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Abstract: Hyperspectral imaging (HSI) is widely used in various fields owing to its rich spectral
information. Nonetheless, the high dimensionality of HSI and the limited number of labeled data
remain significant obstacles to HSI classification technology. To alleviate the above problems, we
propose an attention-embedded triple-branch fusion convolutional neural network (AETF-Net) for an
HSI classification. The network consists of a spectral attention branch, a spatial attention branch, and
a multi-attention fusion branch (MAFB). The spectral branch introduces the cross-channel attention
to alleviate the band redundancy problem in high dimensions, while the spatial branch preserves the
location information of features and eliminates interfering image elements by a bi-directional spatial
attention module. These pre-extracted spectral and spatial attention features are then embedded into
a novel MAFB with large kernel decomposition technique. The proposed AETF-Net achieves multi-
attention features reuse and extracts more representative and discriminative features. Experimental
results on three well-known datasets demonstrate the superiority of the method AETF-Net.

Keywords: hyperspectral image classification; attention mechanism; feature fusion; deep learning

1. Introduction

Hyperspectral remote sensing can obtain the intrinsic characteristics and change
patterns of objects by recording the electromagnetic wave characteristics without direct
contact, making it a cutting-edge remote sensing technology [1]. Hyperspectral imaging
(HSI) can record the spatial information under each waveband and the spectral information
under the same position. Therefore, it has excellent application prospects in many fields,
such as agriculture and forestry [2–5], ocean [6], disaster [7], mineral exploration [8,9], and
urban construction [10–12]. HSI classification assigns category labels to each pixel based
on sample features, which is increasingly becoming a key technology in hyperspectral
remote sensing.

In the first two decades of the evolution of HSI classification, there were many machine
learning algorithms based on hand-crafted features from the perspective of learning spec-
tral and spatial features, for instance, spectral angle map [13], support vector machine [14],
sparse representation [15], manifold learning [16], Markov Random Fields [17], Morpho-
logical Profiles [18], Random Forests [19], etc. However, due to the significant variability
among different objects, classification algorithms based on manual feature extraction face
challenges in fitting an optimal set of features for different objects and require greater
robustness and discriminability..

Recently, studies on HSI classification have heavily focused on deep learning (DL)
technology, since it could adaptively extract features from the input data in a hierarchical
manner [20–22]. This allowed DL to learn data features in both spectral and spatial dimen-
sions without requiring prior statistical knowledge of the input data. Chen et al. [23] first
introduced DL to the HSI classification by applying deep Stacked Auto-Encoder (SAE). Sim-
ilarly, in [24], the feasibility of using deep belief network (DBN) for HSI classification was
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investigated. However, implementing SAE and DBN could potentially lead to decreased
performance, as they use complex structures to modify the input data [25]. Researchers
later discovered that Convolutional Neural Networks (CNNs) [26] could effectively extract
multi-level features from large samples, thus eliminating the need for complicated feature
extraction techniques. Hu et al. [27] first applied a one-dimensional CNN (1D-CNN) to HSI
classification and obtained greater classification accuracy than many conventional machine
learning techniques. Nevertheless, 1D-CNN has limited ability to capture spatial relation-
ships between features in the input data. In contrast, two-dimensional CNN (2D-CNN) [28]
learns how pixels in an image are related, allowing it to capture complex spatial patterns
that are important for accurate image classification. However, it may struggle to capture
the spectral relationships between features in the input data, as it considers the different
spectral bands only as separate channels of the image. To incorporate the advantages of
both 1D-CNN and 2D-CNN, researchers have attempted various methods. Yu et al. [29]
utilized a 1D-CNN to extract spectral features and a 2D-CNN to extract spatial-spectral
features, resulting in highly accurate classification. Conversely, the three-dimensional CNN
(3D-CNN) [30] was proposed to operate on 3D HSI data and was capable of learning both
spatial and spectral relationships between features in the input data, compensating for
the weaknesses of 2D-CNNs. Nowadays, CNNs have gained significant attention and
popularity among scholars [31], as evidenced by recent studies. Zhong et al. [32] proposed
a spectral-spatial residual network (SSRN) that combines 3D-CNN for extracting discrimi-
native features. Li et al. [33] developed a two-branch dual attention network (DBDA) that
integrates spectral and spatial attention mechanisms for refining extracted feature maps.
Yan et al. [34] designed a dual-branch network structure to relieve the issue of insufficient
samples in HSI classification by incorporating transfer learning. Through this novel net-
work structure, both [33] and [34] investigated how multimodel features can be used to
improve HSI task performance. Although CNNs are well adapted to the high-dimensional
and complex features of HSIs, high computational complexity arises, and its classification
accuracy can suffer as a result of samples with insufficient data annotation. Furthermore,
CNNs may require more refined feature extractors for specific tasks, and CNN models are
prone to problems such as overfitting in small samples.

In supervised learning, sufficient labeled samples are required to provide a founda-
tion for the classification algorithm [35]. However, labeling the samples pixel by pixel
is time consuming and costly. Thus, the limited number of labeled samples and high-
dimensional data can lead to the generation of the Hughes phenomenon [36], a type of
model overfitting caused by insufficient training data, which affects classification accuracy
heavily. Zhang et al. [37] proposed a lightweight 3D network based on transfer learning
to address the sample-limited problem. Sellami et al. [38] proposed a semi-supervised
network with adaptive band selection to reduce the dimensional redundancy and alleviate
the Huges phenomenon. Although deeper networks can extract richer features to achieve
high classification accuracy, a problem arises when the number of training samples is
vastly smaller than the data dimensionality, leading to the explosive growth of parameters
and vanishing gradients during the training process. Li et al. [39] designed a depth-wise
separable Res-Net framework, which permitted separating spectral and spatial information
in HSI and reduced network size to avoid overfitting issues. CNNs have shown remarkable
performance in HSI classification tasks. Researchers have proposed various techniques,
including transfer learning, adaptive band selection, and depth-wise separable networks,
to improve the classification accuracy and robustness of the HSI small-sample classification
model. However, convolution operations tend to assign equal weights to all pixels or
bands in an image, despite the fact that some pixels and bands may be more beneficial for
classification than others, or may even interfere with classification.

Currently, the introduction of an attention mechanism provides a solution to the afore-
mentioned issue [40–43]. The attention mechanism draws inspiration from the visual focus
region of the human brain, which aids the network in concentrating on significant regions
while ignoring irrelevant ones and performing adaptive weight fitting on features. This
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enhances the efficiency of feature extraction in models and reduces the need for unnec-
essary computation and data preprocessing, thereby making it a promising approach for
HSI classification. Yu et al. [44] proposed a spatial-spectral dense CNN framework based
on a feedback attention mechanism to extract high-level semantic features. Roy et al. [45]
proposed an end-to-end trained adaptive spectral-spatial kernel improved residual net-
work (A2S2K) with an attention-based mechanism to capture discriminative features for
HSI classification. Li et al. [46] proposed a multi-attention fusion network (MAFN) that
employs spatial and spectral attention mechanisms, respectively, to mitigate the effects
of band redundancy and interfering pixels. Xue et al. [47] proposed the attention-based
second-order pooling network (A-SPN) for modeling distinct and representative features
by training the model with adaptive attention weights and second-order statistics. The
attention mechanism learns more effective feature information but can lead to overfitting
when the sample size is limited. Additionally, the high dimensional data of hyperspectral
data carry a large amount of redundant information. The traditional single-attention mech-
anism needs to locate adequate information quickly and accurately, resulting in the need
for a deeper network.

