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Abstract: Remote sensing change detection involves detecting pixels that have changed from a
bi-temporal image of the same location. Current mainstream change detection models use encoder-
decoder structures as well as Siamese networks. However, there are still some challenges with this:
(1) Existing change feature fusion approaches do not take into account the symmetry of change
features, which leads to information loss; (2) The encoder is independent of the change detection task,
and feature extraction is performed separately for dual-time images, which leads to underutilization
of the encoder parameters; (3) There are problems of unbalanced positive and negative samples and
bad edge region detection. To solve the above problems, a mutual feature-aware network (MFNet)
is proposed in this paper. Three modules are proposed for the purpose: (1) A symmetric change
feature fusion module (SCFM), which uses double-branch feature selection without losing feature
information and focuses explicitly on focal spatial regions based on cosine similarity to introduce
strong a priori information; (2) A mutual feature-aware module (MFAM), which introduces change
features in advance at the encoder stage and uses a cross-type attention mechanism for long-range
dependence modeling; (3) A loss function for edge regions. After detailed experiments, the F1 scores
of MFNet on SYSU-CD and LEVIR-CD were 83.11% and 91.52%, respectively, outperforming several
advanced algorithms, demonstrating the effectiveness of the proposed method.

Keywords: deep learning; change detection; feature fusion; mutual feature-aware

1. Introduction

In recent years, remote sensing technology has advanced rapidly, resulting in signifi-
cant improvements in the imaging capability and quality of remote sensing satellites. Opti-
cal remote sensing images now offer a resolution that exceeds 0.1 GSD (ground sampling
interval, which indicates the ground distance represented by each pixel). This enhanced
resolution facilitates the clear and precise identification of surface objects using remote
sensing images. As a result, remote sensing images have become a widely used tool for
identifying and analyzing ground objects; change detection is an important application of
this technique.

Remote sensing change detection refers to the analysis of images from the same
geographical area captured at different times to identify changes in features of interest
within a specific time range [1]. It can be applied to a variety of scenarios, such as arable
land changes, building changes, lake and river changes, road network changes, etc. [2–4].
Remote sensing change detection technology is important for national land regulation,
modern urban planning, natural disaster assessment [5], and military facility reconnais-
sance. Therefore, studying change detection algorithms with higher accuracy is of great
theoretical significance and application value.
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Numerous studies have explored the problem of change detection in remote sensing
images. The accuracy of traditional methods is relatively low due to the effects of atmospheric
conditions and seasonal variations, the nature of satellite sensors, and solar elevation.

Recently, deep learning methods have gained widespread use in remote sensing
change detection. These techniques are capable of automatically extracting complex, hier-
archical, and nonlinear features from raw data, overcoming the limitations of traditional
change detection methods and exhibiting outstanding performance. Based on the deep
feature extraction process of dual-temporal images, deep-learning-based change detec-
tion frameworks can be categorized into three types: single-stream, double-stream, and
multi-model integrated [6]. The double-stream Siamese networks have received more
attention due to their simpler structure and stronger performance. In double-stream
Siamese networks, the deep models used to extract features can be classified as convolu-
tional neural-network-based models [7,8], recurrent neural-network-based models [9–11],
Transformer-based models [12,13], adversarial generative network-based models [14],
etc. [15].

Convolutional neural networks can preserve neighborhood connections and local
features and can process images of large size due to their structure of shared convolutional
kernels. The FC-EF [7] and FC-diff [7] algorithms were the pioneers in utilizing a fully
convolutional Siamese network architecture with skip connections. These methods were the
first to employ end-to-end training and fully convolutional neural networks, improving the
network’s accuracy and inference speed without increasing the training time. Subsequently,
researchers [8,12,16–22] extensively employed the Siamese network encoder and UNet
decoder architectures as a base model for change detection. SNUNet-CD [8] increases
the flow path of multi-scale features in the decoder part, reducing the loss of localization
information of shallow neural network features. ECAM [23] is designed to refine the most
representative output at different feature scales.

Recurrent neural networks are very effective in capturing sequence relationships,
and in change detection; they can effectively establish change relationships between dual-
temporal images. REFEREE [9] is based on an improved long short-term memory (LSTM)
model to acquire and record change information of long-term serial remote sensing data,
using core storage units to learn change rules from information about binary changes or
multi-class changes. In addition, there are algorithms that combine CNN and RNN to
implement change detection. SiamCRNN [10] uses a deep Siamese convolutional neural
network to accomplish feature extraction and uses spatial-spectral features extracted from
stacked long- and short-term memory units to map to a new latent feature space and to
mine change information between them. In FCD-R2U-net [11], in order to reduce the
possible loss of topological information in changing regions, the classical R2U-Net structure
is improved using a pair of R2CUs instead of a single R2CU in each convolutional layer
of the encoder and decoder paths to make the model focus on certain detailed changing
forest objects.

Transformer [24] can extract contextually relevant feature representations through
a multi-head self-attention mechanism and has been widely used in remote sensing im-
age processing in recent years. BIT [12] uses an effective transformer-based [24] change
detection method for remote sensing images. This method expresses the input image as
visual words and models the context in a compact token-based space-time, facilitating the
identification of change features of interest, while excluding irrelevant non-change features.
The Changeformer [13] algorithm is the first pure transformer-based change detection
model. It leverages the MIT [25] backbone network, which excels in semantic segmentation
models, for the change detection task, integrating a hierarchically structured transformer
encoder with a multi-layer perceptual decoder to effectively extract the desired multi-scale
long-range relations.

