN. The “Channel Global Aver-
age/Max Pooling” structure only used 7144 parameters from the essence of CMaxDN to
yield excellent prediction results. It integrated features from multiple channels and could
effectively assist in cloud removal tasks.

The “Channel Global Average & Max Pooling” structure consisted of two linear layers.
The primary objective of the first linear layer was to calculate the global average pooling
and global maximum pooling values for each channel of every feature map, with the aim
of generating a condensed representation of the feature map. The second linear layer
employed multiple feature map compression expressions to establish the CMaxDN value.

2.5. Loss Function

The output of SCM-CNN consisted of two parts. Thus, we use the combined loss
function to evaluate the model outcomes based on pixel and structural similarity, respec-
tively. The 1-norm’s prediction results are more precise and consistent with human visual
perception than other norms. Then, Equations (5) and (6) used 1-norm to establish L||α|| and
L||εcloud || to measure the gap between pixels for the cloud-matting mask (α̃) and CMaxDN
value (ε̃cloud), respectively.

L||α|| =
n

∑
i=1
|α̃i − αi|, (5)

L||εcloud || = |ε̃cloud − εcloud|, (6)

We also considered the image’s general structural similarity to improve the efficacy
of cloud removal. However, the structural similarity α̃ was not apparent. To solve this
problem, we used α̃ and ε̃cloud pollute the cloud-free tag image (Equation (7)) and judge the
structural similarity between the contaminated image and the input image. This strategy
could prevent the occurrence of a zero denominator and ensure the smooth execution of
model training. “MS-SSIM” is an image quality evaluation method that combines image
features with different resolutions, which may be evaluated comprehensively based on
the two images’ brightness, contrast, and structural similarity [47]. The “MS-SSIM” loss
function is calculated as shown in Equation (8), M represents the scale factor, [µε̃, µε]
represents the mean value of the predicted feature map and the actual image, [σ̃ε, σε]
represents the standard deviation between the predicted image and the actual image, σ̃εε

represents the covariance between the predicted image and the actual image, [βm, γm]
represents the importance between the two multipliers, and [c1, c2] is a constant term to
prevent the divisor from being zero.

ε̃ = (1− α̃)εground + α̃ε̃cloud, (7)

Lms−ssim(ε̃, ε) = 1−
M

∏
m=1

(
2µε̃µε + c1

µ2
ε̃ + µ2

ε + c1

)βm(
2σ̃εε + c2

σ2
ε̃ + σ2

ε + c2

)γm

, (8)
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Equation (9) superimposes all the error functions to obtain the loss function used in
the model training.

LSCM−CNN = β1L||α|| + β2L||εcloud || + β3Lms−ssim, (9)

It is worth mentioning that this paper has seven sets of output results, thus we finally
get the loss value as shown in Equation (10).

LSCM−CNN =
7

∑
i=1

β1L||α||i + β2L||εcloud ||i + β3Lms−ssimi , (10)

The optimization objectives of the three loss functions were distinct from each other.
The common practice is to fuse multiple loss functions by linearly combining them with
weights. Through careful observation and experimentation, it was discovered that β1 = 0.2
β2 = 0.4 β3 = 0.4 could effectively balance multiple loss functions. However, linear
weighting may not always produce optimal results due to the differences in gradient
direction among loss functions. Instead of using a simple linear weighting approach,
this paper adopted an algorithm inspired by multi-task learning, which was suitable for
optimizing multiple objectives in a single task [48–50]. As depicted in Algorithm 1, the
algorithm calculated the deviation of the gradient norm for each loss function and assigned
smaller weights to those with larger deviations and larger weights to those with smaller
deviations. This ensured that loss functions with larger gradients do not dominate during
model updates, thus ensuring equal attention is given to all loss functions.