We propose an attention-embedded triple-branch fusion convolutional neural network
(AETF-Net) for HSI classification to address the aforementioned issue. As is shown in
Figure 1, the network comprises a spectral attention branch, a spatial attention branch, and
a multi-attention fusion branch (MAFB). The spectral attention branch and spatial attention
branch, respectively, address the issues of feature redundancy and correlation between
spectral and spatial dimensions. We design a global band attention module (GBAM) in the
spectral branch with a novel SMLP to extract more discriminative band features. In the
spatial branch, we reference a bi-directional spatial attention module (BSAM) to extract
spatial feature information in both horizontal and vertical directions. To incorporate the
extracted spectral and spatial features and reduce the computational cost, we introduce the
large kernel decomposition technique in the MAFB, which replaces large kernel convolution
operation with some small kernel depth convolution and deep dilated convolution. In the
proposed AETF-Net, multiple kinds of attention are used and fused to provide a reference
basis for the relative importance of bands and pixels for 3D convolution with different
weight values. Consequently, the proposed AETF-Net ensures efficient feature extraction
while avoiding the gradient disappearance and feature dissipation issues caused by deep
neural networks. In conclusion, the main contributions of this paper are as follows.

1. A novel multi-attention-based module is introduced that incorporates spatial attention,
spectral attention, and joint spatial-spectral attention. The proposed approach embeds
spatial and spectral feature information into each level of the joint spatial-spectral
feature extraction module via cascading to compensate for the feature loss issue of the
deep neural network.

2. An improved spectral feature extraction mechanism is designed to generate more
accurate band features and weighting information. Moreover, we introduce an inno-
vative weight fusion strategy for feature enhancement to prevent data loss during
feature fusion and preserve the relative size relationship between weights.

3. The proposed method AETF-Net has been validated on three public datasets (i.e., IN,
UP, and KSC) and has shown significantly better classification results. Particularly, at
small sample rates, our method outperforms both traditional and advanced methods.
The effectiveness of the method is verified.

The rest of this paper is arranged as follows. Section 2 elaborates on the proposed
AETF-Net. Section 3 describes the detailed datasets and analyzes the experimental results.
Section 4 provides a comprehensive discussion of the differences between the proposed
method and the comparative algorithms. Section 5 summarizes the core of the whole paper
and provides some suggestions for further research.
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Figure 1. The overall architecture of the proposed AETF-Net model.

2. Materials and Methods

As is shown in Figure 1, the proposed AETF-Net framework is composed of three
primary submodules: (1) spectral attention module, using 1D-CNN to extract attention
features and eliminate global band redundancy; (2) spatial attention module, using 2D-
CNN to extract attention features from both spatial horizontal and vertical directions to
capture more discriminative and detailed edge features; (3) spectral-spatial fusion module,
aiming at fusing joint spatial-spectral features by spectral and spatial attentional weights to
improve 3D convolution feature extraction efficiency.

2.1. Spectral Attention Module

HSI typically has a large number of spectral bands, while not all of them are useful for
classification. Thus, significant spectral bands should be highlighted for feature extraction.
Inspired by the channel attention mechanism [48], we regard spectral bands as the channels
and develop a new band attention module (GBAM) for spectral feature learning. The
structure of the proposed GBAM is shown in Figure 2.

MaxPool

AvgPool

S × S × B

…
…

…
…

1 × 1 × B

1 × 1 × B

SMLP

1 × 1 × B

1 × 1 × B

1 × 1 × B

BA Weight

S × S × B

1 × B

1 × (B - k + 1)

1 × B

: Element-wise addition
: Sigmoid

Figure 2. The proposed GBAM structure.
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Specifically, the original hyperspectral data cube is first dealt with using a 3D convolu-
tion operation to extract low-order spectral features from the HSI, and the output feature
map is defined as:

X
′
= X ∗w + b (1)

where X ∈ RS×S×B denotes the 3D input HSI patch, S denotes the size of input patch and
B denotes the number of bands, w and b denote the weights and biases of the network, and
∗ denotes the 3D convolution operation. The output feature map X

′
is then squeezed in

spatial dimension with maximum pooling and average pooling:
Xavg =

1
S× S

S

∑
i=1

S

∑
j=1

X
′
i,j

Xmax = max
i6S,j6S

X
′
i,j

(2)

where X
′
i,j ∈ RS×S×B is the element in the input patch at pixel (i, j), Xavg ∈ R1×1×B

represents the output of the average pooling operation, and Xmax ∈ R1×1×B represents the
output of the max pooling operation.

They are subsequently delivered into a new shared selective multilayer perceptron
(SMLP). The typical MLP consists of an input layer, a simple hidden layer, and an output
layer. The hidden layer is commonly designed to reduce the parameters by a squeezing
operation, which can lead to the loss of band information in our spectral band. Thus, we
propose a new SMLP in which the hidden layer is refined to model the long-range depen-
dencies of all bands by considering k local neighborhoods. Based on the best experimental
results, we set the value of k to 9. The SMLP output vector L ∈ RB−k+1 is composed of
Li, i = (d k

2e, . . . , B− d k
2e), which is:

Li =
k

∑
j=1

yj
i wi, yj

i ∈ Ωk
i (3)

where d·e denotes the ceiling function, which rounds a given number up to the nearest
integer, Ωk

i denotes the set of k spectral bands adjacent to the ith element of the average

pooling vector or max pooling vector, and wi is the shared parameters of each yj
i . Next,

the deconvolution operation is applied to the feature vector S to generate a vector of the
same size as the input, facilitating subsequent processing. To enhance the robustness and
generalization ability of the deconvolution operation, the activate function ReLU and batch
normalization are introduced.

After Xmax and Xavg pass through the SMLP module, the element-wise addition
operation and the sigmoid nonlinear activation function yield the band attention weight
matrix f (X) ∈ RS×S×B. The band attention module can be expressed as:

f (X) = sigmoid(L(Xmax) + L(Xavg)) (4)

where sigmoid is the nonlinear activation function.

2.2. Bi-Directional Spatial Attention Module

As far as we know, spatial information is helpful for HSI classification because the
neighboring pixels are likely to belong to the same class. Furthermore, the spatial feature
from multiple neighboring pixels can suppress noise interference and redundant infor-
mation. In this paper, we develop a bi-directional spatial attention module (BSAM) to
obtain the abstract spatial representation for HSI classification. Instead of using 2D pooling
operation in spatial feature extraction, which may lead to a loss of location information [49],
BSAM separates spatial attention into two parallel 1D feature encoding processes. Two
separate attention feature maps are independently embedded with orientation-specific
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information. Each of them captures the long-range dependencies of the input feature map
along one of the spatial directions, while preserving the location information in the other
direction in the generated attention map. The structure of improved BSAM is shown in
Figure 3.

H AvgPool

V AvgPool

H × V × B CA Weight

reshape reshape

split1 × V × B

H × 1 × B

2H × 1 × B

1 × V × B

H × 1 × B

H × V × B

1×1 Conv + BN + ReLU
: Element-wise product

c : Concatenate

c

Figure 3. The proposed BSAM structure.