However, these algorithms operate within a Siamese network architecture where the
encoder part is not optimized for the change detection task. The extraction of change
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features is performed only at the decoder, resulting in underutilization of the encoder
parameters.

Furthermore, extraction of change features is crucial for change detection tasks. Some
studies [1,19,20,26,27] have sought to improve the performance of change detection by
enhancing the fusion of multi-scale features. The STANet [1] algorithm incorporates a
change detection self-attention module after the encoder network, allowing for the com-
putation of spatiotemporal relationships between any two pixels in the change detection
input image. Additionally, it uses different scales of self-attention to account for the scale
diversity of the building target attention mechanism, resulting in more effective change
features. The FCCDN [26] algorithm introduces a feature fusion module, DFM, based on
dense connectivity that is both simple and effective. The module includes difference and
summation branches, where the summation branch enhances edge information, and the
difference branch generates regions of variation. Each branch is constructed from two
streams of shared weights that are densely connected, reducing feature misalignment. The
DSANet [19] algorithm uses a remote sensing change detection method based on deep
metric learning. It uses a dual attention module to improve feature discrimination and
more robustly distinguish changes. SCFNet [27] introduces a structure of self-attention
and convolutional layer fusion in the deepest layer of the encoder to better capture the
semantic and positional mapping of different buildings in the study area, providing more
informative features for subsequent feature fusion.

However, to ensure symmetry between the front and back temporal phases in the
change detection task, prediction results should be the same regardless of whether the
image of temporal phase one or the image of temporal phase two is input first. Some
existing change feature fusion algorithms do not consider this symmetry, while others use
a complex attention mechanism.

In this paper, we propose a solution to the problem of symmetry in change features
by introducing a symmetric change feature fusion module (SCFM). The SCFM uses a
two-branch feature selection approach, which preserves feature information, while incor-
porating strong prior knowledge, and a spatial feature attention mechanism based on
cosine similarity. To fully utilize the encoder parameters and address the issue of delayed
change feature extraction, we propose the interaction feature-aware module (MFAM) in
the encoder stage. The MFAM incorporates change features into the encoder stage and
uses a cross-type attention mechanism to model long-range dependencies. We also address
sample imbalance and poor edge detection in change detection by introducing the Dice
loss function for edge region detection.

The main contributions of this paper are summarized as follows:

• A symmetric change feature fusion module (SCFM) is proposed, which uses parallel
feature differencing and feature summation to maintain the symmetry of the results,
while employing feature channel selection attention and explicit spatial attention
based on cosine similarity to enhance the model’s extraction of change features.

• A mutual feature-aware module (MFAM) is proposed to introduce change features
in the deep stage of encoders based on the Siamese network architecture, which can
make fuller use of the powerful parametric number of encoders and feature extraction
for the focused regions that need attention compared to previous work.

• We propose a new loss function (EL) for improving the effect of edge region change
detection.

• Based on the above three structures, we propose a mutual feature-aware network
(MFNet) for remote sensing image change detection. Moreover, we conducted exten-
sive experiments on public datasets SYSU-CD and LEVIR-CD and achieved advanced
performance with F1 scores of 83.11% and 91.52%, respectively.

This paper is organized as follows: In Section 2, we describe the overall framework
and detailed structure of the algorithm proposed in this paper. In Section 3, the evaluation
results on public datasets are shown and compared with current state-of-the-art algorithms.
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In Section 4, a detailed ablation experiment with visualization is discussed. The Section 5
concludes the full paper.

2. Methods
2.1. Overview

The overall structure of the mutual feature-aware network (MFNet) constructed in
this paper is shown in Figure 1. An encoder-decoder structure is used, with the encoder
using a twin shared weight network to extract features from dual-temporal images and the
decoder using a feature pyramid fusion network to fuse multi-scale features.

Figure 1. The overall architecture of the proposed MFNet.

The inputs of the model are two pre-aligned images at different times, which are
extracted by a Siamese encoder to obtain four multi-scale features, respectively.

In the encoder, since there is more high-level semantic information in the deep network,
the mutual feature-aware module MFAM proposed in this paper is used after stage 3 and
stage 4 to perceive the change features in advance in the encoding stage and enhance the
feature extraction capability of the model.

In the decoder, four scales of features from the encoder are input, and, at each scale,
the change features are obtained by fusing the features from the dual-temporal features
through the symmetric change feature fusion module SCFM proposed in this paper. Finally,
the change features from multiple scales are up-sampled and fused using a feature pyramid
fusion network [28].

2.2. Symmetric Change Feature Fusion Module

The symmetric change feature fusion module (SCFM) is used in the decoder. Its input
is a pair of features [FAi, FBi ] from different times, which are fused to output the change
feature FCi, where i indicates different stages of the encoder; the symmetric structure can
ensure that FCi is independent of the input sequence of [FAi, FBi ]. The specific structure is
shown in Figure 2a.
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Figure 2. (a) Symmetric Change Feature Fusion Module; (b) Feature Selection Module; (c) Dissimilar-
ity Weighting Module.

