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Abstract: Disasters caused by landslides pose a considerable threat to people’s lives and property,
resulting in substantial losses each year. Landslide displacement rate prediction (LDRP) provides
a useful fundamental tool for mitigating landslide disasters. However, more accurately predicting
LDRP remains a challenge in the study of landslides. Lately, ensemble deep learning algorithms
have shown promise in delivering a more precise and effective spatial modeling solution. The
core aims of this research are to explore and evaluate the prediction capability of three progressive
evolutionary deep learning (DL) techniques, i.e., a recurrent neural network (RNN), long short-term
memory (LSTM), and a gated recurrent unit (GRU) ensemble AdaBoost algorithm for modeling
rainfall-induced and reservoir-induced landslides in the Baihetan reservoir area in China. The
outcomes show that the ensemble DL model could predict the Wangjiashan landslide in the Baihetan
reservoir area with improved accuracy. The highest accuracy was achieved in the testing set when
the window length equaled 30. However, assembling two predictors outperformed the accuracy of
assembling three predictors, with the mean absolute error and root mean square error reaching 1.019
and 1.300, respectively. These findings suggest that the combination of strong learners and DL can
yield satisfactory prediction results.

Keywords: landslide displacement rate prediction; RNN; LSTM; GRU; AdaBoost progressive deep
learning; time series analysis

1. Introduction

The second-largest hydropower plant in the world is the Baihetan Dam. However,
large hydropower projects, due to the need for storing water in reservoirs and periodic
changes in reservoir water levels during operation, can alter the original geological en-
vironment of the reservoir area, causing geological hazards to occur more frequently on
the reservoir banks [1–3]. Waterways and the established infrastructure could be seriously
threatened by landslides in the reservoir area. Therefore, it is critical to use multi-source
monitoring data to analyze and predict geological hazards to mitigate the resulting severe
damage [4,5]. The reservoir area of Baihetan began storing water on 6 April 2021 and,
as of 30 September 2021, had risen to its highest water-level line of 816.51 m. The steep
topography and changes in the highest water level line have created signs of landslides
and the resurrection of ancient landslides in the reservoir area. One of the larger deformed
slopes is the Wangjiashan landslide, located in the Baihetan reservoir area [6–8]. Various
methods, such as the global positioning system (GNSS) and unmanned aerial vehicle (UAV)
photogrammetry, are being used to monitor the Wangjiashan landslide. Predicting and fore-
casting landslides early can reduce property damage and human casualties. Currently, the
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international community is conducting numerous studies on landslide geohazards [9]. For
example, Ghorbanzadeh et al. introduced multi-source landslide benchmark data and com-
pared the performance of several machine learning methods for landslide detection [10,11].
In addition, the high-precision rate prediction of landslides also provides important ana-
lytical reference information for landslide prediction and early warning systems [12–17].
Landslide sliding is mainly manifested in changes in internal physical and mechanical
mechanisms, external slope morphology, or changes in a certain number of values [18].
However, in the process of landslide destabilization, the external deformation of a certain
parameter is an important representation of internal changes in the landslide [19–22].

