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Abstract: One of the ideas behind vegetation monitoring is the ability to identify different vegetation
units, such as species, communities, habitats, or vegetation types. Remote sensing data allow for
obtaining such information remotely, which is especially valuable in areas that are difficult to explore
(such as mountains or wetlands). At the same time, such techniques allow for limiting field research,
which is particularly important in this context. Remote sensing has been utilized for vegetation
inventories for many decades, using airborne and spaceborne platforms. Developing newer tools,
algorithms and sensors is conducive to more new applications in the vegetation identification field.
The Special Issue “Remote Sensing Applications in Vegetation Classification” is an overview of the
applications of remote sensing data with different resolutions for the identification of vegetation
at different levels of detail. In 14 research papers, the most frequent different types of crops were
analysed. In three cases, the authors recognised different types of grasslands, whereas trees were the
object of the studies in two papers. The most commonly used sensors were Copernicus Sentinel-1
and Sentinel-2; however, to a lesser extent, MODIS, airborne hyperspectral and multispectral data, as
well as LiDAR products, were also utilised. There were articles that tested and compared different
combinations of datasets, different terms of data acquisition, or different classifiers in order to
achieve the highest classification accuracy. These accuracies were assessed quite satisfactorily in each
publication; the overall accuracy (OA) for the best result varied from 72% to 98%. In all of the research
papers, at least one of the two commonly used machine learning algorithms, random forest (RF) and
support vector machines (SVM), was applied. Additionally, one paper presented software ARTMO’s
machine-learning classification algorithms toolbox, which allows for the testing of 13 different
classifiers. The studies published in this Special Issue can be used by the vegetation research teams
and practitioners to conduct deeper analysis via the utilization of the proposed solutions.
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1. Introduction

One of the ideas behind vegetation monitoring is the ability to identify species, com-
munities, and habitats. Remote sensing data allow for obtaining such information remotely,
which is especially valuable when access to the analysed area is difficult. Remote sensing
has been utilized for vegetation inventories for many decades, using airborne and space-
borne platforms. At the same time, such techniques allow for limiting field research, which
is particularly important in protected areas, as well as inaccessible regions, such as moun-
tains and wetlands. Remote sensing data also play a significant role in mapping species in
urban areas, where, due to the legacy of species, it is most often impossible to identify them
based only on ground-based techniques. Crop monitoring is also an important application,
which is effective in using a high temporal resolution of the data.

Depending on the remote sensing data platforms used (unmanned aerial vehicles—
UAVs, airborne or spaceborne), the analysis can be conducted on local, regional, continental
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and global scales, which is objectively and uniformly impossible with any other kind of
data.

The classification of vegetation is possible as a result of the constantly evolving clas-
sification algorithms, sensors, and the increasing possibilities that computer equipment
provides. This is of particular importance in the era of big data in which we currently
live. The methodologies used in the research are in line with current trends and face the
challenges related to the large volume of data and the vast amount of information (for
instance, hyperspectral data, multitemporal data or different sensors data fusion).

The Special Issue “Remote Sensing Applications in Vegetation Classification” is an
overview of the applications of remote sensing data with different resolutions for the
identification of species and types of vegetation. Among the 28 submitted manuscripts,
16 had the appropriate level of content and innovation and were published in the Special
Issue. This editorial presents an overview of the findings and contributions from the
published studies.

2. Summary of Contributions

The published manuscripts covered a wide range of topics regarding vegetation classi-
fication using remote sensing techniques. In 14 research papers, the classifications were
performed to identify different types of vegetation [1–14]. Different types of crops were anal-
ysed most frequently [2–4,6,6,9,12]. In three cases, the authors recognized different types
of grasslands [8,11,14], whereas trees were the object of the studies in two papers [1,10].
Additionally, there were also literature review and technical note, both concerning different
perspective of vegetation identification [15,16].

Generally, it can be stated that most of the methods use optical data [2–6,6,8–11,14];
however, one employs radar data [12]. In nine cases, free Copernicus data Sentinel-1,
Sentinel-2 or both were analysed [2–6,8,9,12,13]. The optical Sentinel-2 data were used to
classify crops [2,13], pastures [6] and semi-natural vegetation [5].