It consists of three main steps.
1. Parallel branching is used to sum, as well as find the difference for, [FAi, FBi ]. The

absolute value operation is used to maintain the symmetry after the difference. The feature
difference can provide good a priori knowledge of the changes and highlight the features
that have changed, but there is a large amount of feature loss when making the difference,
and the summation branch can compensate for this information loss while maintaining the
symmetry of the structure. This step can be formulated as follows:

Fadd = FAi + FBi (1)

Fdi f f = abs(FAi − FBi) (2)

2. Feature selection is performed at the feature channel level using the feature selection
module (FSM) for the results of the above parallel branching. The specific structure of
the FSM is shown in Figure 2b, which is similar to the squeeze and excitation module
(SE [29]), where the spatial dimension of the features is first compressed using average-
pooling, the 1× 1 convolution is used for feature mapping, and then the sigmoid is used for
feature activation to obtain the importance of different feature channels. This is weighted
on the original features and combined with the original features through the residual
connection [30]. The feature selection module enables selection of the more important
feature channels in this branch. This step can be formulated as follows:

Fbranch1, Fbranch2 = FSM(Fadd), FSM
(

Fdi f f

)
(3)

3. The feature selection results of the dual branch are concatenated in the channel
dimension. Then the features are enhanced in the spatial dimension by the explicit dissimi-
larity weighting module (DWM). The specific structure of the DWM is shown in Figure 2c.
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First, the cosine dissimilarity is calculated in the channel dimension for the input features
[FAi, FBi ], which is represented as follows:

DSm,n = 1−CosSimilarityAB
2

=

(
1− FA,m,n · FB,m,n

|FA,m,n|∗|FB,m,n |

)
/ 2

(4)

where m and n denote the spatial coordinates of the feature points, DSm,n∈[0, 1]—the closer
its value is to 1, the smaller the similarity. This position is more likely to be changed; thus,
the feature weights here need to be increased. After obtaining the DS, it is weighted to the
original input features and combined with the input features through a residual connection.
Finally, the features are extracted by a conv-bn-relu module. The dissimilarity weighting
module allows for enhanced extraction of change features in the spatial dimension, and the
calculation of dissimilarity introduces a certain amount of a priori knowledge. This step
can be formulated as follows:

Fcat = Concat(Fbranch1, Fbranch2) (5)

Fc = DWM(Fcat) (6)

2.3. Mutual Feature-Aware Module

The mutual feature-aware module (MFAM) is used in the encoder. The module is only
used after stage 3 and stage 4 because the semantic information of the shallow network
features of the encoder is low and the change features cannot be extracted effectively. The
inputs of MFAM are the features [FAi, FBi ] from the previous stage of the encoder, and the
outputs are [FAi

′, FBi
′] after the mutual feature awareness; perceiving the change features

in advance in the encoder can guide the model to focus on the focal regions. The specific
structure of this module is shown in Figure 3a.

Figure 3. (a) Mutual Feature-Aware Module; (b) Diagram of Cross Self-Attention (CSA); (c) Cross
Multi-headed Self-attention Module.
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It consists of three main steps:
1. The symmetric change feature fusion module introduced in the previous subsection

is used; the bi-temporal change features are extracted based on the bi-temporal input
features.

2. The cross multi-headed self-attention module [31] (CMSM) is used to model the
interaction features for long-distance relationships. The specific structure of CMSM is
shown in Figure 3c. The input features are normalized over all channels by the LayerNorm
layer and then pass through the cross self-attention layer (CSA), as shown in Figure 3b. The
spatial dimension of the whole feature map is H ×W. Each small blue square represents
a spatial feature point; the yellow triangle indicates the point of the currently calculated
feature, whose spatial location is denoted as (m, n). The attention of the current yellow
triangle point is calculated with the points in the red region, as shown in Figure 3b, where
the width of the cross is symmetrically distributed on both sides of the current point. The
calculation is as follows:

Fm,n = so f tmax
(

Qm,n∗KT
i,j√

d

)
∗Vi,j{

i ∈
[
m− CW

2 , m + CW
2

]
, j ∈ [0, w− 1]

}
∪
{

i ∈ [0, h− 1], j ∈
[
n− CW

2 , n + CW
2

]} (7)

where CW indicates the cross width, w and h indicate the width and height of the feature,
QKV is obtained by mapping the original features to different linear spaces, and d indicates
the dimension of Q.

Computing the features of a point requires computing the self-attention CW × H +
CW ×W − CW

2 times, which are much smaller compared to the H×W times of global self-
attention [32]. After calculating the cross self-attention once, the current point still cannot
perceive the features in the blue squares in the figure, but, after one stacking, i.e., using two
CMSM modules, the current point has directly or indirectly calculated the self-attention
features with all other points, so two CMSM structures in series are used here. As the
encoder network deepens, the spatial dimension of the features is gradually downsampled.
In order to directly obtain a larger range of feature attention, we adopt the strategy of
gradually increasing CW . Specifically, the CW after stage 3 and stage 4 of the encoder is 3
and 5, respectively.

3. The mutual features acquired by the CMSM module are concatenated to the input
features [FAi, FBi ], and the mutual features are perceived by a convolution–BN–activation
combination.

2.4. Edge Loss

The online hard example mining (OHEM) and edge Dice loss (EDL) modules solve
the problems of sample imbalance and difficult edge detection in remote sensing change
detection by improving the optimization objectives of the model.