During landslide movement, continuous changes in displacement in the key deforma-
tion area are the primary external characteristics [23,24]. Therefore, it is crucial to carry out
automatic frequency conversion real-time monitoring and prediction for landslide displace-
ment. Most strategies for predicting the displacement of landslides are physically based
and data-driven models [25]. Starting with Saito’s postulated three stages for landslide
creep [26], established models such as the Saito model [26,27] and the Voight model [28]
exist. However, these models have obvious limitations and strongly rely on the experts’
experience, while the simplified models may not conform to the facts. Therefore, physical
models are difficult to use to accurately predict the landslide displacement rate. Statistical
models have been widely used in landslide displacement rate prediction, and, although
they are not as effective as physical models in revealing the evolutionary mechanism
of landslide displacement, they have provided accurate predictions in several landslide
cases [18,22,29]. However, statistical models, such as the Verhulst model [30] and the gray
system model [31], are mostly linear models, and they treat displacement prediction as a
static regression problem. However, landslide displacements are usually nonlinear and
dynamic [21], wherein the displacements are usually influenced by time-dependent factors
(e.g., an increase in reservoir and rainfall) [32]. To consider the time-varying characteristics
of landslide triggers, dynamic prediction methods are needed. As artificial intelligence (AI)
advances [33–36], particularly deep learning, a type of deep learning called a recurrent neu-
ral network (RNN) has been utilized for landslide prediction [16,17,37]. The RNN structure
is designed for time series data and has shown better computing power than traditional
machine learning methods. The RNN’s architecture faces a significant issue regarding the
explosion or disappearance of gradients [38]; newly developed models, including long-
term and short-term memory neural networks (LSTM) and gated recurrent neural networks
(GRU) have been improved from the basic RNN structure. The long-term and short-term
memory neural network (LSTM) is a special RNN that has been designed to deal with the
problem of gradient disappearance and explosion in long sequence training [21,39–41]. A
gated recurrent neural network (GRU) is an improvement of LSTM that simplifies the gate
structure and enables the efficient handling of large amounts of data. The RNN and its
upgraded models, such as LSTM and GRU, have been widely used for predicting landslide
displacement rates [20,21,42,43].

Differencing can help stabilize the mean of a time series by removing changes in the
level of a time series, thereby eliminating (or reducing) trend and seasonality [44]. The
landslide displacement rate is made different by the landslide displacement time series.
Each landslide displacement rate model mentioned above presents a different prediction
accuracy under different slope conditions, and each has certain disadvantages. However,
with the innovation of models and the improvement of prediction accuracy, the advantages
of integrated model algorithms are becoming more and more prominent. AdaBoost pro-
vides the framework for building sub-classifiers using various methods, including RNN,
LSTM, GRU, and so on, and can avoid the overfitting phenomenon present in individual
machine learning models. Additionally, since the AdaBoost algorithm does not require
prior knowledge of weak classifiers, learning accuracy may be greatly increased [45,46]. At
the same time, the algorithm can aggregate weak classifiers to construct a strong classifier
with high classification ability and adaptively adjust the assumed error rate, based on the
feedback from the weak classifiers, to improve execution efficiency.
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To address the aforementioned problem, this study proposes an AdaBoost integrated
three progressive evolutionary deep-learning model algorithms to predict the rate of the
Wangjiashan landslide of the Baihetan hydropower station, using the GNSS displacement
rate. For landslide displacement rate prediction, the study compares the prediction results
of the individual artificial intelligence models, RNN, LSTM, and GRU, with the integrated
AdaBoost model, using time series of measured displacement rate to verify the accuracy
of various algorithms and the feasibility of the integrated AdaBoost model. The proposed
model provides a novel approach to predicting landslide displacement rates.

2. Case Study
2.1. Topography and Geological Setting

The Baihetan Hydropower Station is situated in the upper reaches of the Jinsha
River, from Panzhihua to Yibin. It represents the second stage of the four-stage cascade
of hydropower stations in the region, consisting of Wudongde, Baihetan, Xiluodu, and
Xiangjiaba. Recently, a hazardous landslide was exposed in the Wangjiashan area, which
is approximately 92.4 km from the dam site. The north side of Wangjiashan reveals the
Wangjiashan landslide, on the right bank of the Xiaojiang Branch Reservoir, about 1.3 km
away from the Elephant Trunk Ridge settlement on the left bank of Xiaojiang (diagonally
opposite), as illustrated in Figure 1. The landslide plane has an approximately triangular
shape, measuring 800 m in length and ranging from 90 to 500 m in width. The height
difference between the front and triggering zones of the landslide is about 400 m, a trench
has developed on each side of the slope, and the landslide volume is 6.11 million m3.
The terrain within the landslide area is steep, with slope angles ranging from 35–45◦ and
occasionally reaching up to 50◦. At the central elevation of 870–900 m, the terrain becomes
gentler, with flat-topped hills and landslide depressions, and a slope angle of 15–20◦. Here,
arable land and signal towers are distributed. The elevation increases to 900 m above sea
level, and the source area of the landslide is around 1125 m high. The terrain is steep, with
a slope angle of 30–35◦, and is mostly a barren mountain. The altitude of the source area
of the Wangjiashan landslide is more than 1125 m and it has a steep bedrock slope with a
slope angle of 40–50◦. The stability of the Wangjiashan landslide is weak and is expected
to change to some extent after the reservoir of Baihetan Hydropower Station is filled. If
the landslide becomes unstable under certain working conditions, it may cause swells,
which would adversely affect the safety of surrounding residents and potentially endanger
shipping traffic. Therefore, it is crucial to anticipate and forewarn the displacement of the
Wangjiashan landslide to prevent potential disasters.