BSAM first performs two independent global average pooling operations with kernels
(H, 1) and (1, V) in two spatial dimensions (the horizontal and vertical axes) on each
channel to encode attention maps. H denotes the size of the pooling kernel in the horizontal
direction, and V denotes the size in the vertical direction. It is noteworthy that the values
of H and V are equivalent to the size of the original image patch S× S, while in this section,
different symbols are expressed for the purpose of direction distinction. The global average
poolings are calculated by:

Zh
H =

1
V ∑

06i<V
x(h, i), h = [1, . . . , H]

Zv
V =

1
H ∑

06j<H
x(j, v), v = [1, . . . , V]

(5)

where x(h, i) is the input feature pixel at height h, x(j, v) is the input feature pixel at width
v, and ZH ∈ Rh×1×B and ZV ∈ R1×vs.×B are the hth horizontal average pooling result and
the vth vertical average pooling result, respectively.

The global pooling operation in both directions generates paired direction-aware
feature maps. Those feature maps not only capture directional information over a wide
spatial range but also preserve location information. They can help the deep neural
network locate target locations of interest. The obtained direction-aware feature maps
ZH and reshaped feature map Z̃V ∈ Rv×1×B are then applied to feature fusion, along
with channel compression and feature nonlinear restructuring, to yield the feature map
U ∈ R(h+v)×1×B:

U = sigmoid(Conv(Cat[ZH , Z̃V ])) (6)

where Conv denotes a 1× 1 convolution layer and Cat denotes the concatenate operation.
Then, the feature map is separated again into two tensor matrices, UH and UV , along
the spatial horizontal and vertical directions, where UV needs to be reshaped back to its
original shape. Then, UH ∈ Rh×1×B and UV ∈ R1×vs.×B are delivered into the convolution
layer with kernel 1× 1 and the sigmoid nonlinear activation function, respectively, making
the shape of the output tensor matrix the same as the input data patch X.

Finally, feature fusion is performed by element-wise multiplication to acquire the
spatial attention weight matrix g(X) ∈ RS×S×B:

g(X) = sigmoid(Conv(UH))⊗ sigmoid(Conv(UV)) (7)
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2.3. Multi-Attention Spectral-Spatial Feature Fusion Branch

The multi-attention fusion branch (MAFB) is designed mainly following the structure
of 3D-CNN. The attention weight matrices f (X) and g(X) learned from 1D-GBAM and
2D-BSAM branches are fused in the MAFB’s convolution operations. In comparison, there
are some different points from typical 3D-CNN.

MAFB is developed based on a lightweight CNN (LCNN) [50], which consists of a
combination of deep convolution DW-Conv, deep dilated convolution DW-D-Conv, and
1 × 1 convolution procedures with small kernels. In this structure, the improved MAFB
not only captures relative long-distance features for the large-scale visual field, but also
relieves the requirements of many training samples and massive computational resources
due to the large kernel convolutional operations.

MAFB designs a new multi-attention fusion strategy. The attention weight matrices
f (X) and g(X) learned from 1D-GBAM and 2D-BSAM branches help the network be
more attentive to the channels and locations contributing to the feature classification task.
However, there are some issues with fusing two attention and convolutional operations by
the simple multiplication strategy. As is shown in Figure 4a, the weight values of f (X) and
g(X) are in [0, 1], which leads to a smaller value after they multiply. This may exacerbate
the feature intensity to decay and lose the most critical information when using the simple
multiplication strategy. Thus, we introduce a softplus-post multiplication in MAFB, as is
shown in Figure 4b. Before multiplying the two weight matrices by the input map X, the
softplus activation function performs feature enhancement and linear activation on the
weight matrices, respectively. By doing so, the weights between different features can be
scaled up to avoid feature dissipation while the relative sizes are guaranteed to be constant.

0.25 0.18

0.36 0.12

0.5 0.6

0.6 0.3

0.5 0.3

0.6 0.4

⊗ ⊗

0.5 0.6

0.6 0.3

0.5 0.3

0.6 0.4

1.0 0.88

1.21 0.72

1.0 1.1

1.1 0.8

1.0 0.8

1.1 0.9

(a) (b)

Figure 4. (a) Comparison of direct multiplication and (b) softplus-post multiplication.

Compared with the traditional ReLU activation function, the softplus activation func-
tion is closer to the activation model of brain neurons and solves the Dead ReLU problem.
The equation of the softplus activation function is shown below:

Gij = log(1 + exp(mij)) i, j = [1, . . . , S] (8)

where mij denotes the element in the ith row and jth column of the f (X) or g(X) weight
matrix and Gij is the output of the activate operation softplus. The GM ∈ RS×S×B is
acquired by element-wise multiplication of the two weight matrices:

GM = so f tplus( f (X))⊗ so f tplus(g(X)) (9)

The fused feature weights matrix GM is multiplied by the original input feature map
X as the input of the depth convolution DW-Conv. Then, the output feature map of DW-
Conv multiplied by the attention weight matrix GM is to be used as the input of the next
layer of the depth-void convolution DW-D-Conv. Similarly, the output feature map of
DW-D-Conv multiplied by the attention weight matrix GM is to be used as the input of
the 1× 1 convolution. Finally, the output of the convolution operation is multiplied by the
original input feature map X to obtain the final attention map of the joint spatial-spectral
feature extraction module. The overall fusion equation can be expressed as:
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F = Conv((CDW−D((CDW (GM ⊗ X))⊗GM))⊗GM) (10)

where X denotes the input feature map, CDW denotes deep convolution operation, CDW−D
denotes deep dilated convolution operation, and F ∈ RS×S×B denotes the feature map,
which finally feeds into the classifier.

3. Results
3.1. Dataset Description

The datasets used in this paper are Indian pines (IP), University of Pavia (UP), and
Kennedy Space Center (KSC). The sample numbers and corresponding colors of the three
datasets are in Tables 1–3.

Table 1. The training and testing sample numbers and colors of the IP dataset.

No. Class Name Train/Validate Test Total Color

1 Alfalfa 2 42 46
2 Corn-notill 14 1400 1428
3 Corn-mintill 8 814 830
4 Corn 2 233 237
5 Grass-pasture 4 475 483
6 Grass-trees 7 716 730
7 Grass-pasture-mowed 2 24 28
8 Hay-windrowed 4 470 478
9 Oats 2 16 20

10 Soybean-notill 9 954 972
11 Soybean-mintill 24 2407 2455
12 Soybean-clean 5 583 593
13 Wheat 2 201 205
14 Woods 12 1241 1265
15 Buildings-Grass-Trees-Drives 3 380 386
16 Stone-Steel-Towers 2 89 93

Total 102 10,045 10,249

Table 2. The training and testing sample numbers and colors of the UP dataset.

No. Class Name Train/Validate Test Total Color

1 Asphalt 66 6499 6631
2 Meadows 186 18,277 18,649
3 Gravel 20 2059 2099
4 Trees 30 3004 3064
5 Painted metal sheets 13 1319 1345
6 Bare Soil 50 4929 5029
7 Bitumen 13 1304 1330
8 Self-Blocking Bricks 36 3610 3682
9 Shadows 9 929 947

Total 423 41,930 42,776
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Table 3. The training and testing sample numbers and colors of the KSC dataset.