Change detection is a pixel-level binary classification problem, commonly using binary
cross-entropy loss as the optimization objective. The online hard example mining loss is
determined by sorting the pixel-by-pixel bce loss, and then taking the largest TopK pixel
loss, and calculating their mean value; in this paper K has a value of 50,000. In this way a
large number of simple samples are filtered out as a way to solve the problem of imbalance
between difficult and easy samples. The calculation is as follows:

LossBCE = y .
i
· logP(yi) + (1− yi) · log(1− yi) (8)

LossOHEM =
∑ TopK(LossBCE)

K
(9)

Dice loss is a commonly used loss function in semantic segmentation, which can
measure the similarity of two sets from a global perspective. Even when there are only a
very small number of positive samples in an image, Dice loss can still work. Using this loss
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can solve the problem of extreme imbalance between positive and negative samples, which
is calculated as in Equation (10)

LossDice = 1− 2|X ∩Y|
|X|+ |Y| (10)

In this paper, we propose edge Dice to make the model focus on more difficult pixel
classification at the edge of the object, as shown in Figure 4. The left figure is the label
of change detection, first extracting its edge, and then extending w pixels inward and
outward, as shown in the right figure. In this paper, w is taken as 20 pixels, the red region
is the positive sample region, the yellow region is the negative sample region, and Dice
loss is calculated only in these two regions to obtain LossEdge.

Figure 4. Schematic diagram of the edge Dice loss calculation area.

Total losses are as follows:

LossTotal = LossOHEM + LossDice + LossEdge (11)

3. Results
3.1. Remote Sensing Change Detection Dataset

Remote sensing change detection datasets can be broadly categorized into two types:
generic change detection and domain-specific change detection. The former focuses on
detecting multiple change types at the same time, treating them as the same class. Examples
of such datasets include CDD [33], SYSU-CD [18], SECOND [34], etc. The latter type, on
the other hand, is specific to a particular change type, such as building change detection.
Datasets falling under this category include LEVIR-CD [1], WHU-CD [35], S2Looking [36],
etc. In this paper, we conduct experiments using one dataset from each of these two
categories, namely SYSU-CD and LEVIR-CD.

3.1.1. SYSU-CD

The SYSU-CD dataset comprises bitemporal aerial images taken in Hong Kong from
2007 to 2014, with a resolution of 0.5 GSD. It is a generic change detection dataset, and the
primary change types include suburban expansion, building changes, pre-construction
groundwork, vegetation changes, road expansion, and marine construction, among others.
The dataset consists of 20,000 pairs of RGB images, each with a size of 256 × 256. The
dataset is partitioned into a training set, validation set, and test set with a ratio of 6:2:2;
Figure 5 shows several pairs of example images in SYSU-CD.
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Figure 5. Example of bitemporal input and labels in SYSU-CD.

3.1.2. LEVIR-CD

The LEVIR-CD dataset consists of 637 pairs of RGB images captured from 20 different
areas in several cities in Texas, USA, from 2002 to 2018, with a resolution of 0.5 GSD. The
dataset is specifically designed for building change detection and focuses only on changes
in individual categories of buildings. The image size is 1024 × 1024, providing high spatial
resolution for detailed analysis; Figure 6 shows several pairs of LEVIR-CD example images.

Figure 6. Example of bitemporal input and labels in LEVIR-CD.

The profiles of SYSU-CD and LEVIR-CD are summarized in Table 1. GSD means
ground sample distance. Both datasets exhibit significant class imbalance, with a positive-
to-negative sample ratio of 1:4 in SYSU-CD and 1:20 in LEVIR-CD.

Table 1. Overview of the dataset used in this paper.

Dataset Type GSD Quantity of Trainset Quantity of Valset Quantity of Testset Size

SYSU-CD Generic 0.5 m 12,000 pairs 4000 pairs 4000 pairs 256 × 256
LEVIR-CD Building 0.5 m 445 pairs 64 pairs 128 pairs 1024 × 1024
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3.2. Evaluation Metrics

The evaluation metrics commonly used in change detection tasks are accuracy P
(Precision) and recall R (Recall); P and R are calculated as follows:

P =
TP

TP + FP
(12)

R =
TP

TP + FN
(13)

where TP represents the number of true positive samples that are correctly identified
as positive by the model; FP represents the number of false positive samples that are
incorrectly identified as positive by the model; FN represents the number of false negative
samples that are incorrectly identified as negative by the model; and TN represents the
number of true negative samples that are correctly identified as negative by the model.

In practical applications, since P and R are two indicators that influence each other, this
paper also uses the metric F1 score that combines the two measures, which is the harmonic
mean of P and R. The calculation of F1 is as follows:

F1 = 2× P× R
P + R

(14)

In addition, in this paper, IOU is used as an evaluation metric. In change detection,
there are only two categories of change and non-change, and this paper only calculates the
IOU of the change category, which is calculated as follows:

IOU =
TP

TP + FP + FN
(15)

3.3. Comparison Method

To verify the effectiveness of the proposed method, we compare MFNet with ten
existing state-of-the-art algorithms, which are presented as follows:

FC-EF [7], FC-Siam-conc [7], and FC-Siam-diff [7] were proposed in 2018. They were
the first algorithms that introduced Siamese networks to the change detection task. EF
indicates early fusion, where the twin-temporal images are fused in the input phase; Siam-
conc indicates a Siamese network-based splicing fusion model that fuses the bitemporal
features of the Siamese network output using the concatenate operation; Siam-diff indicates
a twin network-based difference fusion model.

STANet [1] was proposed in 2020. It uses a self-attention feature fusion module for
change detection and captures spatiotemporal dependencies in multiple sub-regions of the
image. The LEVIR-CD dataset is published in this paper.

BiT [12] was proposed in 2021. It uses Transformer as a fusion network of changing
features based on the CNN backbone network to model the global semantic information of
bitemporal features.

SNUNet [8] was proposed in 2021. It draws on the UNet++ network model to introduce
multi-level dense connections in the decoder for change detection and integrates a channel
attention mechanism to refine semantic features at different scales.