Algorithm 1 Automatic weighting of loss functions

Input: [loss1.loss2], Model, Learning Rate:
Output: Model

1: function (Gradopt)[loss1, loss2], Model, LearningRate
%CALCULATE THE GRADIENT OF ALL LOSS FUNCTIONS

2: gradi ← ∇lossi
%FAN OF THE GRADIENT OF THE LOSS FUNCTION

3: normi ←
gradi−gradi

σi
, σi =

√
1
n ∑n

i=1 (gradi − gradi)
2

%AVERAGE OF THE NORM OF THE GRADIENT OF THE LOSS FUNCTION
4: stdi ← STD(normi)

%DEVIATION FROM THE NORM OF THE GRADIENT OF THE LOSS
FUNCTION

5: devi ← normi−normi
stdi

%CALCULATE THE WEIGHTS ACCORDING TO THE DEGREE OF
DEVIATION

6: weighti ← exp(−devi)
%NORMALISATION OF THE OBTAINED WEIGHTS

7: for j in (weighti) do
8: j← j/ ∑ weighti
9: end for

%CALCULATE THE WEIGHTED GRADIENT
10: gradi ← weighti × gradi

%UPDATE THE MODEL PARAMETERS ACCORDING TO THE GRADIENT
11: for param, g in (Model.parameters(), gradi) do
12: param← LearningRate× g
13: end for
14: end function

2.6. Evaluation Metrics

We evaluated the model output and actual samples using metrics based on pixel
similarity and structural similarity. Three major types of evaluation metrics were used.
(1) The mean square error MSE (Equation (11)) was used to verify the computational
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accuracy of cloud opacity directly; the actuarial accuracy of the CMaxDN and pixel gap
between the synthetic cloud image and the input image was denoted as RMSE(α̃, α),
RMSE(ε̃cloud, εcloud) and RMSE(ε̃, ε), respectively. (2) The peak signal-to-noise ratio PSNR
(Equation (12)) and structural similarity SSIM (Equation (13)) were used to measure the
structure of cloud opacity, synthetic cloud image, and actual sample. The disparity was
noted as PSNR(α̃, α), SSIM(α̃, α), PSNR(ε̃, ε), and SSIM(ε̃, ε), respectively. (3) Accuracy
(Equation (14)) was used to measure the classification approximation of cloud opacity and
was noted as ACC(α̃, α).

RMSE(X, Y) =

√
n

∑
i=1

(Yi − Xi)
2, (11)

PSNR(X, Y) = 10 log10

(
MAX2

Y
MSE(X, Y)

)
, (12)

SSIM(X, Y) =
(2µXµY + C1)(2σXY + C2)(

µ2
X + µ2

Y + C1
)(

σ2
X + σ2

Y + C2
) , (13)

ACC(X, Y) =
TP + TN

TP + TN + FP + FN
, (14)

In Equations (11)–(14), X represents the prediction image, Y represents the reference
image, and [µX, µY] represents the mean of the predicted image and the reference image,
respectively. [σX , σY] represents the standard deviation between the predicted image and
the reference image, respectively. σXY represents the covariance between the predicted
image and the reference image, [C1, C2] is a constant term to prevent the divisor from being
0, and [TP, TN, FP, FN] represents the TruePositive, FalseNegative, TrueNegative, and
FalsePositive, respectively.

3. Results

This paper presented a novel deep learning-based matting model named SCM-CNN,
which significantly improved the accuracy of cloud removal in visible imagery. How-
ever, existing cloud removal techniques, such as image interpolation and enhancement,
have shown fewer promising results compared to the chosen two categories, which were
compared in this study. (1) Atmospheric transport models, “Dark Channel” [22], and
“HOT” [23]. (2) Image element reconstruction, “SpA-GAN” [24,27], “Pix2pix” [28], and
“CR-GAN” [26]. Additionally, a standard image-matting method: “Closed-form mat-
ting” [51].

However, the usage of “Trimap” as prior input in “Closed-form matting” poses a
significant challenge in practical applications. Nevertheless, because of the “Closed-form
matting” strong deductibility, it only proves the feasibility of cloud removal based on
matting in simulated data sets. “Hot”, “Pix2pix”, and “CRGAN” have all failed and will
cause damage to the original image. Limited to space, we put this part of the results and
the initial results of “Dark Channel” and “SpA-GAN” in Figure A1.