The landslide body has a total thickness ranging from 14.0 m to 87.6 m. While the
leading edge and triggering zone of the landslide are thinner, the center of the slide is
thicker, indicating that this is a large-scale soil landslide. The landslide material consists
primarily of pebbles, blocks, and fragments mixed with soil, and the composition of the
crushed and block stone is primarily limestone and dolomite, with sandstone in small
amounts. The lower bedrock is composed of dolomite, quartz sandstone, and argillaceous
siltstone. The soil in the slippery zone is composed of gravel-bearing clay, as illustrated in
Figure 2.

From a geomorphological perspective, the triggering zone of the landslide exhibits
clear characteristics, including the topographic characteristics of “double-groove homol-
ogous” and “circle chair-shaped” features, along with the exposure of Permian and Car-
boniferous limestone, dolomite, and sandstone. Two gullies border the left and right flanks
on both sides, and the bedrock at the bottom of the trench is exposed, primarily consisting
of Ordovician, Devonian, and Carboniferous dolomite, limestone, quartz sandstone, and
shale. As the front edge of the landslide approaches the tiny river margin, the terrain
becomes steep, with the slope ranging from 35◦ to 45◦.
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Figure 1. The case study's site and the GPS monitoring stations. (a) The pattern of the Jinsha River 
system and study area DEM; (b) the Wangjiashan landslide boundary, rain gauge (RG01), and GNSS 
displacement monitoring point layout; (c) the slope of the central highway that collapsed; (d) geo-
morphological features of the landslide front. 
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Figure 1. The case study’s site and the GPS monitoring stations. (a) The pattern of the Jinsha
River system and study area DEM; (b) the Wangjiashan landslide boundary, rain gauge (RG01), and
GNSS displacement monitoring point layout; (c) the slope of the central highway that collapsed;
(d) geomorphological features of the landslide front.
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2.2. Data from Time Series Monitoring and Study of the Deformation

In the area of the landslide study, the following five monitoring-point data were
mainly obtained: GNSS1, GNSS2, GNSS3, GNSS4, and GNSS5. The GNSS displacement
meters (ZWGNSS-1) provide landslide surface displacement measurement. Some of the
basic specifications are as follows: the acceleration measurement accuracy is not less than
0.01 g, and the positioning output frequency is 0.1 to 50 Hz. The GNSS system can receive
data from the global positioning system, Beidou navigation satellite system, GLONASS,
and Galileo satellite navigation system, and its plane accuracy is about 2 mm, while its
elevation accuracy is about 3 mm. The data was collected at a time step of one day to
monitor the displacement and displacement rate. The monitoring data were mainly selected
for a period of eight months from 1 July 2021 to 29 March 2022. Similarly, the reservoir
water level and rainfall data for these three months were selected; the reservoir water
level data was provided by the China Three Gorges Corporation and the rainfall data was
measured by a rain gauge (RG01) installed on the periphery of the right boundary of the
Wangjiashan landslide. The sampling interval was recorded every hour and the average of
the monitoring data over the 24-h period was used as the reservoir water level value for
that day. The total displacement and total horizontal displacement of the five monitoring
points showed an upward trend over time, with the value for the GNSS2 monitoring point
reaching the maximum. The GNSS5 displacement no longer increased around 28 November
2021, and the displacement data for all five monitoring points showed an upward trend
when the reservoir water level reached more than 792 m, as shown in Figure 3.
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The current situation of the landslide in Wangjiashan is generally stable, although there
are areas of instability, and it is currently in a slippery deformation state. Monitoring of the
displacement rate at five points, as shown in Figure 4, reveals that from around 21 August,
the landslide displacement rate increased as the reservoir water level climbed. By 12
September, when the reservoir water level reached 782 m, both GNSS2 and GNSS3 recorded
rates exceeding 200 mm/d. The displacement rate continued to fluctuate and increase,
reaching a peak around 6 October, when the reservoir water level was approximately
812 m. At this time, the largest displacement rate was recorded by GNSS2, which was about
994 mm/d, and reached 600 mm/d around 4 October to 8 October. After reaching its peak,
as the reservoir water level dropped to around 797 m, the displacement rate decreased. It is
evident that from September to October, the landslide underwent significant displacement
changes due to the varying water levels of the reservoir. Ultimately, this resulted in a sliding
failure along the base cover interface, causing a large overburden landslide with traction.
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3. Methodology