DSAMNet [18] was proposed in 2021. It uses a metric module with an integrated
CBAM module for change prediction, along with additional supervised branches in the
shallow network. The SYSU-CD dataset is published in this paper.

SSANet [37] was proposed in 2022. It was designed as a novel joint learning framework
consisting of fusion sub-networks, differential networks, and decoders with an effective
self-weighted spatiotemporal attention network.

ChangeFormer [13] was proposed in 2022. It introduces a pure Transformer architec-
ture in the change detection task to efficiently obtain the multi-scale long-range details
required for change detection.
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USSFC-Net [38] was proposed in 2023. It includes a multiscale decoupled convolution
(MSDConv), which can flexibly capture the multiscale features of changed objects. An
efficient spatial–spectral feature cooperation (SSFC) strategy is introduced to obtain richer
features.

3.4. Implementation Details

The experimental hardware environment is Intel Xeon Gold 6240 CPU@2.6 GHz, 128 G
RAM, and NVIDIA Quadro RTX8000, and the software environment is the Ubuntu 18.04.6
LTS operating system and the PyTorch deep learning framework based on Python.

In the experimental setup, the number of training iterations is 10k iterations, the
optimizer is AdamW [39], the initial learning rate is set to 0.0001, and the warm-up strategy
with linear learning rate is used for the first 1000 iterations, the learning rate decay strategy
is poly, and a single GPU is used. When training on SYSU-CD, an input size of 256 × 256
with a batch size of 32 is used. When training on LEVIR-CD, input images with a size of
512 × 512 and batch size of 16 are used, which are cropped from the original image. We
discuss the effect of different input sizes of LEVIR-CD on the model in Appendix A. For
data augmentation, strategies such as random resize, random crop, random flip, random
rotation, random color jitter, and input normalization are used. All augmentation strategies
are used online during the model training process. The quantity and other details of the
training data are shown in Table 1. The details for the data augmentation are shown in
Table 2.

Table 2. Details for data augmentation.

Data Augmentation Arguments Probability

resize (0.5, 2.0) 1.0

crop SYSU-CD: (256, 256)
LEVIR-CD: (512, 512) 1.0

flip up-down/left-right 0.5

rotation (−90◦, 90◦) 0.5

color jitter contrast-range = (0.5, 1.5)
saturation-range = (0.5, 1.5) 0.5

normalization mean = [123.675, 116.28, 103.53]
std = [58.395, 57.12, 57.375] 1.0

In the experiments, to demonstrate the effectiveness of the proposed module, two
different architectures are used as the encoder: ConvNeXt [40], based on a convolutional
neural network, and Swin Transformer [41], based on self-attention, with ImageNet [42]
image classification pre-training parameters and UperNet [43] structure for the decoder,
using FP16 dynamic mixing accuracy during the training.

3.5. Quantitative Results

In this paper, two models MFNet-Conv and MFNet-SA are constructed based on
convolutional neural networks and self-attention Transformer networks, respectively, where
MFNet-Conv uses ConvNeXt-tiny as an encoder and MFNet-SA uses Swin-tiny as an
encoder, in order to demonstrate the effectiveness of the proposed module in two different
architectures.

Tables 3 and 4 show the quantitative evaluation results of the proposed method MFNet
and several comparative algorithms on the LEVIR-CD and SYSU-CD datasets. The results
in this paper are trained on the officially divided training set and tested on the test set
without using additional data.

MFNet proposed in this paper produces competitive results compared with other
algorithms and is substantially ahead of other algorithms on the generic change detection
dataset SYSU-CD. MFNet-Conv achieves an F1 of 83.11% and an IOU of 71.10%, which
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is an improvement of 1.12% in F1 and 0.74% in IOU compared with the previous best
method ChangeFormer. MFNet-SA is 0.38% smaller in F1 and 0.56% smaller in IOU than
MFNet-Conv, but still achieves the second best result. On the building change detection
dataset LEVIR-CD, MFNet-SA achieves an F1 of 91.52% and an IOU of 84.37%, which are
0.4% and 0.68% higher than SSANet, respectively, while MFNet-Conv achieves the second
best result. However, the difference with the former is not large, because the ConvNeXt is
an encoder optimized by the Transformer structure, and it can achieve an effect comparable
to Transformer after adaptation. MFNet achieves the best metrics on both architectures and
both datasets, illustrating its effectiveness.

Table 3. Quantitative evaluation results of different algorithms on SYSU-CD.

Methods P (%) R (%) F1 (%) IOU (%)

FC-EF [7] 81.61 69.63 75.13 60.18
FC-Siam-conc [7] 82.36 72.20 76.95 62.53
FC-Siam-diff [7] 63.58

::::
87.08 73.50 58.11

STANet [16] 75.40 79.63 77.27 63.05
BiT [12] 68.78 88.45 77.39 63.12

SNUNet [8] 77.45 78.68 78.06 64.02
DSAMNet [18] 78.80 77.68 78.23 64.25

SSANet [37] 82.48 79.73 81.08 68.18
ChangeFormer [13] 82.78 81.23 81.99 70.36

MFNet-Conv (Ours)
::::
89.40 77.64 83.11 71.10

MFNet-SA (Ours) 89.83 76.67
::::
82.73

::::
70.54

Color description: best,
::::::
2nd-best, 3rd-best.

Table 4. Quantitative evaluation results of different algorithms on LEVIR-CD.