No. Class Name Train/Validate Test Total Color

1 Scrub 7 747 761
2 Willow swamp 2 239 243
3 Cabbage palm hammock 2 252 256
4 Cabbage palm/oak hammock 2 248 252
5 Slash pine 2 157 161
6 Oak/broadleaf hammock 2 225 229
7 Hardwood swamp 2 101 105
8 Graminoid marsh 4 423 431
9 Spartina marsh 5 510 520

10 Cattail marsh 4 396 404
11 Salt marsh 4 411 419
12 Mudd flats 5 493 503
13 Water 9 909 927

Total 50 5111 5211

The IP dataset is a widely used hyperspectral remote sensing image dataset, which
contains a scene captured by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensor at the Indian Pines test site in northwestern Indiana. The scene comprises two-
thirds agricultural land and one-third forest or other natural perennial plants. Its data size
is 145 × 145, with a spatial resolution of 20 meter/pixel (m/p) and a wavelength range
from 0.4 to 2.5 µm containing 224 bands, with 200 remaining after removing the overlying
absorption region, and 16 species.

The ROSIS sensor, an optical reflection system imaging spectrometer for urban areas,
captured the UP dataset in 2003 at the University of Pavia, Northern Italy. It possesses a
spatial resolution of 1.3 m/p, an image size of 610 × 340, 103 bands within the wavelength
range from 0.43 to 0.86 µm, and 9 classes. Compared to the IP dataset, the UP dataset has
fewer bands while still having a high dimensionality and complex classification task.

The KSC dataset is a hyperspectral remote sensing image dataset collected and released
by the National Aeronautics and Space Administration (NASA), which is collected at the
Kennedy Space Center by an AVIRIS sensor in March 1996. It has a spatial resolution of
1.8 m/p, 512 × 614 pixels, 224 bands from 0.4 to 2.5 µm, with 176 bands after removing
absorbance and noise bands, and covers 13 different ground cover types. The KSC dataset
has the same number of bands as the IP dataset while its spatial resolution is lower, thus
requiring higher algorithmic requirements.

3.2. Experimental Setup

To demonstrate the efficiency of the proposed method, we conducted a series of
classification experiments on three well-known hyperspectral datasets. These included
CNN-based methods can be divided into two categories, traditional CNN-based meth-
ods (2D-CNN, 3D-CNN, Res-Net, and SSRN) and CNN-based methods with attention
mechanism (DBDA, A2S2K, MAFN, and A-SPN). All comparison methods have the same
parameter settings as in their corresponding references. The performance of classification
will be evaluated using three metrics: overall accuracy (OA), average accuracy (AA), and
the statistical kappa coefficient (Kappa) for the results. All methods were repeated ten
times independently, after which the average value and standard deviation were taken to
guarantee the generalizability of the experimental results.

In our experiments, three datasets were each divided into a 1% training set, a 1%
validation set, and a 98% test set. During the training phase, we continuously adjusted
certain hyperparameters of the model, such as the size of the convolution kernel, patch
size, and learning rate, based on the training results obtained through experimentation.
The model was trained using the Adam optimizer and cross-entropy loss function. In the
validation phase, 1% of the samples were randomly selected as a validation set to select
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the best model. Performance metrics were calculated on the validation set to select the
best-performing model as the final model. During the final testing phase, the remaining 98%
of the test set was used to test the best model and obtain the test results. The experiments
were set up to take two samples for any class with a sample number less than 2 in the 1%
training samples case.

By employing an early stopping strategy during the training phase, we found that
our model converges in terms of loss and accuracy stabilizes around 200 epochs. Thus, we
ultimately set 200 epochs to train the model. The batch size was set to 64 and the Adam
optimizer was used in the proposed method. The learning rate was initialized at 0.01 and
then adjusted using the cosine annealing algorithm. The k value in the SMLP structure
of GBAM was set to 9 based on the optimal experimental results. All experiments were
finished on the software environment PyTorch and a computer with a process of Inter(R)
Xeon(R) Platinum 8124M CPU @ 3.00 GHz, 64G RAM, and an NVIDIA GeForce RTX 3090
graphics card.

3.2.1. The Effect of the Number of Training Samples

To further analyze the effect of the number of training samples on the proposed AETF-
Net, we split the three datasets into a training set, a validation set, and a test set with
varying proportions. The size of the validation set is always consistent with that of the train
set, while the remaining portion constitutes the test set. The remaining hyperparameters
were set to be consistent with the above. For the IP dataset, the number of training samples
varies from 1%, 3%, 5%, 10%, and 20% of the dataset samples. For the UP and KSC, the
number of training samples varies from 1%, 3%, 5%, 7%, and 10% of the dataset samples,
respectively. The validation sets in the above three datasets are divided from the remaining
data into data samples the same size as the divided training set, while the remaining part is
employed as the test set.

Figure 5 shows the classification results of the proposed with the different numbers of
training samples. The vertical axis represents OA, and the horizontal axis represents the
training set ratio. For three datasets, the values of OA increase with the number of training
samples increase until a stable case. For the IP dataset, the value of OA stabilizes when
the training set size is between 3% and 5%. It improves dramatically after 5% and reaches
stable when the ratio of training size is 10%. The data distribution of the UP and KSC is
not as heterogeneous as that of the IP dataset. Therefore, after the training set size reaches
4%, OA becomes stable and can reach nearly 100% accuracy, especially after 1% for the UP
dataset, which has a sufficient number of samples.
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Figure 5. The effect of the number of training samples.

3.2.2. Effectiveness of the k Value in SMLP Structure

A series of experiments were conducted to verify the effectiveness of the improved
SMLP structure in the GBAM module by setting various values of hyperparameter k. The
remaining hyperparameter settings of the experiments were consistent with those described
above. Firstly, we conducted experiments on the original MLP structure, followed by
experiments on the improved SMLP structure with different values of hyperparameter k (3,
5, 7, 9, 11, 13, 15). To ensure fairness, all the experiments were conducted independently
10 times, and the final average results were compared. As shown in Table 4, when using
the original MLP in the channel attention module, the classification accuracy OA was 2.29%



Remote Sens. 2023, 15, 2150 11 of 22

lower than that of the improved SMLP structure (k = 9), indicating that the improved
SMLP structure could utilize the inter-band correlation information during the sliding
window step of the convolutional kernel to extract more useful features than the original
MLP structure.

Table 4. Performance of the SMLP structure with different k value on the IP dataset

IP (1%) MLP
SMLP (k Value)

3 5 7 9 11 13 15

OA 0.8729 0.8556 0.8738 0.8811 0.8958 0.8920 0.8778 0.8781
AA 0.8379 0.8371 0.8739 0.8768 0.8791 0.8701 0.8461 0.8473

Kappa 0.8452 0.8341 0.8555 0.8641 0.8817 0.8767 0.8601 0.8604

However, the performance decreased significantly when the k value was set to 3 or
5, even lower than that of the original MLP structure, because a small k value cannot
capture all the local features, leading to feature loss. With the increase of k value, the sliding
window of convolution can capture more inter-band correlation information and local
features. However, when the k value exceeds 11, the classification accuracy starts to decline
due to the high overlap of the windows, which leads to overfitting, and the same local
information is extracted multiple times. Therefore, based on the best experimental results,
we set the k value to 9, increase the number of convolutional kernels to extract various
features of the data, and set the stride small enough to retain more local features. Combined
with deconvolution, we can reduce the dimensionality while retaining the important
features of the input data, eliminate the influence of the one-dimensional convolution layer,
and restore the data to its original dimensionality.