The processes of creating and validating the proposed models are presented in Figure 5.
The landslide displacement rate is triggered by two external causes—rainfall and reservoir
water level; these were analyzed to develop the AdaBoost RNN, LSTM, and GRU coupling
model, along with six comparison models. The training data set used to train the prediction
model covered the period from 3 July 2021 to 31 October 2021, while the testing data
set comprised the landslide displacement data from 1 February 2022 to 27 March 2022.
Root mean square error (RMSE) and mean absolute error (MAE) metrics were used as
common measures of prediction accuracy. Then, ablation experiments were set to study the
importance of landslides’ influencing factors. By changing the length of the window, its
influence on prediction could be clarified. Finally, comparative ensemble DL models were
utilized and the best performance for LDRP was selected.
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3.1. Deep Learning (DL) Models

AdaBoost combines three progressive evolutionary deep learning (RNN, LSTM, GRU)
algorithms to predict LDRP using GNSS displacement data. The RNN is a deep learning
network used to predict sequence data. LSTM is a modified form of the RNN, which is
composed of an input gate, output gate, and forget gate. The GRU has also been improved,
based on LSTM. The GRU unit does not need to use a memory unit to control the flow of
information in the same way as the LSTM unit. It can take advantage of all hidden states
without any control (Figure 6). The details of each model are explained below, with the
final AdaBoost ensemble DL prediction for LDRP.
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3.1.1. RNN

The recurrent neural network (RNN) is a sophisticated neural network model that
takes into account the sequential relationship between input data, introducing the concept
of "time series" [47]. It differs from the traditional artificial neural network as follows. The
information of the points in the RNN model in the hidden layer can be transmitted to the
next time point in an orderly manner, allowing the information contained in the data to be
continuously propagated. The RNN’s fundamental design model is shown in Figure 7a,
where h represents the hidden unit, o denotes the output, L depicts the loss function, x is
the input, y is the training set label, t is the state at time t, and V, U, and W represent the
weights, with the connection weights of the same type being taken to be the same.
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As depicted in Figure 7, the algorithmic idea behind the RNN model is to continuously
update the model state while retaining the current state of the input and output data,
allowing for the full extension of the input and output sequences. The complete model
structure is shown in Figure 7b, where at the timestep t, the input sequence data is denoted
by x, the output layer is denoted by y, and the input from the previous node and the current
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node determines the value size. In this model, the relationship can be obtained using the
following calculations:

ht = f (Whxt + Uhht−1 + bh) (1)

yt = g
(
Wyht + by

)
(2)

where f and g are activation functions; Wh and Uh are weight matrices; b is the offset vector.