Methods P (%) R (%) F1 (%) IOU (%)

FC-EF [7] 84.67 81.03 83.68 71.94
FC-Siam-conc [7] 92.64 76.89 84.03 72.46
FC-Siam-diff [7] 89.11 83.02 85.96 75.37

STANet [16] 87.99 87.65 87.82 77.51
BiT [12] 89.93 89.45 89.69 81.31

SNUNet [8] 89.14 86.73 87.92 78.45
DSAMNet [18] 80.19 89.06 84.39 73.01

SSANet [37] 91.71 90.53 91.12 83.69
ChangeFormer [13]

::::
92.05 88.80 90.40 82.48

USSFC-Net [38] 89.70 92.42 91.04 \
MFNet-Conv (Ours) 91.69 91.05

::::
91.37

::::
84.11

MFNet-SA (Ours) 90.98
::::
92.07 91.52 84.37

Color description: best,
::::::
2nd-best, 3rd-best.

3.6. Qualitative Results

Figure 7 shows the prediction results of MFNet-Conv and ChangeFormer algorithms
on SYSU-CD and LEVIR-CD. The first column in the figure shows the input image of
the first temporal, the second column shows the input image of the second temporal, the
third column shows the GT labels, the fourth column shows the prediction results of the
ChangeFormer algorithm, and the last column shows the prediction results of MFNet-Conv.
The red pixels in the prediction results indicate false positive detections and the blue
pixels indicate false negative detections. It can be seen that, in the SYSU-CD dataset, the
change pixels predicted by the method in this paper are significantly more accurate, for
example, for the ship and land boundary in the first pair of images. MFNet can have fewer
false detections and missed detections in the edge region compared to ChangeFormer and
achieve high quality change detection. In the LEVIR-CD dataset, in the second pair of
images, due to the light angle changes, a shadow of the ground water tower appears in
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different positions, which the ChangeFormer algorithm identifies as change, while MFNet
is able to ignore this lighting change and correctly identify the real change area. Therefore,
the proposed method MFNet has better performance and higher robustness.

Figure 7. (a) Prediction results on SYSU-CD; (b) Prediction results on LEVIR-CD.
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4. Discussion
4.1. Ablation Experiment

In order to investigate the impact of each proposed module on the model’s perfor-
mance, this subsection presents an ablation experimental analysis on the SYSU-CD dataset.
The analysis aims to investigate the effect of each module on both MFNet-Conv and MFNet-
SA. The results are presented in Table 5, where SCFM, MFAM, and Hybrid Loss refer
to the three optimization strategies proposed in this paper. The baseline model adopts
the concatenate (Concat) operation as the change feature fusion method, and the binary
cross entropy (BCE) loss function is used. Furthermore, there is no information exchange
between the features of different time phases in the encoder stage.

Table 5. Results of MFNet ablation experiments on the SYSU-CD dataset.

Methods SCFM MFAM Hybrid Loss F1 (%) IOU (%)

MFNet-Conv

81.52 69.87√ 81.96 (+0.44) 70.21 (+0.34)
√ 82.38 (+0.86) 70.63 (+0.76)

√ 82.14 (+0.62) 70.47 (+0.60)
√ √ 82.64 (+1.12) 70.88 (+1.01)
√ √ √ 83.11 (+1.59) 71.10 (+1.23)

MFNet-SA

81.79 69.84√ 82.04 (+0.25) 69.99 (+0.15)
√ 82.32 (+0.53) 70.27 (+0.43)

√ 82.11 (+0.32) 70.13 (+0.29)
√ √ 82.45 (+0.66) 70.38 (+0.54)
√ √ √ 82.73 (+0.94) 70.54 (+0.70)

The experimental results demonstrate that the three proposed improvements can
effectively enhance the performance of both MFNet-Conv, which is based on a convolutional
neural network, and MFNet-SA, which is based on a self-attention transformer. The F1
score of MFNet-Conv and MFNet-SA can be increased by 1.59% and 0.94%, respectively,
compared to the baseline, while IOU is improved by 1.23% and 0.7%, respectively. Notably,
the mutual feature-aware module MFAM brings the most significant improvement, with
the F1 score increasing by 0.86% and IOU by 0.76% in MFNet-Conv, and the F1 score
increasing by 0.53% and IOU by 0.43% in MFNet-SA. The improvement of the SA model
is lower than that of the Conv model because the internal structure of the Conv model
is a pure convolutional structure with a limited receptive field. The introduction of the
MFAM module with a global receptive field on the top of it can bring more improvement.
The overall metrics of the SA model are lower than those of the Conv model because
the ConvNeXt model used in the Conv model itself is borrowed from the Swin model,
which has better performance than Swin in terms of training strategy, model structure, and
many other aspects. The experimental analysis presented here illustrates the quantitative
influence of different modules on the model and verifies the rationality and effectiveness of
the method design proposed in this paper.

Additionally, Table 6 compares the symmetric change feature fusion module (SCFM)
proposed with two other commonly used change feature fusion structures. The Diff method
uses direct feature differencing, which results in the worst F1 score of only 80.23% due
to the loss of more unrecoverable feature information during differencing. The Concat
method uses concatenate feature fusion, which preserves the features entirely compared to
Diff, and a convolutional layer with a 1 × 1 kernel size is used to learn the extraction of
change features automatically. The F1 score obtained from Concat is 1.29% higher than that
obtained from Diff. In contrast, the SCFM proposed in this paper achieves the best results
by maintaining the symmetry of the network and obtaining the change feature prior via a
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difference branch without losing information. The F1 score obtained from SCFM is further
improved by 0.44% compared to that obtained from Concat.

Table 6. Results of ablation experiments with different fusion methods of change features on the
SYSU-CD dataset.