In Figure 4, “SCM-CNN”, “Pix2pix”, “CR-GAN”, and “SpA-GAN” are trained using
the simulated dataset. The cloud removal effect of “SCM-CNN” is generally better than
other methods, and “SpA-GAN” has an excellent cloud removal effect, and there is almost
no color difference between slices. The cloud removal effect of “Dark Channel” is second
only to “SpA-GAN”. Below that, the image changes with “Dark Channel” and “SpA-GAN”;
although the clouds are removed, the overall amount of information changes significantly,
and brighter objects such as roads and snow become uniform. Neither “Dark Channel”
nor “SpA-GAN” can accurately obtain the cloud mask and cannot achieve post-filtering
in thick cloud regions, seriously impacting its practical application. In contrast, “SCM-
CNN” can generate better cloud opacity information and removal results, and image colors
remain pristine.
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Figure 4. Sentinel-2B observation image and its cloud removal results from orbit 119 on 29 June 2020.
This image contains thick and thin clouds and complex information such as snow, mountains, and
cloud shadows, which could be used to test each model’s accuracy and reliability effectively. Among
them, the predicted images from SpA-GAN and Dark Channel are too dark, thus “normalized pixel
stretching” is used for comparison. The original image refers to the attached illustration A2.

Due to differences in time, atmosphere, lighting, and other factors in each RS image,
the hue and saturation of the image may vary significantly. Methods such as histogram
matching can make image colors look similar, but they also reduce the realism of image
elements. Therefore, considering the above factors, Table 1 only uses the “Cloud Image”
as the noise image and the prediction result as the denoising result to measure the cloud
removal effect of the image roughly with the PNSR function. However, the evaluation
score is very different from human visual perception.

Table 1. The score of psnr. We utilized the WHUS2-CR dataset to validate the accuracy of our model
on actual remote sensing images [29]. Specifically, we selected a subset of 10 high-quality image pairs
with and without clouds for comparative analysis.

SCM-CNN SpA-GAN Pix2pix CRGAN Hot Dark Channel

PSNR 25.32 18.94 11.16 15.52 13.756 12.128

Figure 4 shows the usefulness of SCM-CNN for removing real RS image clouds, but
evaluating the quality of RS image cloud removal results is challenging. Therefore, this
work focuses on the validation of simulation data sets.

In Figure 5a, the “Trimap” was employed as an input to direct the “Closed-form
matting” method. The “Dark Channel” approach utilized a 15 × 15 filtering window for
dark visual elements. “SpA-GAN”, “CR-GAN”, and “Pix2pix” are variants of CGAN (Con-
dition Generative Adversarial Networks), with “SpA-GAN” and “CR-GAN” incorporating
an attention mechanism. In this paper, the “SCM-CNN” is trained to utilize the U2Net
and ResNet-50 backbone networks, respectively. All cloud removal techniques, including
deep learning and non-deep-learning methods, can produce superior results when only
thin clouds are in the image. However, when thick and thin clouds coexist in the image,
the accuracy of “CGANs” (SpA-GAN, Pix2pix, CR-GAN) decreases significantly. “HOT”,
“Dark-channel”, “Closed-form matting”, and “SCM-CNN” can still assess the thin cloud
zone more accurately to recover surface details.
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Figure 5. (a) Comparison of cloud removal results of various methods applied to RS image slices.
(b) The violin diagram depicts the pixel distribution of cloud removal outcomes generated by various
approaches and illustrates the features of pixel dispersion. The orange dashed line indicates the
primary image element distribution of the original image and the primary image distribution of
cloudy RS images. The primary distribution of cloud removal findings should be located on this
dashed line.
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4. Discussion

Due to cloud contamination, the local pixel features of the synthesized cloudy image
are altered in Figure 5b, and the overall image has fewer dark features than bright features.
However, the image elements in the uncontaminated region will preserve their original
distribution characteristics. Consequently, the primary elements continue to be dispersed
around the orange dashed line. Based on the various model outputs, we can make the
following preliminary assessment:

1. The “Hot” method adjusts the pixel brightness distribution by setting the unmistak-
able skyline. Therefore, the model is more sensitive to the ground feature, leading to
variable variations in the unmistakable skyline, and it is prone to over-correction and
color distortion.