3.1.2. LSTM

Although the recurrent neural network (RNN) is superior in terms of processing time
series data among the many machine learning algorithms, its performance is still limited by
the problems of gradient vanishing and gradient explosion in Figure 6a. The emergence of
long short-term memory (LSTM) is to solve these two intractable obstacles [48]. Compared
to a traditional RNN, LSTM can perform better with longer sequences. Figure 6b shows the
structure of LSTM, which uses gate functions to regulate the information flow, including
the forget gate, input gate, and output gate. These gates operate to dictate which pieces
of information should be discarded, added, and output. Here are the functions of the
three gates:

ft = σ
(

w f 1xt + w f 2ht−1 + b f

)
(3)

It = σ(wi1xt + wi2ht−1 + bi) (4)

Ot = σ(wo1xi + wo2hi−1 + bo) (5)

The vector values of a neural network node’s forgetting gate, input gate, and output
gate at time t are denoted by the letters ft, It, and Ot. The forgetting gate selectively forgets
some components in the previous unit state and does not allow too much memory to
affect the neural network’s processing of the present input. The associated bias terms
for each gate are denoted by the letters bf, bi, and bo. xt is the intake at time t; ht-1 is the
outcome at time t-1; ct-1 is the memory unit’s vector value at time t-1; tanh is indeed the
hyperbolic tangent function, which maps real numbers to the range [−1, 1]. The sigmoid
activation function maps real numbers to the range [0, 1]. A value of 1 indicates that all the
information from the previous time step has been retained, while a value of 0 indicates that
all the information has been lost.

3.1.3. GRU

The gate recurrent unit (GRU) is similar to the LSTM in that it is designed to handle
long-term memory and gradient issues during backpropagation. In many cases, the GRU
and LSTM perform similarly, but the GRU is easier to compute [49]. The GRU consists of
an update gate and a reset gate, as shown in Figure 6c.

The reset gate regulates how the new input data are merged with the prior memory,
while the update gate fulfills a role similar to that of the forget and input gates in the LSTM.
The calculation formula is as follows:

Zt = σ(wzxxt + wzhht−1 + bz) (6)

rt = σ(wrxxt + wrhht−1 + br) (7)

c̃t = tanh(Wcxxt + Wch(rt × ht−1) + bc) (8)

Ct = (1− Zt)Ct−1 + zt c̃t (9)

where Zt is the update gate and rt stands for the reset gate in the formula. The current
candidate vector is t. The buried layer’s output vector at time t is called Ct. The input
vector at time t is xt; the update gate vector at time t is Zt; the hidden layer’s output vector
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at time t is ht; the updated candidate vector is (c̃t), which is the vector at time t; Wch, Wcx,
Wzx, Wzh, Wrx, and Wrh denote the weight matrix between each connection vector; σ is the
sigmoid function.

3.1.4. AdaBoost

Boosting is a crucially important integrated learning technology that enhances weak
learners with low prediction accuracy to form strong learners with high prediction accu-
racy [50]. This greatly improves the prediction accuracy of learners and also provides a new
idea and method by which to solve the problem of directly constructing strong learners.
Based on this idea, our predecessors proposed a highly successful application algorithm
called the AdaBoost algorithm, which is short for “adaptive boosting”. The structure of the
AdaBoost model is depicted in Figure 8.
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The calculation process of this model is explained below: firstly, the sample of the
previous basic classifier is divided into two parts. The weight of the sample that is wrongly
classified is increased, while the weight of the sample that is correctly classified is decreased.
Then, the weight of the correct classification is used to train the next basic classifier. Addi-
tionally, a new weak classifier is introduced in each round of iterative calculation, and the
final criterion for the strong classifier is that either the error rate reaches a predetermined
small index value, or the number of iterations extends a predetermined maximum index
value.

The AdaBoost algorithm can be roughly separated into the following steps:
(1) Set the training samples and classify them as(x1,y1), . . . (xn,yn), where the yi range

is {−1, +1}, then initialize the sample weight and set D1(i) = 1/n; the maximum number
of cycles is T and conduct training proceeds.

(2) Start the iteration from t = 1 and use the sample weight distribution Dt to train the
weak classifier.