3.2.3. The Effect of Patch Size

The patch size of the training network has an essential effect on classification perfor-
mance. Typically, the larger the patch, the more spatial information it contains, leading
to a better classification performance of the classification. However, a larger patch causes
massive parameters and exacerbates the limited sample learning issue.

In this section, we design several experiments based on the dataset partitioning
method and parameter settings described above to analyze the effect of the patch size on
the proposed method. Figure 6 shows the classification results of the proposed method
with different patch sizes. The OA has achieved 80% when the patch size is 5 × 5 for the IP
dataset. As the value of patch size increases, the OA gradually improves and plateaus until
the OA tends to 90% when the sample block size exceeds 13 × 13. For the KSC dataset, the
OA decreases when the patch size increases to a certain sample block size. The reason is
that the objects in KSC are small and in dispersed distribution, so the large patch contains
multiple classes, which provide negative information for classifying the center pixel in the
patch. Thus, considering the computational cost and HSI scene, we set the patch size to
11 × 11 in our experiments.
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Figure 6. The classification results of the proposed AETF-Net with different patch sizes.
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3.3. Result and Analysis

Experimental results on the IP dataset: As is shown in Table 5 and Figure 7, the
proposed AETF-Net method obtains the highest accuracy among all the methods with
89.58%, 87.91%, and 88.17%, and achieves the most detailed and smooth classification
maps. The 3D-CNN has better feature extraction capability than 2D-CNN because it can
incorporate both spectral and spatial information. However, in the case of insufficient
training samples, the overfitting caused by the conflict between the high dimension of
processing data and the insufficient number of samples makes the accuracy lower than
the 2D-CNN with 5.47% OA. Res-Net has the worst classification result with 36.06% OA
because it has many layers of the network, which is very redundant, and the adequate
depth is inadequate. A2S2K adds the attention mechanism to the residual structure to
weigh the valuable features, which obtained a 0.27% improvement in OA compared to
SSRN, which illustrates the effectiveness of the attention mechanism.

Table 5. The classification results (%) of all compared methods on the IP dataset.

Class 2D-CNN 3D-CNN Res-Net SSRN A2S2K MAFN DBDA A-SPN AETF-Net

1 1.56 ± 1.02 18.44 ± 6.13
54.53 ±

36.11

50.19 ±

23.62

55.93 ±

22.66

77.81 ±

25.78

79.60 ±

27.86

90.00 ±

15.18
54.52 ± 9.96

2 40.77 ± 2.93 45.79 ± 7.34
40.04 ±

16.46
74.40 ± 8.40 76.92 ± 6.63 74.17 ± 8.95 79.33 ± 7.79 62.86 ± 6.08 86.90 ± 1.50

3 24.77 ± 2.97 25.49 ± 8.13
42.65 ±

23.13
77.60 ± 9.86 77.94 ± 6.60

55.09 ±

10.03

80.78 ±

11.38

49.05 ±

10.71
83.74 ± 3.14

4 0.26 ± 0.04 9.83 ± 4.75
62.66 ±

40.38

74.03 ±

12.81
80.60 ± 8.92

48.62 ±

18.67
82.94 ± 8.13 24.43 ± 8.10 97.36 ± 2.50

5 57.87 ± 3.62
46.03 ±

15.22

65.94 ±

31.15

87.63 ±

12.55
95.92 ± 5.81 87.47 ± 7.92 98.71 ± 1.95 78.08 ± 6.53 97.25 ± 1.49

6 97.60 ± 0.42 89.44 ± 6.98
46.11 ±

28.57
92.34 ± 4.58

91.85 ±

05.66

87.51 ±

13.69
90.69 ± 6.38 78.08 ± 3.18 87.81 ± 2.30

7 00.00 ± 0.00 00.00 ± 0.00
58.40 ±

30.86

59.04 ±

21.82

58.54 ±

19.17

52.58 ±

30.00

33.31 ±

16.24

100.00 ±

0.00

71.37 ±

10.42

8 99.87 ± 0.22 93.33 ± 3.65
80.61 ±

20.02
96.90 ± 4.39 99.57 ± 0.41

92.33 ±

10.09
99.29 ± 1.54

81.88 ±

10.61
99.96 ± 0.13

9 00.00 ± 0.00 00.00 ± 0.00
11.64 ±

23.12

31.75 ±

16.78

33.72 ±

08.84

48.42 ±

27.89

63.84 ±

18.03

85.00 ±

20.19
52.03 ± 7.19

10 35.06 ± 1.99
44.59 ±

11.17

52.04 ±

31.21

73.35 ±

13.11

84.78 ±

05.44

72.77 ±

14.16

78.25 ±

11.82
55.07 ± 6.02 84.60 ± 1.84

11 80.36 ± 2.73
60.67 ±

11.00
37.55 ± 5.85 78.34 ± 5.61

69.92 ±

05.61
83.71 ± 5.58 79.11 ± 8.29 92.80 ± 3.61 95.48 ± 1.57

12 20.87 ± 4.07 20.81 ± 6.84
42.60 ±

21.51
76.38 ± 8.98

82.96 ±

14.12

59.53 ±

13.41

81.33 ±

19.32
39.30 ± 7.79 94.33 ± 1.78

13 82.76 ± 5.03
64.78 ±

14.12

70.15 ±

30.02
90.85 ± 4.00

91.84 ±

04.22

78.31 ±

16.10
91.57 ± 7.15 98.72 ± 0.89 85.81 ± 2.89

14 99.38 ± 0.17 90.39 ± 5.99
67.80 ±

18.49
92.24 ± 4.65 90.24 ± 4.65 96.89 ± 3.08 92.97 ± 7.18 99.67 ± 0.49 91.84 ± 1.25

15 15.18 ± 2.97 13.39 ± 6.86
42.51 ±

35.54

76.51 ±

15.15

81.60 ±

10.79

66.10 ±

15.07

87.68 ±

12.96

36.74 ±

11.49
89.80 ± 1.98

16 9.78 ± 4.24 10.55 ± 8.26
77.51 ±

38.93
78.14 ± 5.96

76.33 ±

12.19

87.55 ±

15.26

75.54 ±

11.83
98.57 ± 1.71 69.40 ± 7.19

OA 60.40 ± 5.01 54.66 ± 2.18 36.06 ± 6.01 78.93 ± 3.25 79.20 ± 1.94 75.80 ± 2.67 82.19 ± 4.27 74.68 ± 1.31 89.58 ± 0.36

AA 41.63 ± 6.43 39.60 ± 2.24
53.30 ±

12.61
75.60 ± 4.03 78.04 ± 3.60 73.05 ± 5.59 80.93 ± 4.81 74.21 ± 1.60 87.39 ± 0.51

Kappa 53.31 ± 5.66 47.93 ± 2.35 23.59 ± 6.49 75.89 ± 3.42 75.90 ± 2.30 72.44 ± 3.02 79.54 ± 4.99 70.30 ± 4.99 88.17 ± 0.49



Remote Sens. 2023, 15, 2150 13 of 22
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Figure 7. Classification maps of different methods on the IP dataset. (a) False-color; (b) Ground truth
map; (c) 2D-CNN; (d) 3D-CNN; (e) Res-Net; (f) SSRN; (g) A2S2K; (h) MAFN; (i) DBDA; (j) A-SPN;
(k) AETF-Net; (l) Color bar.