2. Because of differences between traditional and satellite RS images (Refer to Figure A2
for details). “Dark Channel” will cause the image’s overall color to darken.

3. “Closed-form matting” demonstrates the feasibility of matting in remote sensing im-
age cloud removal, which uses the color line model and ridge regression optimization
algorithm. However, this method requires an accurate “Trimap” as an a priori input,
significantly limiting the applicable scenarios.

4. “SpA-GAN”, “Pix2pix”, and “CR-GAN” are advanced conditional generative adver-
sarial models. However, the most crucial point is that partial pixel loss may lead to
multiple entities may be invisible in RS images. Therefore, the generative adversarial
network can show significant distortion in areas covered by thick clouds.

5. “SCM-CNN (U2Net)” and “SCM-CNN (ResNet-50)” receive good cloud removal
results, with almost no color deviation from the original image. The reason is that
“SCM-CNN” is based on image-matting, which embedded cloud detection. The
cloud removal results of the “SCM-CNN (U2Net)” model are more reliable. Addition-
ally, with more accurate cloud opacity estimation and less patchiness. This further
demonstrates the superiority of our chosen saliency detection network.

To summarize, the different approaches to cloud removal substantially alter the values
of image elements, even in the areas of the image that are free from clouds. Consequently,
meeting the requirements for secondary production is a challenging task. On the contrary,
the “SCM-CNN” technique identifies clouds preferentially, produces cloud opacity and
CMaxDN data, and then employs the Image matting formula to restore the image after
removing the clouds. Therefore, the outcomes are highly dependable and do not alter the
image elements in the cloud-free regions.

Figure 6a,b represent the results from the estimated image of cloud opacity to intu-
itively evaluate the quality of image de-clouding. Due to Equation (3), theoretically, all the
calculated α values are greater than or equal to 0. However, the “Hot”, “Dark Channel”,
and “CGANs” will have unreasonable values, and we set the α > 1 values to 1 and the
α < 0 values to 0. Since the noisy background of the image no longer limits it, it can reflect
the effect of model cloud removal more intuitively.

Visual observation can evaluate from two essential points: 1. The purity of the image.
2. The light and dark changes of the image. The purity of the image reflects the effect of
foreground rejection during the cloud opacity operation, and the higher the purity the
lower the noise of the cloud removal result. On the contrary, the cloud removal process
will significantly modify the background image elements. The light and dark changes in
the image reflect the accuracy of the cloud opacity calculation, and the closer to the label
the higher the accuracy. The combined performance is that Figure 6a has higher clarity
and contrast, and Figure 6b’s scatter points are clustered around the red line. With careful
consideration of the purity and the light and dark changes of the images, “U2Net” is better
than “ResNet-50”as the backbone.

Nevertheless, biases based on visual interpretation, such as “SpA-GAN”, can deceive
human vision more effectively by replacing cloud-contaminated image elements with
those of a similar hue. However, there is a significant discrepancy between the simulated
and actual surface information. To precisely measure the cloud removal effect, we begin
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the mathematical statistic comparison by validating the cloud removal and cloud opacity
estimation results.

We developed only 20 sets of typical image slices for statistical purposes because
the Hot technique requires manual screening operations and is less automated. Other
methods employed 640 sets of image slices to assess the model’s performance based on
image element similarity RMSE, structural similarity SSIM, peak signal-to-noise ratio PSNR,
and classification accuracy ACC, respectively. The evaluation outcomes are presented in
Table 2 and Figure 7.
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Figure 6. (a) Comparison of several cloud opacity estimating techniques. SCM-CNN and Closed-
form matting generate the cloud opacity layer directly, whereas Dark Channel is based on the
transmissivity layer back-calculated to obtain the cloud opacity layer. The remaining methods are
based on cloud removal results using the actual CMaxDN values directly back-calculated to obtain.
(b) Results of cloud opacity estimation against real values for various cloud removal techniques. One
hundred thousand points are selected at random from the results of the opacity estimation, and their
distributions are calculated. The Figure’s red line represents the ideal estimate; the closer the data
distribution is to the line the more trustworthy the cloud removal results. The green curve depicts the
probability density of the dispersed dots.