(3) Obtain the weak classification assumption of ht: X→ {−1, +1}, then calculate the
error rate of the weak classifier according to the following formula:

εt = Pr∼Dt [ht(Xi) 6= yi] (10)

(4) Calculate the value αt according to the following formula:

αt = 1/2 ln[(1− εt)/εt] (11)
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(5) Calculate the weight distribution after the t + 1 iteration, as below:

Dt+1(i) =
Dt(i)

Zt
×
{

e− a, ht(xi) = yi
e− a, ht(xi) 6= yi

(12)

Dt+1(i) =
Dt(i)

Zt
exp{−atyiht(xi)} (13)

where Zt is the normalized parameter.
(6) Obtain h1,h2, . . . ht, T. After T iterations, weak classifiers are obtained.
(7) Finally, calculate the strong classifier required by the target according to the formula,

through weighted voting:

H(x) = sign(
T

∑
t=1

εtht(x)) (14)

3.2. Model Validation

To measure the predictive performance of the methods mentioned in this research,
two widely used indicators are adopted for measurement, namely, the mean absolute error
(MAE) and root mean square error (RMSE). The metrics above are computed as follows:

MAE =
1
n

Σn
n−1

∣∣∣∣ŷl − yi

∣∣∣∣ (15)

RMSE =

√
1
n

Σn
n−1(ŷl − yi)

2 (16)

where yi and ŷi represent the measured landslide displacement rate and prediction dis-
placement rate.

The root mean square error (RMSE) and mean absolute error (MAE) metrics were
used as common measures of prediction accuracy, with smaller RMSE and MAPE values
indicating higher accuracy [51–53].

4. Results and Discussions
4.1. Model Training and Testing
4.1.1. Hyperparameter Settings

For the RNN, LSTM, and GRU, the hidden dimension is an important hyperparameter.
The hidden dimension is the size of the feature maps for each hidden layer. Increasing the
hidden dimension of a layer helps to increase the complexity of the model and allows it to
potentially capture more complex decision boundaries. It also allows for more expressibility
for the hidden states. The window length is a crucially important hyperparameter for
models used to make predictions. When predicting the landslide displacement rate at time
T, the rainfall, reservoir level, and LDRP at times T−L to T−1 are used as features to be
inputted into models for the window length, L. The size of the feature diagrams for each
hidden layer of the model is referred to as the hidden dimension. In terms of this study, the
hidden dimension was set to a value of 25. We used window rolling with a length of 30 to
make the prediction. As shown in Table 1, the AdaBoost model takes the results of the first
three models as input and then predicts the final result, resulting in a combined algorithm
model. The learning rate and the number of estimators are the two hyperparameters of
AdaBoost, which were set to 1 and 50, respectively. The learning rate is the weight applied
to each regressor at each boosting iteration, while the number of estimators is the maximal
number of estimators that terminate the boosting.
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Table 1. Hypermeters and explanations of the models.

Hypermeters Explanations

RNN Hidden dimension = 25
Window length = 30

Hidden dimension: The size of the feature maps for each hidden layer.
Window length: The length of the window rolling.

LSTM Hidden dimension = 25
Window length = 30

Hidden dimension: The size of the feature maps for each hidden layer.
Window length: The length of the window rolling.

GRU Hidden dimension = 25
Window length = 30

Hidden dimension: The size of the feature maps for each hidden layer.
Window length: The length of the window rolling.

AdaBoost Learning rate = 1
Quantity of estimators = 50

Learning rate: The weight applied to each regressor at each boosting iteration.
The number of estimators: The maximum quantity of estimators used to

terminate the boosting process.

4.1.2. Prediction of Displacement Rate and Accuracy Verification

In this research, three kinds of progressive evolutionary deep learning algorithms,
comprising RNN, LSTM, and GRU, were chosen as weak predictors. By assembling weak
predictors in different combinations, we investigated which integration model had the
highest prediction accuracy. Reservoir water level and rainfall were chosen as landslide-
inducing factors and the training set was from 1 February 2022 to 1 July 2022, while the
testing set was from 2 February 2022 to 28 March 2022.