MAFN, DBDA, and A-SPN also introduce the attention mechanism and obtain higher
accuracy than the method without introducing the attention mechanism. Among them,
DBDA captures many spatial and spectral features using a two-branch and densely con-
nected network and obtains the highest accuracy among the compared methods with
82.19% OA. However, DBDA has not used the attention mechanism to locate the region of
interest at the very beginning, so the evaluation indices of our method are 7.39%, 6.46%, and
8.63% higher than those of DBDA. The unbalanced distribution of samples in the IP dataset
results in very few training samples for some classes after dividing 1%. A-SPN performs
better for small sample classes, where the accuracies for classes 7 and 9 (i.e., Grass-pasture-
mowed and Oats) were higher than the proposed method. However, the performance on
classes 3, 4, 12, and 15 (i.e., Corn-mintill, Grass-pasture, Soy-bean-clean, and Buildings-
Grass-Trees-Drives) is significantly lower than that of the proposed method because these
classes are at the edge of the image and have a large number of neighboring species, making
it difficult to classify them with blurred boundaries correctly. As a result, the overall OA,
AA, and Kappa are 14.90%, 13.18%, and 17.87% lower, respectively, than the proposed
method. To further evaluate the classification performance from a visual perspective, the
ground-truth map and the classification results of eight comparison methods are shown in
Figure 7. 2D-CNN, 3D-CNN, and Res-Net obtained considerable noise within and at the
class boundary. The noise point within the classification maps of SSRN, A2S2K, MAFN, and
A-SPN are fewer, while the misclassification rates are higher than DBDA. By comparison,
the classification map of our proposed methods has minor noise points and misclassified
pixels on the boundary between classes and is closest to the ground-truth map.

Experimental results on the UP dataset: Table 6 and Figure 8 show the numerical
results and visual results of UP dataset comparison experiments. It could be seen that
the OA of the proposed AETF-Net method was improved compared with those attention-
based methods A2S2K, MAFN, DBDA, and A-SPN for 1.76%, 0.82%, 0.86%, and 2.66%,
respectively. Due to the relatively balanced distribution of each class in the dataset, 2D-
CNN, 3D-CNN, and Res-Net obtained relatively higher classification accuracy. MAFN
and DBDA all outperformed SSRN, A2S2K, and A-SPN. Compared with the similar multi-
attention fusion method DBDA, our method has higher accuracy with 0.86% OA, 1.09% AA,
and 0.45% Kappa. Because the MAFN lacks information interaction and feature transfer
during the extraction of spectral and band attributes, resulting in one-sided extracted
results, which demonstrates the effectiveness of our proposed feature fusion strategy. In
addition, MAFN achieved the second-best classification results throughout a multi-scale
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multi-attention feature extraction framework. Our method can reduce the network depth
while extracting sufficient feature information, which avoids the overfitting problem caused
by limited samples. Our method has absolute advantages. The classification map of our
method performed better on the UP dataset. In 2D-CNN, 3D-CNN, Res-Net, SSRN, and
A-SPN, class 2 and class 6 have considerable noise, while the noise points were significantly
reduced in other methods because of the multi-attention structure used in MAFN, DABA,
and the proposed method. This demonstrates the effectiveness of the multi-attention
strategy. Overall, the produced classification map of our method has more precise edges of
features and was closest to the ground-truth map.

Table 6. The classification results (%) of all compared methods on the UP dataset.

Class 2D-CNN 3D-CNN Res-Net SSRN A2S2K MAFN DBDA A-SPN AETF-Net

1 94.68 ± 1.14 88.15 ± 3.47
67.75 ±

10.04
89.58 ± 3.43 92.83 ± 3.33 96.99 ± 0.63 95.90 ± 6.15 97.15 ± 1.05 94.95 ± 2.11

2 97.41 ± 0.33
87.63 ±

10.02
83.75 ± 7.10 97.49 ± 1.31 97.60 ± 1.51 99.46 ± 0.47 99.17 ± 1.08 99.36 ± 0.44 99.62 ± 0.12

3 58.24 ± 2.61 76.79 ± 9.91
72.24 ±

12.16

80.21 ±

14.30
84.82 ± 6.10 95.72 ± 2.80 96.23 ± 3.07 74.21 ± 6.31 96.54 ± 1.46

4 85.19 ± 1.01 88.80 ± 4.98 98.16 ± 1.82 98.57 ± 1.76 99.40 ± 0.49 98.19 ± 0.72 97.02 ± 1.05 92.89 ± 1.51 98.49 ± 0.10

5
100.00 ±

0.00
98.05 ± 1.51 98.48 ± 2.17 99.25 ± 0.77 99.55 ± 0.64 99.33 ± 0.77 98.95 ± 1.81

100.00 ±

0.00
99.39 ± 0.38

6 70.90 ± 1.39
69.08 ±

16.21
93.17 ± 5.03 96.13 ± 2.96 98.43 ± 1.36 98.42 ± 0.32 98.74 ± 1.19 86.76 ± 5.43 98.78 ± 0.33

7 48.72 ± 4.60
69.68 ±

16.77

76.18 ±

16.83
94.05 ± 8.84 97.15 ± 2.45 94.05 ± 6.46 97.82 ± 4.32 85.53 ± 7.90 98.96 ± 1.00

8 74.00 ± 2.48
83.10 ±

17.54
74.55 ± 9.03 88.65 ± 3.79 86.84 ± 4.31 93.40 ± 3.72 90.12 ± 3.82 91.08 ± 5.33 86.94 ± 4.25

9 93.79 ± 2.57 96.72 ± 2.02
89.03 ±

15.01
96.62 ± 3.74 98.31 ± 0.92 95.39 ± 1.91 98.42 ± 1.51 94.85 ± 2.65 97.09 ± 1.91

OA 87.54 ± 3.58 84.66 ± 4.01 79.73 ± 4.19 94.12 ± 1.81 95.51 ± 1.05 96.45 ± 0.64 96.41 ± 1.86 94.61 ± 0.83 97.27 ± 0.49

AA 80.33 ± 8.51 84.22 ± 3.03 83.70 ± 3.23 93.39 ± 2.63 94.99 ± 0.96 95.66 ± 0.98 96.15 ± 1.11 91.31 ± 1.43 96.75 ± 0.87

Kappa 83.21 ± 4.83 79.96 ± 4.71 71.84 ± 6.24 92.16 ± 2.43 94.02 ± 1.41 95.94 ± 0.85 95.56 ± 2.50 92.80 ± 1.31 96.39 ± 0.65

Experimental results on the KSC dataset: The KSC dataset has only 50 training samples
at the 1% data division method, as shown in Table 7, and the proposed method still achieved
the best classification accuracy with 96.48% OA, 95.00% AA, and 96.08% Kappa, and the
clearest classification results were obtained for some hard distinguish categories like class 4,
6, 8, and 9. Regarding the classification accuracy of each of the thirteen classes of features,
eight classes achieve the highest accuracy. Classes 10 and 13 achieved the best precision.
Although the number of KSC dataset training samples is the smallest, it obtains better
classification accuracy. Because the dataset is relatively balanced, the feature distribution is
dispersed, and the inter-class differences are less influential. However, due to the limited
samples, the classification accuracy of 2D-CNN, 3D-CNN, and Res-Net still needs to be
improved. Although the MAFN method performed well on the IN and UP datasets, it needs
to catch up on the KSC dataset due to the minimal and balanced number of samples in each
class. It also indicates that the MAFN method is unsuitable for small sample classification.
In addition, A2S2K has the best classification accuracy among all the compared methods
due to the attention mechanism employed at the beginning of the framework to extract
valuable characteristics. As shown in Figure 9, the proposed method had a smoother
visual image compared with other methods and the classification map was closest to the
ground-truth map.
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Figure 8. Classification maps of different methods on the UP dataset. (a) False-color; (b) Ground truth
map; (c) 2D-CNN; (d) 3D-CNN; (e) Res-Net; (f) SSRN; (g) A2S2K; (h) MAFN; (i) DBDA; (j) A-SPN;
(k) AETF-Net; (l) Color bar.

