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Abstract: Remotely sensed hydrologic variables, in conjunction with streamflow data, have been
increasingly used to conduct multivariable calibration of hydrologic model parameters. Here, we
calibrated the Soil and Water Assessment Tool (SWAT) model using different combinations of stream-
flow and remotely sensed hydrologic variables, including Atmosphere–Land Exchange Inverse
(ALEXI) Evapotranspiration (ET), Moderate Resolution Imaging Spectroradiometer (MODIS) ET,
and Soil MERGE (SMERGE) soil moisture. The results show that adding remotely sensed ET and
soil moisture to the traditionally used streamflow for model calibration can impact the number and
values of parameters sensitive to hydrologic modeling, but it does not necessarily improve the model
performance. However, using remotely sensed ET or soil moisture data alone led to deterioration
in model performance as compared with using streamflow only. In addition, we observed large
discrepancies between ALEXI or MODIS ET data and the choice between these two datasets for model
calibration can have significant implications for the performance of the SWAT model. The use of
different combinations of streamflow, ET, and soil moisture data also resulted in noticeable differences
in simulated hydrologic processes, such as runoff, percolation, and groundwater discharge. Finally,
we compared the performance of SWAT and the SWAT-Carbon (SWAT-C) model under different
multivariate calibration setups, and these two models exhibited pronounced differences in their
performance in the validation period. Based on these results, we recommend (1) the assessment
of various remotely sensed data (when multiple options available) for model calibration before
choosing them for complementing the traditionally used streamflow data and (2) that different model
structures be considered in the model calibration process to support robust hydrologic modeling.

Keywords: evapotranspiration; remote sensing; streamflow; MODIS; ALEXI; SMERGE; multivariable
calibration

1. Introduction

The conventional approach to calibrating hydrologic models often involves using
streamflow data from hydrologic gauges to obtain the optimum values of model parame-
ters for improved model performance [1,2]. However, relying solely on streamflow data to
constrain hydrologic model performances can result in the poor simulation of other hydro-
logic components such as evapotranspiration and soil moisture. In addition, streamflow
data may not be readily available for a study region and time of interest due to the high
cost and the discontinuity of hydrologic gauge operation. Due to these limitations, when a
hydrologic model is calibrated against streamflow data available at the watershed outlet,
the simulated hydrologic processes (e.g., streamflow, soil moisture, and ET) within the
watershed can be subject to large uncertainties [3,4].

Remotely sensed data can provide crucial information about the dynamics of the water
budget [5–8]. As such, the hydrologic calibration process can benefit from the inclusion
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of remotely sensed soil moisture [9] and ET [10,11] data, in addition to traditionally used
streamflow measurements, to capture the spatiotemporal distribution of the water bud-
get components [2,12,13], particularly in arid/semi-arid watersheds with regulated water
resources systems, where evapotranspiration (ET) and soil moisture content play an impor-
tant role in determining groundwater recharge and irrigation water requirements [7,14].

Among the numerous agrohydrologic models, the Soil and Water Assessment Tool
(SWAT) [15] is a representative model that has been widely used for watershed management
and water quality studies in agricultural watersheds. To improve the reliability of the SWAT
simulations in both gauged and ungauged watersheds, satellite-based data products that
represent land surface dynamics (such as leaf area index) and water budget components
(such as ET and soil moisture) have proven to be useful [16–21]. Many studies have used
remotely sensed data, and ET [1,2,10,22,23] or soil moisture [16,17,19] in particular, in
conjunction with streamflow data to constrain the complex land–vegetation–atmosphere
interaction in hydrologic models. These efforts aid in model parameter estimation and help
improve model performance in capturing the spatial and temporal distribution of the water
budget components cycle.

For example, Parajuli et al. [2] used Moderate Resolution Imaging Spectroradiometer
(MODIS) ET to evaluate if calibration using remotely sensed ET in combination with stream-
flow improves the streamflow simulation. Their findings suggested that multivariable
calibration using remotely sensed data improved ET estimation, but the improvement in
streamflow estimation was negligible. Rajib et al. [22] found that multivariable calibration
of streamflow and MODIS ET allows for the optimization of model biophysical parameters
that improve the representation of vegetation dynamics and effectively reproduced both
water and energy balance components. Lee et al. [10] used Atmosphere–Land Exchange
Inverse (ALEXI) ET in conjunction with streamflow and crop yield for multivariable cali-
bration and demonstrated that the use of multiple constraints during model calibration
helps reduce the model predictive uncertainty by minimizing the number of acceptable
parameter sets.