Figure 9 describes the predicted landslide displacement rate of each model in the
testing set. As seen in Figure 9, the accuracy of the RNN is lower and less accurate than
that of the LSTM and GRU models, while the accuracy of the LSTM and GRU models
is approximately the same. This suggests that improved RNNs with gate structures can
remember long-term time series and can thus achieve higher accuracy. GRU simplifies the
architecture of LSTM, which can reduce the complexity of the model without reducing
the prediction accuracy. The performance accuracy of a single model is lower than that of
the ensemble model, indicating that the integrated model reduces epistemic uncertainty.
However, the accuracy when integrating three models is lower than that when integrating
two models. The possible explanation is that at some time points, the prediction of RNN,
LSTM, and GRU is inaccurate, which increases the out-of-distribution uncertainty regarding
the samples, leading to a reduction in the prediction accuracy of the three integrated models.
AdaBoost is sensitive to abnormal samples; therefore, abnormal samples may be given
higher weights in the iteration, which can reduce the prediction accuracy of the final strong
learner, affecting the accuracy of the overall prediction.

In Figure 10, the absolute error of each predicted model was drawn. As is shown
in Figure 11, the coupling algorithm of RNN and LSTM performs the best in terms of
prediction, with MAE and RMSE scores of 1.019 and 1.37, respectively. Moreover, it is
evident from Figure 11 that the coupled models outperform the single model, and the
coupling of the two models was better than that of the three models.

The values of MAE and RMSE for the RNN model were 2.439 and 3.594, respectively.
For the LSTM model, the MAE and RMSE were 2.029 and 2.804, respectively. The MAE
of the RNN and LSTM coupled model was 1.019 and RMSE was 1.3. The popular RNN
and GRU models had an MAE and RMSE of 1.134 and 1.498, respectively. The LSTM and
GRU coupled model’s MAE and RMSE were 1.112 and 1.37, respectively. The ensemble
model comprising the three models had an MAE and RMSE of 1.489 and 1.798, respec-
tively. Figure 11 shows that before 1 March 2022, the absolute amount of the displacement
rate predicted by RNN, LSTM, and GRU was relatively large, and the prediction results
improved throughout the whole month of March. However, after using the AdaBoost
ensemble model, the prediction error values increased during the entire prediction period.
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4.2. Uncertainty Analysis
4.2.1. The Influence of Distinct Hyperparameter Settings

This study takes window length as an example to investigate the impact of distinct
hyperparameter settings on model accuracy. The window length is a crucially important
hyperparameter for models used to make predictions. When predicting the landslide
displacement rate at time T, the rainfall, reservoir water level, and LDRP at time T−L to
T−1 are used as the features to be inputted into models for the window length L.

The length of the input time series is represented by the window. If the window
length is too short, the model may be underfitting due to the insufficient number of input
samples and insufficient features. On the other hand, if the window length is too long, the
multicollinearity may increase, making it difficult for the model to predict accurately.

By changing the window length and analyzing the results, we found that the precision
of the testing data set reaches its highest precision when the window length is 30. At this
point, the MAE is 1.065 and RMSE is 1.371, demonstrating that the results in Table 2 and
the sample taken within a month had the strongest association.

Table 2. The metrics of models according to changing window length.

Window Length MAE RMSE

10 1.249096 1.571771
12 1.14927 1.449296
14 1.227057 1.536288
16 1.120698 1.453125
18 1.133895 1.442992
20 1.143718 1.395504
22 1.120918 1.398017
24 1.201937 1.475579
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Table 2. Cont.

Window Length MAE RMSE

26 1.157241 1.429049
28 1.169383 1.494999
30 1.064997 1.370529
32 1.083456 1.407616
34 1.116723 1.460455

Table 2 demonstrates that there is not a straightforward linear correlation between
landslide prediction accuracy and window length. As the number of window lengths
increases, the accuracy of the prediction decreases. The highest prediction accuracy is
achieved with window lengths of between 16 and 22, while the lowest accuracy is observed
with window lengths of between 24 and 28. The lag between the influence of landslide
factors and the resulting displacement creates uncertainty in the prediction process, high-
lighting the complexity of these factors.