Furthermore, when viewed in the context of the proposed method, the standard
deviation of the results of ten runs for almost every class and OA, AA, and Kappa is
lower than that of the other methods. It can be demonstrated that the proposed method
produces less variation and more stable results for small samples of different datasets,
implying that the method is more robust and can be adapted for a broader range of
hyperspectral datasets.

3.4. Ablation Study

To further validate the contribution of the GBAM, BSAM, and MAFB in the proposed
framework to the final classification results, ablation experiments were conducted while
maintaining the original experimental setup.

The effectiveness of the three branches is examined: (1) GBAM: only employ the
GBAM to extract spectral feature extraction and the classifier; (2) BSAM: only employ the
BSAM to extract spatial feature extraction and the classifier; (3) LCNN: LCNN network
of MAFB without fusing the GBAM and BSAM; (4) LCNN + GBAM: LCNN network of
MAFB with fusing the GBAM and without BSAM; (5) LCNN + BSAM: LCNN network of
MAFB with fusing the BSAM and without GBAM.

From the results in Table 8, we can see that the performance of the GBAM and
BSAM could be better than the other methods because the classification method based
on single spectral or spatial feature extraction is significantly inferior to the methods
based on spectral-spatial feature fusion. The LCNN overperforms GBAM and BSAM by
about 3.86–10% on OA because it utilizes spectral-spatial feature combination by the 3D
convolutional operation.
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Table 7. The classification results (%) of all compared methods on the KSC dataset.

Class 2D-CNN 3D-CNN Res-Net SSRN A2S2K MAFN DBDA A-SPN AETF-Net

1 87.58 ± 4.09
76.94 ±

18.98

74.17 ±

16.44
97.22 ± 4.19 95.69 ± 3.16 92.21 ± 5.79 98.11 ± 2.23 95.70 ± 3.91 99.94 ± 0.16

2 2.49 ± 2.73
34.02 ±

17.58

76.31 ±

21.21

88.00 ±

18.13
97.50 ± 4.20

78.03 ±

19.35
94.05 ± 8.15

70.62 ±

10.76
96.29 ± 4.91

3 36.48 ± 3.87
33.04 ±

15.09

50.57 ±

22.08

77.29 ±

12.88

78.61 ±

13.25

58.90 ±

10.74

75.81 ±

13.66
95.45 ± 5.49

77.33 ±

10.23

4 22.69 ± 1.82
25.24 ±

13.64

57.08 ±

26.11

83.62 ±

12.76
91.46 ± 7.17

57.87 ±

12.14

67.41 ±

25.84

45.28 ±

13.19
93.37 ± 9.02

5 20.25 ± 5.65
15.67 ±

10.91

37.33 ±

27.51

78.59 ±

14.04

87.31 ±

11.89
84.16 ± 9.91

63.63 ±

25.86
89.24 ± 9.57

87.42 ±

15.21

6 20.66 ± 4.71 11.78 ± 8.08
60.67 ±

32.81
84.86 ± 9.89 88.46 ± 9.04

79.63 ±

17.63

81.84 ±

11.88
86.46 ± 9.52 98.24 ± 2.10

7 37.30 ± 8.96
20.29 ±

13.40

82.37 ±

14.88

72.37 ±

18.47

74.63 ±

14.66

59.58 ±

18.63

56.97 ±

16.10

100.00 ±

0.00

88.81 ±

17.33

8
63.40 ±

10.01
24.09 ± 9.68

51.56 ±

19.49
88.67 ± 8.23 95.33 ± 5.81

71.99 ±

12.56

73.75 ±

28.61

91.71 ±

10.54
98.10 ± 1.27

9 73.98 ± 3.98
74.16 ±

14.03

58.88 ±

16.72
94.83 ± 9.10 99.04 ± 0.98

78.70 ±

10.00

79.48 ±

13.38
88.25 ± 6.73 99.63 ± 0.50

10 15.20 ± 6.42 25.91 ± 9.71 97.13 ± 2.92 99.22 ± 1.58 99.19 ± 1.36 76.07 ± 8.07 92.13 ± 9.84 99.93 ± 0.11
100.00 ±

0.00

11 93.86 ± 2.82 79.81 ± 6.88 96.26 ± 5.82 99.48 ± 0.53 99.69 ± 0.49 95.16 ± 6.55 96.14 ± 4.89 95.15 ± 2.71 99.69 ± 0.77

12 36.43 ± 9.61
48.15 ±

17.14

78.64 ±

20.55
96.12 ± 2.83 95.63 ± 5.35 88.36 ± 6.93

85.71 ±

13.67
99.20 ± 0.89 96.23 ± 3.41

13 81.79 ± 6.89 96.33 ± 4.19
67.87 ±

22.84
99.80 ± 0.32

96.60 ±

10.12
98.06 ± 4.91 99.94 ± 0.13

100.00 ±

0.00

100.00 ±

0.00

OA 57.50 ± 1.39 56.69 ± 6.02 62.06 ± 6.73 91.98 ± 2.43 93.75 ± 3.50 81.43 ± 0.03 86.40 ± 6.88 91.86 ± 1.58 96.48 ± 1.10

AA 46.70 ± 1.99 43.49 ± 5.77 68.37 ± 5.00 89.24 ± 3.09 92.24 ± 2.62 78.36 ± 0.04 81.92 ± 7.76 89.00 ± 1.95 95.00 ± 1.61

Kappa 44.70 ± 1.34 51.45 ± 6.75 56.84 ± 7.88 91.07 ± 2.70 93.02 ± 3.91 79.28 ± 0.04 84.84 ± 7.67 90.95 ± 1.76 96.08 ± 1.23

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 9. Classification maps of different methods on the KSC dataset. (a) False-color; (b) Ground
truth map; (c) 2D-CNN; (d) 3D-CNN; (e) Res-Net; (f) SSRN; (g) A2S2K; (h) MAFN; (i) DBDA;
(j) A-SPN; (k) AETF-Net; (l) Color bar.
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Table 8. The best ablation study results on the IP dataset.

Methods
IP (1%)

OA AA Kappa

GBAM 0.7682 0.7173 0.7344
BSAM 0.8299 0.8096 0.8050
LCNN 0.8685 0.8161 0.8497

LCNN + GBAM 0.8723 0.8239 0.8534
LCNN + BSAM 0.8857 0.8571 0.8686

AETF-Net 0.8958 0.8791 0.8817

Additionally, the OA of the “LCNN + GBAM” and “LCNN + BSAM” increased by
0.38% to 1.72% compared with the OA of the “LCNN” method. It proved the effectiveness
of the attention in GBAM and BSAM for classification. Especially the BSAM has obvious
help in improving the AA by about 4.1%. It demonstrated that obtaining spatial features
between feature mappings or long-range dependencies via the attention mechanism can
significantly enhance the performance of the HSI classification model.