Methods Fusion F1 (%) IOU (%)

MFNet-Conv
Diff 80.23 67.45

Concat 81.52 69.87
SCFM 81.96 70.21

Table 7 presents the results of ablation experiments conducted using the mutual
feature-aware module MFAM at different stages of the encoder. The results show that the
greatest improvement is achieved when the module is used after stage 3 and stage 4 of
the deep network, resulting in a 0.86% and 0.76% improvement in the F1 score and IOU,
respectively. However, it is important to note that introducing shallow feature interactions
can lead to a decrease in performance, even worse than the baseline, as seen in the last
two rows. This can be attributed to the fact that shallow features contain less semantic
information, and the extraction of change features is less effective after bitemporal feature
interaction, leading to noise in the network and resulting in performance degradation.

Table 7. Results of ablation experiments using MFAM at different stages of the encoder.

Methods Stage 1 Stage 2 Stage 3 Stage 4 F1 (%) IOU (%)

MFNet-Conv

81.52 69.87√ √ 82.38 70.63
√ √ √ 82.13 70.35

√ √ √ √ 81.39 69.58

Table 8 presents the results of ablation experiments for the cross self-attention module
CMSM structure in the mutual feature perception module MFAM. Without CMSM, adding
the mutual features obtained using the symmetric change feature fusion module SCFM
proposed above to the encoder backbone can improve the F1 score by 0.65%. With the
addition of the CMSM structure to capture the global perceptual field, the F1 score can
be further improved by 0.21%. These results confirm the effectiveness of the CMSM in
improving the performance of the system.

Table 8. Results of ablation experiments of CMSM in MFAM.

Methods
MFAM

F1 (%) IOU (%)
SCFM CMSM

MFNet-Conv

MFAM is not used 81.52 69.87
√ 82.17 70.37
√ √ 82.38 70.63

Figure 8 depicts the convergence rate of the F1 score and the IOU metrics of the MFNet-
Conv model on SYSU-CD when utilizing different losses. The orange curve represents
the usage of binary cross-entropy loss solely, whereas the blue curve corresponds to the
employment of losses proposed in this paper, including the BCE loss with hard sample
mining, Dice loss, and edge Dice, focusing on the edges of the change region. The horizontal
axis of the curve signifies the number of iterations (iter), where the metrics evaluation is
performed every 100 iterations, and the vertical axis indicates the evaluation metrics F1
score or IOU. The hybrid loss proposed in this paper exhibits a faster convergence rate,
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and, at 1000 iterations, the F1 metric attains 78.98%, and the IOU reaches 65.63%, reflecting
improvements of 7.41% and 9.3% compared to BCE, respectively. Furthermore, Table 4
shows that in the final steady-state metrics, the hybrid loss surpasses BCE by 0.62% and
0.60% in the F1 score and IOU, respectively.

Figure 8. Curve of IOU and F1 score under different loss.

Table 9 shows the parameters, FLOPs and F1 metrics on the SYSU-CD dataset for each
module proposed in this paper. FLOPs are computed at an input scale of 256 × 256. It is
evident from the table that the symmetric change feature fusion module SCFM only slightly
increases the parameters by 0.39 M and FLOPs by 0.2 G. With only two 1 × 1 convolutions
in the feature selection module and one 1 × 1 convolution in the H × W scale space in
this structure, it is possible to obtain a 0.44% F1 score improvement with a very small
increase in the number of parameters. On the other hand, the mutual feature-aware module
MFAM has a larger number of parameters. When using the cross self-attention module
CMSM, the number of parameters increases by 12.19 M, but the FLOPs only increase by
1.36 G. This module can be used with more abundant memory resources to achieve the best
performance. However, under limited arithmetic resources, the CMSM structure can be
removed, and, compared to the baseline, the number of parameters only increases by 3.32 M
and the FLOPs increase by 0.45 G, which still results in a 0.65% F1 score improvement.

Table 9. Parameters and FLOPs for each module of MFNet-Conv.

Baseline SCFM MFAM Params. (M) FLOPs (G) F1 (%)
√ 48.98 41.64 81.52
√ √ 49.37 (+0.39) 41.84 (+0.20) 81.96 (+0.44)
√ √ w.o.CMSM 52.30 (+3.32) 42.09 (+0.45) 82.17 (+0.65)
√ √ with CMSM 61.17 (+12.19) 43.00 (+1.36) 82.38 (+0.86)
√ √ √ with CMSM 61.56 (+12.58) 43.20 (+1.56) 82.64 (+1.12)

4.2. Feature Visualization

This subsection provides a visualization and analysis of the proposed mutual feature
perception module MFAM and symmetric change feature fusion module SCFM, from a
feature-based perspective.

Figure 9 displays the feature visualization of the encoder’s features in the model at
stage 3 and stage 4 before and after undergoing the proposed mutual feature-aware module
process. Two pairs of images, Figures 9a and 9b, are presented. The first row in Figure 9a
exhibits the features of the pre-temporal image, while the second row shows the features of
the post-temporal image. The second and third columns of both image pairs represent the
features before and after the MFAM module of stage 3 of the encoder, while the fourth and
fifth columns represent the features before and after the MFAM module of stage 4 of the
encoder. From the figure, it is evident that, before MFAM in stage 3 of image pair Figure 9a,
no higher corresponding feature exists because the post-temporal shadow map is solely
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a water surface. However, after MFAM in the feature map of the post-temporal phase,
a higher response emerges at the position of the red dashed circle in the figure, which
represents the region where the change occurs. This phenomenon is similarly observed in
stage 4. Similarly, the same phenomenon occurs at stage 3 of image pair Figure 9b, where
there is no response at the red dashed coil before MFAM. However, after MFAM, a higher
response appears, and this is the region where the change occurs. Therefore, the mutual
feature-aware module MFAM can enhance the focus on the changed region at the encoder
stage, which enables the network to extract features in a more targeted manner.