4.2.2. Ablation Experiments Disentangling the Impact of External Factors

Choosing the appropriate influencing factors is essential for accurate periodic dis-
placement prediction. One of the main inducing factors leading to landslides is rainfall.
On the one hand, rainfall causes the underground water level to rise in the landslide
body, softening the rock and soil, and lowering the shear strength on the surface of the
rupture via penetrating rock fissures and soil porosity. As a result, the opposing forces are
lessened. Alternatively, seeping water makes the landslide body heavier, which increases
the driving forces. As a result, the landslide becomes unstable and moves slowly. In
addition, rainfall raises the level of the subsurface water in the landslide body, causing
the rock and soil to become softer and the shear strength of the surface of the rupture to
decrease as water seeps into the soil pores and rock cracks. The seepage of water, on the
other hand, makes the landslide body heavier, which increases the driving forces, causes
instability, and increases displacement. Note that the variations in a wide range of external
triggering conditions caused the periodic displacement of the Wanjiashan landslide to
change. This might be explained by the fact that the landslide remained constant as long as
the rainfall did not go over a certain amount. The primary landslide-inducing elements
that affect the displacement of step-like reservoir landslides are mainly reservoir level
fluctuations and rainfall. The periodic displacement of landslides is lag-affected by rainfall
and reservoir water level and it also exhibits autocorrelation. Therefore, we chose periodic
displacement, precipitation, and reservoir water level over the previous three months as
landslide-inducing elements after consulting earlier studies.

To examine the impact of landslide external factors on the operation of the system,
ablation experiments were carried out under three distinct conditions—only the reservoir
water level, only rainfall, and neither. As seen in Table 3, the findings indicated that
prediction accuracy was comparable in both reservoir and rainfall conditions. It is difficult
to determine which factor is more important. However, the LDRP accuracy was lower
when there were no landslide-influencing factors considered. Therefore, it can be concluded
that both reservoir water level and rainfall are equally important in improving prediction
accuracy, and both factors should be considered when predicting landslide displacement
rates.

Table 3. The predicted metrics of three ablation experiments.

MAE RMSE

Reservoir 1.123 1.333
Rainfall 1.117 1.356

No influence factor 1.169 1.401
Reservoir + rainfall 1.065 1.371
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4.2.3. Limitations

Rainfall and reservoir water level are considered the influencing parameters in models
that forecast the landslide displacement rate. However, it is evident that the selected
influencing factors are not comprehensive enough, resulting in an insufficiently accurate
displacement rate prediction. Future research should take into account additional affecting
elements, such as groundwater level and deep displacement. By incorporating these more
precise influencing factors, the prediction accuracy of displacement rates can be further
improved.

Moreover, it is important to increase the impact of physical mechanisms on the predic-
tion of landslide displacement rates. For instance, expanding the spatial observation points
and incorporating additional monitoring points can enhance prediction accuracy. Multiple
monitoring points can help realize the temporal and spatial correlation of landslide dis-
placement prediction and build a multi-dimensional landslide displacement prediction
system.

5. Conclusions

The Wangjiashan landslide, in the vicinity of the Baihetan reservoir, is the focus of this
paper. The landslide displacement rate, reservoir water level, and rainfall data collected by
GNSS are used as the inputs for predictors. Three progressive evolutionary deep-learning
models and an AdaBoost model were employed to forecast the landslide displacement rate
and the ensemble model achieved high accuracy. The MAE and RMSE of assembling the
RNN and LSTM are 1.019 and 1.300, respectively, while the MAE and RMSE of assembling
the RNN, LSTM, and GRU are 1.489 and 1.789, respectively. Notably, assembling two pre-
dictors yielded higher accuracy than assembling three predictors, indicating that additional
weak predictors do not improve accuracy. AdaBoost’s flexible use of several regression
models to create weak predictors is advantageous, but the weighting of aberrant values
during iteration may affect prediction accuracy. Experimentation with different window
lengths revealed that a window length of 30 achieved the highest precision on the testing
data set. Ablation experiments on landslide-inducing factors indicated that the prediction
accuracy was similar when using only reservoir or only rainfall data. However, the accuracy
decreased when landslide-influencing factors were excluded from the prediction.

It is crucial to establish a more reliable and comprehensive model for predicting
displacement volatility to monitor long-term safety and detect landslides early. Enhancing
the model’s capacity to incorporate landslide-inducing factors and displacement data can
increase the prediction accuracy.
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