Table 2 displays the various classification metrics produced for cloud removal and
opacity estimation images using various methods. “CGANs” map the cloudy image
element into the cloud-free image distribution characteristics, minimizing the difference
between the cloudy image element and the cloud-free image element. However, the
reflection characteristics of the image element are not identical to the semantic information.
Therefore, “GANs” contribute to the deceptive image element of the metrics and the
low reliability of the direct measurement of cloud removal findings. Consequently, we
perform the metrics operation based on each model cloud opacity image. The estimations
of cloud opacity, namely, RMSE (Alpha), SSIM (Alpha), and PSNR (Alpha), demonstrate
that the efficacy of “SCM-CNN (U2Net)” surpasses that of other methods by a significant
margin, while “SCM-CNN (ResNet-50)” also achieves commendable results. On the other
hand, although Hot and CGANs exhibit better RMSE (Alpha) scores in terms of image
element similarity, their performance in the structural similarity index SSIM (Alpha) is
generally subpar.
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Table 2. Comparison of classification metrics for multiple cloud removal methods. Two metrics were
obtained for each cloud removal method, representing the method’s optimal and average values. By
comparing multiple methods, we use green and blue to denote the best metrics values obtained by
each method.

RMSE ↓ SSIM ↑ PSNR ↑ RMSE ↓ SSIM ↑ PSNR ↑ ACC101 ↑ ACC11 ↑
(Image) (Image) (Image) (Alpha) (Alpha) (Alpha) (Alpha) (Alpha)

Hot: 0.0091 0.9858 40.7270 0.0155 0.9878 36.1503 0.5616 0.9306

Cloud Point 0.0458 0.8499 23.6225 0.0478 0.9113 28.7166 0.4159 0.7758

Dark 0.0233 0.8198 32.6296 0.0059 0.9928 44.5602 0.6593 0.9672

Channel 0.1234 0.4115 19.3394 0.0803 0.8171 23.8009 0.0865 0.4274

Closed 0.0065 0.9942 43.6871 0.0159 0.9953 35.9338 0.8572 0.9738

form matting 0.1429 0.7418 20.0632 0.1141 0.8588 21.1993 0.5497 0.7473

SpA-GAN
0.0121 0.9959 44.1723 0.0071 0.9941 43.1151 0.8302 0.9761

0.1098 0.8321 26.7704 0.0314 0.8616 30.5172 0.5476 0.8522

Pix2Pix
0.0107 0.9888 39.3703 0.0175 0.9902 35.0956 0.8159 0.9509

0.0969 0.7942 24.4502 0.0437 0.9340 28.4119 0.4907 0.8353

CR-GAN 0.0141 0.9685 36.9748 0.0167 0.9820 35.5416 0.7971 0.9608

0.1309 0.7687 21.3918 0.0596 0.8795 24.9252 0.4331 0.7058

SCM-CNN 0.0019 0.9991 54.0098 0.0061 0.9989 46.1551 0.8735 0.9874

(U2Net) 0.1552 0.8465 30.0411 0.0262 0.9909 33.8204 0.6718 0.8990

SCM-CNN 0.0023 0.9984 52.4571 0.0077 0.9925 42.2312 0.8687 0.9792

(ResNet-50) 0.1731 0.7673 27.9535 0.0297 0.9626 32.1196 0.6389 0.8671
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0.0969 0.7942 24.4502 0.0437 0.9340 28.4119 0.4907 0.8353 

CR-GAN 0.0141 0.9685 36.9748 0.0167 0.9820 35.5416 0.7971 0.9608 
 0.1309 0.7687 21.3918 0.0596 0.8795 24.9252 0.4331 0.7058 