Figure 9. Feature visualization before and after the MFAM module. (a) and (b) denote the feature
visualization of two pairs of images respectively. The red dashed circles show that the use of MFAM
causes the encoder to focus on areas where changes may occur.

Figure 10 presents the feature visualization outcomes of the decoder at stage 3 and
stage 4 regarding the symmetric change feature fusion module SCFM. The white color
in the prediction results signifies true positive predictions (TP), while the red and blue
colors correspond to false positive predictions (FP) and false negative predictions (FN),
respectively. As shown in the figure, utilizing SCFM results in a stronger feature response
in the change region, with most of the response concentrated in this area, and a weaker
response in the non-change region. Comparing the feature response locations with the
change detection prediction results, it is evident that more precise response locations lead to
better change prediction accuracy. The employment of SCFM not only assists in accurately
detecting changes, but also decreases false and missed detections in the edge regions.
These observations demonstrate the effectiveness of the symmetric change feature fusion
module SCFM.
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Figure 10. Visualization of SCFM module features.

4.3. Computational Complexity

This subsection compares the proposed algorithm MFNet with other algorithms from
the point of view of computational complexity, mainly comparing parameters and FLOPs,
which is computed with an input size of 256 × 256. Table 10 shows the computational
complexity of the different algorithms.

There is a constraint between the complexity and accuracy of the model for deep learn-
ing. Although the parameters and FLOPs of our method are larger, which is a limitation
of our algorithm, it achieves the best performance in terms of accuracy. In addition, the
FLOPs for our method are lower than for ChangeFormer.

Table 10. Comparison of computational complexity and metrics on LEVIR-CD of different algorithms.

Methods Params. (M) FLOPs (G) F1 (%) IOU (%)

FC-EF [7] 1.35 3.56 83.68 71.94
FC-Siam-conc [7] 1.82 4.71 84.03 72.46
FC-Siam-diff [7] 2.03 5.32 85.96 75.37

STANet [16] 24.37 12.03 87.82 77.51
BiT [12] 22.87 26.31 89.69 81.31

SNUNet [8] 13.21 54.82 87.92 78.45
DSAMNet [18] 33.85 75.39 84.39 73.01

SSANet [37] 15.97 36.63 91.12 83.69
ChangeFormer [13] 41.01 101.42 90.40 82.48

USSFC-Net [38] 1.52 4.86 91.04 \
MFNet-Conv (Ours) 61.56 43.20 91.37 84.11

MFNet-SA (Ours) 74.75 67.05 91.52 84.37

5. Conclusions

In this paper, we propose MFNet, a mutual feature-aware network for remote sensing
image change detection. Based on the encoder-decoder and Siamese network structure,
we address three problems that exist in current remote sensing image change detection
tasks, such as asymmetric change feature fusion, change feature extraction lag and sample
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imbalance and edge detection difficulties. A symmetric change feature fusion module
SCFM, a mutual feature-aware module MFAM, and the edge loss function EL, are proposed,
in which the symmetric change feature fusion module introduces the change feature a priori
information using the two-branch feature selection without losing the feature information,
and explicitly performs the spatial dimensional feature weighting based on the cosine
similarity. The mutual feature-aware module introduces change features in advance at
the encoder, allowing the model to target feature extraction for feature comparison in
subsequent decoders. The edge loss guides the model to focus on the more difficult regions
in the edge area, while alleviating the problem of unbalanced positive and negative samples.

We experimented on two commonly used change detection datasets, SYSU-CD and
LEVIR-CD, and compared and analyzed them with the current mainstream remote sensing
change detection algorithms. Detailed ablation experiments and feature visualization
analysis were also performed to demonstrate the effectiveness of the proposed method.

In terms of future work to be carried out, in the mutual feature-aware module pro-
posed in this paper, the intersection of the mutual features with the original features is
performed by a simple concatenate operation plus a convolution operation, and more effi-
cient structures for feature interaction can be explored in the future. Moreover, in order to
improve the change detection performance, we use a heavy encoder in our method, which
leads to the limitation of our method in terms of computational complexity, and cannot
be applied in the case of restricted computational resources. For the next stage, we will
study the lightweight remote sensing image change detection model under a computational
resource constraint.
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Appendix A

We discuss here the effect of different input sizes of LEVIR-CD on the model.
It can be seen that, with the same storage occupation, a crop of the original image will

have a better performance, and resizing of the original image will lead to a performance
drop due to the loss of the original image information. This also leads to a slight decrease in
performance. The best performance is achieved when using a batch size of 16 for a 1024 size
input, but the storage occupation increases by a factor of 4, which requires more memory
space on the graphics card. In this paper, we use 512 size input with a batch size of 16.

Table A1. Metrics of MFNet-Conv model on LEVIR-CD with different input size and batch size.

Input Size Downsample Method Batch Size Memory Usage F1 (%) IOU (%)

512 Resize 16 22,142 Mb × 1 GPU 90.21 82.13
512 Crop 16 22,142 Mb × 1 GPU 91.37 84.11
1024 \ 4 18,986 Mb × 1 GPU 91.12 83.49
1024 \ 16 35,070 Mb × 2 GPU 91.51 84.27
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