To classify 13 crop types in the complex agriculture area of Henan Province (China),
an approach based on integrating the terrain, time series characteristics, priority, and
seasonality with Sentinel-2 satellite imagery was used [13]. The authors used a random
forest (RF) classifier and tested the impact of using the cultivated land mask on accuracy.
They noticed that incorporating the masking step in the classification process results in
higher accuracy.

Another paper related to crop analyses focused on improving maize identification;
thus, the spectral variance at key stages (SVKS) computed via an object self-reference com-
bined algorithm was tested in the eastern North China Plain [2]. The results showed that
this method helps to increase interclass spectral separability and attain better identification
accuracy than other identification indexes.

In [12], the authors investigated whether the long short-term memory (LSTM) network
is more advantageous compared to the RF algorithm for large-scale crop classifications by
carrying out them in three countries (the Netherlands, Austria, and France) for the years
2016–2020 with Sentinel-1 and additional meteorological data. The results demonstrated
that both classifiers achieve similar results for simple classification tasks; however, with
increasing Fisher discriminant ratio F1 (FDR1) values, the LSTM networks outperformed
RF, which suggests that the ability of LSTM networks to learn long-term dependencies
and identify the relation between radar time series and meteorological data becomes
increasingly important for more complex applications.

Based on Sentinel-2 data, ARTMO’s machine-learning classification algorithms (MLCA)
toolbox was introduced [5]. The toolbox allows for the training, validation, and application
of pixel-based models to remote sensing imagery. It was used to classify the plant type
(shrub land, grassland, semi-shrub land, and shrubland–grassland vegetation) in a semi-
steppe Iranian landscape. In the study, 13 different algorithms were tested; however, the
best results were acquired using the Gaussian process classifier. The analysis demonstrated
the efficacy of ARTMO’s MLCA toolbox for testing different classifiers.
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The fusion of images from Sentinel-1 and Sentinel-2 was used to classify crops [3,4,9]
and grasslands [8]. To map 10 crop types at the field level in Spain, multitemporal Pol-
SAR Sentinel-1 and Sentinel-2 data were combined and classified with the support vector
machine (SVM) algorithm [3]. The results indicate the importance of Sentinel-1 PolSAR
data in crop classification, being particularly useful in areas with frequent cloud coverage.
Alabi et al. [4] developed an operational banana mapping framework by combining UAV,
Sentinel-1 and Sentinel-2 imagery with RF and SVM classifiers. The authors identified
bananas in heterogeneous smallholder farming systems in sub-Saharan Africa to guide
rapid and efficient banana-bunch top virus surveillance. Sentinel-1 and 2 data were also
used for elaborating efficient, repeated and timely national-scale crop type mapping ap-
proaches in Germany based on monthly temporal metrics [9]. A total of 17 crop types were
classified with the use of the RF algorithm. The authors indicated that similar accuracies
for the most widespread crop types as well as for smaller permanent crop classes were
reached as in other Germany-wide crop type studies, highlighting its potential for repeated
nationwide crop type mapping. In grasslands-oriented research, the authors assessed the
suitability of the RF algorithm with normalized difference vegetation index (NDVI) and
dense coherence variables for classifying extensively and intensively managed permanent
grassland throughout Slovenia [8]. They proved that the proposed classification using
combined data can provide more satisfying and stable results for grasslands than single
optical or radar data on such large heterogeneous areas.

To accurately map more heterogeneous vegetation, different data fusion platforms
were used [1,7,10,11,14]. Feng et al. [1] utilized Sentinel-2, shuttle radar topography mission
(SRTM) and light detection and ranging (LiDAR) data for the classification of bamboo
forests covering a large spatial range in the south-eastern hilly region of China. They
performed RF classification by including phenological and morphological features to
enhance the difference between bamboo and other vegetation categories. More classifiers
were tested in [7], where two convolutional neural networks (CNNs), RF and SVM were
used to classify 17 coastal vegetation land cover types, some of them at the species level,
located on the west coast of central Florida, using high-resolution multispectral images from
UAV camera and LiDAR data. Different spectral band combinations and the use of canopy
height models (CHMs) extracted from two different sources were examined. The authors
highlighted the advantage of using deep learning networks to classify high-resolution
images in highly diverse coastal landscapes.