Similar findings have been reported when the hydrologic models were calibrated using
streamflow and soil moisture. For instance, Choudhary and Athira [16] used streamflow
and soil moisture together to calibrate the SWAT model. They found that calibration
with streamflow data alone resulted in poor simulation of soil moisture and significantly
different ET simulation compared to the calibration with streamflow and soil moisture
together. They showed that constraining the simulated soil moisture slightly improved
the baseflow simulation but the trade-off between surface runoff and soil moisture did
not significantly improve the overall streamflow simulation. Rajib et al. [19] found that
calibration with streamflow data alone resulted in considerable uncertainty in soil moisture
simulation, while inclusion of root zone soil moisture improved soil moisture simulation,
reduced model uncertainty range, and significantly improved streamflow simulation.

Nevertheless, many issues exist with multivariable calibration and constraining the
SWAT model with remotely sensed data. First, although the remotely sensed ET datasets
are validated with measured data, their accuracy is subject to uncertainties in inputs (to al-
gorithms deriving remotely sensed ET), temporal and spatial scaling, and coverage [24–26]
that may cause hydrologic models to produce less accurate results for other components of
the hydrologic cycle (e.g., soil moisture, baseflow, and groundwater discharge). With the
continuous advancement in satellite technology and consistent global monitoring, multiple
remotely sensed data products for evapotranspiration and soil moisture are becoming
widely available [27,28]. Notably, remotely sensed ET products differ from each other in
terms of the algorithms used to derive the ET values and their capability to provide accurate
estimates of ET in a region of interest. Second, a multivariable calibration approach can
lead to complications due to trade-offs among model responses [29,30]. For example, the
model parametrization can cause the predicted variable, e.g., streamflow, to be closer to the
measured values at the cost of other components of the hydrologic processes such as ET,
soil moisture, and groundwater discharge.
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In addition, the structure or configuration of a hydrologic model can influence the
model’s performance, calibrated parameter values, and response to different inputs [31,32].
Another strategy increasingly adopted in the SWAT modeling community to improve model
performance consists of model modification to replace simplified empirical algorithms with
physically based modules/algorithms that better represent physical processes such as plant
growth [33], soil organic carbon, nitrogen cycling [34,35], and soil moisture content and
temperature [36]. For example, Qi et al. [3] and Wang et al. [37] showed that modification of
the SWAT model’s biogeochemical and energy balance algorithms can influence the SWAT
model-simulated hydrologic budgets and their responses to climate change.

Given the above knowledge gaps identified based on the literature review, we aim
to provide insights into the following scientific questions: (1) Does the use of different
remotely sensed ET and soil moisture products in addition to streamflow data help improve
the performance of a calibrated hydrologic model? (2) Does the choice of different remotely
sensed ET products for model calibration influence model performance? (3) Do variations
in model structure influence model performance under multivariate calibration? The
remote sensing datasets and hydrologic model are both open-access to the community. The
results from this study are expected to help the hydrologic modeling community to better
understand the strengths and caveats of using remotely sensed datasets, thereby designing
more robust strategies for improving hydrologic modeling.

2. Materials and Methods
2.1. Study Area

The 6909 km2 Little Blue River Watershed (LBRW), located in the Midwest of the USA,
spans Nebraska and Kansas (Figure 1). The LBRW is an intensively irrigated agricultural
watershed, with agricultural land (69.5%) as the dominant land cover category, followed by
pastureland (28.8%) and forest (1.6%). The LBRW is part of the large High Plains Aquifer,
where most of the agricultural irrigation is from groundwater. From 1985 to 2015, the
annual irrigation water use in the watershed increased from 105 × 106 to 141 × 106 m3 [38].
The watershed receives about 815 mm of rainfall annually with almost 65% of annual
rainfall occurring in May–September [39]. The basin is primarily composed of silt loam and
silt clay loam soils that have a large water-holding capacity and are relatively impermeable;
hence, the groundwater recharge is a small fraction of the annual precipitation [40]. The
intensive use of groundwater for irrigation has significantly affected the water quantity
in the study area. Moreover, agricultural activities have aggravated the water quality
issues in the watershed [41,42]. The hydrologic processes in the LRBW are complex, with
substantial surface water and groundwater interaction [42], which is influenced by factors
such as surface runoff, infiltration, and evapotranspiration. Given these conditions, water
conservation is of utmost importance in the LBRW.