SCM-CNN 0.0019 0.9991 54.0098 0.0061 0.9989 46.1551 0.8735 0.9874 
(U2Net) 0.1552 0.8465 30.0411 0.0262 0.9909 33.8204 0.6718 0.8990 

SCM-CNN 0.0023 0.9984 52.4571 0.0077 0.9925 42.2312 0.8687 0.9792 
(ResNet-50) 0.1731 0.7673 27.9535 0.0297 0.9626 32.1196 0.6389 0.8671 

Table 2 displays the various classification metrics produced for cloud removal and 
opacity estimation images using various methods. “CGANs” map the cloudy image 
element into the cloud-free image distribution characteristics, minimizing the difference 

Figure 7. The results of Figure 6a are transformed into 101 (a) and 11 classes (b). We divided the
predicted cloud opacity results into 101 classes and 11 classes based on intervals such as 0–1 and
obtained the prediction pixel accuracy based on matching the prediction results to them. The Hot
methods utilized 20 sets of image slices, whereas the others utilized 640 sets of image slices.
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In addition, “Hot” and “CGANs” also modify many image elements in the original
image’s cloud-free region, resulting in many noise points in the cloud opacity estimation
map. “SpA-GAN” output results are very similar to the global features, and the obtained
ones are filled with a large number of ground surface texture features, but the pixel gap is
small. Figure 7 divided the prediction results into 101 and 11 classes based on intervals
from 0–1, and then obtained the prediction pixel accuracy based on matching the prediction
results to labels. In Figure 7, the ACC101 (Alpha) shows that “SCM-CNN” has the best
performance, while CGANs and Closed-form matting metrics are unstable. In addition,
ACC11 (Alpha) shows that each method of cloud removal possesses better accuracy and
the probability density of CGANs is more concentrated on a particular part.

The disadvantage of “Dark Channel” transmittance estimation is that it does not
conform to the imaging mechanism of RS images and will enhance or weaken the image
according to the image element brightness. The “Hot” is more sensitive to the feature,
leading to the apparent skyline variation. The magnitude is variable, and all the image
elements that deviate from the clear skyline must return to the clear skyline, but this
step introduces much noise. The methods employed in this study for image generation
are known as conditional generative adversarial networks (CGANs), which are currently
considered state-of-the-art. The comparison of the three CGANs utilized in this study, SpA-
GAN, CR-GAN, and Pix2pix, indicates that the overall effect of SpA-GAN is greater than
that of CR-GAN and Pix2pix. This is primarily due to the attention mechanism introduced
by SpA-GAN and CR-GAN. For more details, please refer to Figure A5, which presents
the attention images under different conditions. However, the models cannot distinguish
between thin and thick clouds. When complex meteorological conditions occur, the model
results appear to be “fabricated,” reducing the realism of the cloud removal results. In
contrast, our proposed “SCM-CNN” is based on cloud detection, which achieves cloud
removal by estimating clouds’ opacity and maximum reflectance in RS images without
modifying the image elements in cloud-free areas.

In addition, it is worth mentioning that as the cloud opacity increases, the confidence
level of the surface image elements recovered results will gradually decrease. Depending
on the scenario, “SCM-CNN” can be artificially set as a threshold in practical applications
to assist human interpretation and data processing (Figure 8).
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Figure 8. Setting different cloud opacity thresholds and overlaying the cloud removal results. Effec-
tively improves the application of cloud removal results by masking the areas with lower confidence
regions and taking α = 0.5 in this image yields optimal results.