Lastly, the best classification results can be obtained when the spatial context infor-
mation and the band dependencies are added concurrently to each stage of the MAFB for
spatial-spectral joint attention feature extraction. It demonstrates the effectiveness of the
proposed multiple attention fusion mechanism.

3.5. Analysis of the Multi-Attention Fusion Strategy

The fusion strategy is essential for multi-attention fusion, which significantly affects
the classification method’s performance. In this section, we designed six multi-attention
fusion strategies following the AETF-Net framework and did some experiments to analyze
and discuss the effect on classification performance.

Six multi-attention fusion strategies are shown in Figure 10. They can mainly be
split into two groups: attention weight fusion (Figure 10a) and attention feature map
fusion (Figure 10b). The outputs of each attention module in attention weight fusion
strategies are the combination of the weights, while the outputs of each attention module
in attention feature maps fusion strategies are the combination of the weights and input
maps. Especially the six multi-attention fusion strategies are designed as follows:

(1) Figure 10a(1): the attention weight matrices produced by the GBA and BSA modules
are element-wise multiplied and then multiplied with the original feature maps.

(2) Figure 10a(2): the attention weight matrices produced by the GBA and BSA modules
are element-wise added and then multiplied with the original feature maps.

(3) Figure 10b(1): the feature maps produced by the GBAM and BSAM modules are
element-wise added and then added with the original feature maps.

(4) Figure 10b(2): the feature maps produced by the GBAM and BSAM modules are
element-wise added and then multiplied with the original feature maps.

(5) Figure 10b(3): the feature maps produced by the GBAM and BSAM modules are
element-wise multiplied and then added to the original feature maps.

(6) Figure 10b(4): the feature maps produced by the GBAM and BSAM modules are
element-wise multiplied and then multiplied with the original feature maps.
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Figure 10. The illustration of multi-attention fusion strategy. (a) Attention weight fusion strategies,
(b) attention feature maps fusion strategies.

Table 9 shows the classification results of the proposed AETF-Net with six different
multi-attention fusion strategies. Compared with the two groups, the attention weight
fusion strategy has a slight advantage over the attention feature map fusion strategy from
the classification. The reasons are that both multi-attention fusion strategy groups have
utilized effective characteristics of the attention mechanism for spectral-spatial feature
learning, while the attention feature maps fusion strategies cost more computing resources
to generate the feature map and lead to information redundancy.

In the attention weight fusion strategies, the multiplication strategy retains the relative
size relationship between different feature mappings better than the addition strategy.
Because it retains the variability between features and is superior to the addition strategy,
the classification performance of a model can be improved by strengthening the compelling
features after eliminating redundant ones. Thus, the proposed AETF-Net adopts the
attention weight fusion strategy with multiplication (Figure 10a(1)).

Table 9. The effect of multi-attention fusion strategy on the IP dataset.

IP (1%)

Methods OA AA Kappa

Weights

(GBA × BSA) ×
Input 0.8958 0.8791 0.8817

(GBA + BSA) ×
Input 0.8971 0.8402 0.8782

Maps

(GBAM +
BSAM) + Input 0.8927 0.8241 0.8779

(GBAM +
BSAM) × Input 0.8924 0.8219 0.8777

(GBAM ×
BSAM) + Input 0.8853 0.8204 0.8810

(GBAM ×
BSAM) × Input 0.8812 0.7963 0.8647
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3.6. Running Time Analysis

We computed the training and testing times of different methods using randomly
selected samples. As shown in Figure 11, the proposed approach significantly improves
training time compared to traditional DL methods. This is primarily attributed to the
fact that traditional DL methods incorporate multiple convolutional and pooling layers in
their network architecture to extract feature information, which leads to a large number
of parameters when processing high-dimensional hyperspectral data. However, our pro-
posed method did not show the least training and testing time compared to DL methods
based on attention mechanisms, suggesting that further improvements are needed in our
method. According to our model framework, it is possible that the increased computational
cost of our method is due to the need for multiple information fusion processes in the
backbone network. Nevertheless, our proposed method can fully extract and fuse the
spatial and spectral features of HSI and the increase in computational cost is justifiable
given the significant improvement in classification accuracy. The method A-SPN, which
has the shortest processing time, may be attributed to its abandonment of the hierarchical
structure composed of traditional convolution and pooling layers, resulting in a significant
reduction in the computational cost of parameters. This is a direction worth exploring in
our future work.
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Figure 11. Comparison of computation time and overall accuracy of different methods.

4. Discussion

The proposed AETF-Net method has shown remarkable performance in terms of
accuracy and classification map quality on three publicly available datasets, surpassing
existing state-of-the-art methods.

Firstly, one of the key factors affecting the accuracy of deep learning-based image
classification is the number of training samples. The 3D-CNN outperforms the 2D-CNN in
feature extraction capabilities. However, overfitting can be a challenge when the number
of training samples is insufficient. Additionally, Res-Net’s redundant layers lead to worse
classification results. Attention mechanisms, as seen in A2S2K, MAFN, DBDA, and A-SPN
methods, have been demonstrated to improve accuracy, especially for small sample classes.

Additionally, despite having a limited number of training samples, the AETF-Net
method achieved the best classification accuracy due to the dataset’s balanced feature
distribution and dispersed inter-class differences. The study emphasizes the limitations of
existing methods for small sample classification and highlights the importance of attention
mechanisms in achieving high accuracy. Furthermore, the results demonstrate the potential
of AETF-Net to improve image classification tasks and its robustness for a broader range
of datasets.
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Furthermore, the study’s findings also suggest that AETF-Net has the potential to
overcome challenges associated with unbalanced sample distributions and misclassification
at class boundaries by minimizing noise and improving classification accuracy. This
has significant implications for the development of more reliable and accurate image
classification in practical applications.

In conclusion, the results of this study have important implications for the develop-
ment of deep learning-based image classification methods. The study emphasizes the
importance of continued research in this area to improve accuracy and overcome the chal-
lenges associated with small sample classification, unbalanced sample distributions, and
misclassification at class boundaries.

5. Conclusions

In this paper, we propose a novel HSI classification algorithm named AETF-Net to
implement high-accuracy classification under a small sample rate. The model is divided
into two sections, the spatial and spectral attention branch, and the spatial-spectral joint at-
tention fusion branch. The first section of the spatial attention module models pixel-distant
dependencies from two directions in space while preserving pixel position information,
increasing the effectiveness and richness of spatial information. The band attention module
establishes inter-band dependencies with adaptive convolution kernels to locate the band
of interest. The second section of the spatial-spectral joint attention fusion branch extracts
spatial-spectral joint features with three-stage 3D convolution. It embeds spatial and spec-
tral attention features extracted in the first section before each convolution stage, and thus,
enhancing the expressiveness and discriminative power of the spatial-spectral joint features
extracted by 3D convolution. With a series of comparison and ablation experiments, the
proposed AETF-Net achieved outstanding performance on limited training samples from
three well-known HSI datasets.

The effectiveness of the multiple attention mechanism in dealing with small sample
scales has been initially verified; however, the overfitting problem still exists at tiny sample
rates. Further work will be to combine the attention mechanism and multi-scale to enhance
the accuracy of HSI classification with tiny sample rates.
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