A framework for producing a species-specific woody vegetation map in Arizona,
USA, including five of the most abundant woody species in a large semi-arid region, was
provided in [10] by utilizing a fusion of simultaneously acquired airborne LiDAR and high
spatial resolution hyperspectral data to improve classification accuracies. The authors used
three classifiers, RF, SVM, a classification and regression tree (CART) and multitemporal
datasets, and they found an evident influence of fusing spectral and structural information
in a RF classifier for tree identification. Additionally, they noticed that a multitemporal
dataset slightly increases classification accuracies over a single data collection.

The combination of UAV aerial photographs, MODIS NDVI, and machine learning
algorithms to clarify the spatial differentiation and variation (compared with the 1980s)
of grassland classes was used to map the grassland classes of a temperate steppe in Inner
Mongolia in China [11]. The authors utilized the decision tree (DT), gradient boosting
decision tree (GDBT), RF, and logistic regression (LR) algorithms; based on the results, they
observed a significant transformation of grasslands since the 1980s.

In another study, the authors fused GaoFen 1/6 images with MODIS data using the
enhanced spatial and temporal adaptive reflectance fusion model (STARFM) algorithm
to obtain a cloudless enhanced vegetation index (EVI2) time-series for the Ordos region
(China) [14]. They extracted six phenological features from the time-series and used them
together with spectral bands and principal component analysis (PCA) of EVI2 time-series
results for the classification of five grassland types utilizing the SVM classifier. The authors
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concluded that the proposed approach can be used as the basic method in the grassland
communities classification of large areas.

One of the papers in the SI is a literature review concerning one-class classifiers for
natural vegetation identification [15]. The paper covers the 2013–2020 period and describes
136 articles. The results showed that one-class classifiers were used to map potential and
actual vegetation areas, were used in long-term monitoring, as well as to generate multiple
ecological variables, and could be performed on open-source data. The biggest advantages
were a reduction in plotting effort and the quantification of over-detection.

The last paper is a technical note introducing dynamic vision transformer (DViT)
architecture for plant and animal species’ recognition using aerial images and geo-location
environment information [16]. The model tested in the USA reduces the effect of small
image discrepancies and improves the results.

3. Concluding Remarks

A significant part of the research focused on areas in Asia, mostly China [1,2,5,6,6,11,14].
Five studies were conducted in Europe [3,8,9,12,16], three in North America [7,10,16], and
one in Africa—Nigeria [4]. The most commonly used sensors were Copernicus Sentinel-1
and Sentinel-2 [1–6,6,8,9,12]. It appears that the spatial and spectral resolutions of these data
are enough to identify different types of vegetation: forests, bushes, grasslands, and crops.
What is an undoubted advantage of these data is the ability to use them for classification in
the multitemporal aspect, which was used by the authors. The MODIS sensor was utilized
in two papers in such a context [11,14], both for large-areas grasslands mapping, which
can be related to larger pixel size. Aerial hyperspectral data potential was assessed only
once [10], while multispectral data from UAVs were investigated in four studies [4,7,10,11].
Also LiDAR data high-related derivatives were presented in three papers [1,7,10].

The accuracy of vegetation maps was assessed quite satisfactorily in each publication;
the overall accuracy (OA) for the best result varied from 72% to 98%. In each of the
14 research papers at least one of the two following machine learning algorithms was used:
RF and SVM; RF was used 12 times [1,2,4–13], while SVM was used 7 times [3–5,7,10,13,14].
It can be concluded that these classifiers provide good results using different inputs;
however, in studies where different algorithms were tested, better results were achieved
for LSTM, U-Net or Gaussian process classifiers [5,7,12]. Additionally, one of the studies
presented software ARTMO’s machine-learning classification algorithms toolbox, which
allows for the testing of 13 different classifiers, thus allowing one to match the appropriate
algorithm to the data and purpose [5].

Further work in the field of vegetation classification is required in view of the advances
in remote sensing technology as well as dynamic changes in vegetation. We believe that the
studies published in this SI will expand the knowledge of practitioners and help vegetation
research teams to conduct deeper analysis via the utilization of the proposed solutions.
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