“SCM-CNN” demonstrates considerable generalization and stability in removing
clouds from a single image, but it still has some shortcomings. Firstly, it is worth noting
that the Sentinel-2 image data are Uint16, and the upper limit of image reflection brightness
is variable. To normalize the training sample, we divide the atmospherically corrected
Sentinel-2 image by 10,000. However, since the reflection value of the data obtained in
this way is generally small, we will use “z-score” normalization to organize the data in the
subsequent study to improve its universality. Secondly, the simulated data resemble natural
remote sensing imagery, and the model can be effectively transferred to natural Sentinel-
2 satellite imagery cloud scenes. However, the model presents some blurry artifacts in
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the cloud shadow areas of remote sensing images due to shadow issues being neglected.
Thirdly, to achieve accurate estimation and removal of cloud opacity, this paper employs
a backbone network based on saliency detection and a multi-scale feature extraction and
fusion strategy. Compared with existing algorithms for thin cloud removal, SCM-CNN
can remove thin clouds better under the condition of coexisting thin and thick clouds.
Therefore, it has good applicability for the frozen zone with severe fog and cloud cover.
However, the model still exhibits some misjudgment when clouds are located above highly
reflective ice and snow, typically recognizing highly reflective snow as thick clouds.

In the following research, we propose adopting strategies to optimize the algorithm:
1. Replace the CNN network with the Transformer network, which has performed better
in recent years to achieve the attention mechanism and multi-scale feature fusion [52].
2. Collect heterogeneous region image base map to improve the robustness of the model.
3. Fuse more wavebands and other auxiliary information (DEM, DSM, and others.) from
RS images into the model to achieve higher accuracy of cloud-snow differentiation. 4. Re-
placing “Channel Global Average & Max Pooling” with an MLP-Mixer may lead to better
generalization and accuracy improvements [53].

5. Conclusions

In this research, we approached the subject of single-frame RS image cloud removal
from the image-matting angle. Moreover, we discussed the principles, advantages, and
disadvantages of various single-frame image cloud removal methods. We established an
open-source “SCM-CNN” model and supporting data.

We can draw the following conclusions from the research results: 1. Single-frame RS
image cloud removal can only recover the surface information covered by thin clouds. Then,
improving model stability in thick and thin cloud scenes is very important. 2. “SCM-CNN”
adopts a saliency detection network, multi-scale extraction, and the fusion of image features
to achieve high-precision cloud opacity generation. Furthermore, the cloud removal process
is more consistent with the imaging mechanism of RS images. 3. “SCM-CNN” is based on
cloud detection, and the results of cloud removal do not interfere with the original images
of cloud-free areas. 4. A synthetic data set is created. All cloud removal methods can
operate efficiently on our datasets. 5. The effect of the “SCM-CNN” method is significantly
better than other comparison methods. It is worth mentioning that CGANs’ image element
reconstruction ability is powerful, thus it is easy to obtain similar but not identical image
elements. 6. Changing the conditions of “CGANs” can also obtain better cloud opacity
estimation results (Figures A3 and A4). Thus, cloud matting can be effectively migrated to
other types of deep learning models.

Above all, “SCM-CNN” can effectively build the cloud opacity information from
single-frame RS images. Moreover, “SCM-CNN” demonstrates good anti-interference
performance in the coexistence of thick and thin clouds. Cloud matting is very helpful for
remote sensing image processing in cloudy areas, and we will continue to intensify our
efforts in this area.
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Figure A3. (a) CGANs after changing the conditions. (b) Cloud removal results from various 
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Figure A3. (a) CGANs after changing the conditions. (b) Cloud removal results from various methods,
and cloud-free images are compared for pixel distribution characteristics. We first use normalization
to convert the image to a normal distribution, and then we randomly sample the distribution of
100,000 points statistics in the normalized image due to the wide range of data distribution. The red
line represents the best estimate; points below are considered overcorrected, and those above are
considered undercorrected. The green curve represents the probability density of the scattered points.
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Figure A4. (a) Results of cloud opacity estimation of CGANs after changing the conditions, and the
elements in Figure are consistent with Figure A3a. (b) Cloud opacity estimation results compared
to actual values for various cloud removal methods. One hundred thousand points are randomly
sampled from the opacity estimation results, and their distributions are counted. The red line in the
figure represents the optimal estimate, and the closer the data distribution is to the line the more
reliable the cloud removal results are. The green curve represents the probability density of the
scattered points.
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