2.2. Hydrologic Models
2.2.1. SWAT Model Description

The SWAT model is a physically based model that simulates hydrologic processes by
dividing the watershed into subbasins which are further divided into hydrologic response
units (HRU). The HRU represents a unique combination of homogenous land use, soil class,
and slope [43]. The surface runoff is simulated using the Natural Resources Conservation
Service (NRCS) curve number method, and the flow of water within the soil profile is
simulated using a simple tipping bucket approach [43]. This simplified soil moisture model
has been widely tested in several studies [44,45]. SWAT simulates the land phase of the
hydrologic cycle based on the water balance equation [43]:

SWt = SWo + ∑t
i=1(Rday −Qsur f − Ea −Wseep −Qgw), (1)

where SWt is the soil water content (mm); SWo is the initial soil water content (mm); Qsurf is
the surface runoff (mm); Rday is the precipitation (mm); Ea is the evapotranspiration (mm);
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Wseep is the percolation (mm) from the soil profile; Qgw is the return flow (mm); and t is the
time (days).
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Evapotranspiration was calculated in SWAT using the Penman–Monteith method. The
Penman–Monteith method [46] uses solar radiation, air temperature, relative humidity, and
wind speed to estimate the ET.
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2.2.2. SWAT-C

To understand the extent to which changes in model structure/configuration can
influence multivariate calibration results, we compared the SWAT-Carbon (SWAT-C) model
with the SWAT model. SWAT-C employs the CENTURY [47]-based soil organic matter and
residue, which are modeled using five different pools [34,35,48,49]. SWAT-C incorporates
more detailed biochemical properties and environmental factors to simulate the soil organic
matter residue dynamics considering both C and N cycling [35]. In addition, the energy
balance algorithms in SWAT-C are based on physically based equations, instead of empir-
ical equations that link air temperature with soil temperature [50]. These changes have
resulted in substantial changes in hydrologic modeling as compared with the standard
SWAT2012 [3,37,51]. SWAT-C has been successfully evaluated at the field scale [34,35] and
watershed scale [3] in the US Midwest. Therefore, here we use both SWAT and SWAT-C to
examine the responses of hydrologic modeling to the different strategies of using remotely
sensed ET and soil moisture products.

2.3. Model Setup

The SWAT model for LBRW was configured using multiple geospatial datasets (Table 1
and Figure 2). The land use information from the Cropland Data Layer (CDL) 2008 [52]
was overlaid with the MODIS irrigated land layer 2007 [53] to generate a land use map
with cropland separated into irrigated and dry cropland. Soil data were derived from the
State Soil Geographic (STATSGO) dataset. The thresholds of 5% for land use and 10% for
soil class were used during the HRU generation. Here, the threshold is applied sequentially
to land use and soil class. The land use covering less than 5% of the subbasin is removed
and its area is redistributed among the remaining land use in the subbasin. Next, if the area
of soil class within a land use is less than 10%, it is removed and redistributed to remaining
soil class in that land use [54]. The SWAT model created using this threshold approach
had 244 HRUs. This approach facilitated the removal of minor land uses and soil class
in each subbasin and thereby obtained more computational efficiency without affecting
the model performance. The crop management operations, planting and harvesting, were
based on USDA-NASS [55], and fertilizer application was based on Woznicki and Nejad-
hashemi, [56], Ferguson et al. [57], and Van Liew et al. [58] for corn, soybean, and winter
wheat, respectively. The irrigation operation was set up based on Dangol et al. [39]. The
SWAT auto-irrigation module was used, with plant water stress based irrigation scheduling
to trigger irrigation, which was shown to reasonably capture regional agricultural irrigation
amount in the Northern High Plains aquifer. Meteorological data (precipitation, minimum
and maximum temperature, relative humidity, wind speed, solar radiation) used to drive
the SWAT model were obtained from the North American Regional Reanalysis (NARR)
database [59].

Table 1. Geospatial and climate data used to set up SWAT model.

Data Resolution Source

Weather 0.3◦ × 0.3◦ NARR [59]
Digital Elevation Model (DEM) 90 m × 90 m Shuttle Radar Topography Mission (SRTM) [60]

Land Use 30 m × 30 m USDA NASS Cropland Data Layer [52]
MODIS Irrigated Land 250 m × 250 m Pervez and Brown [53]

Soil Property 1:250,000 STATSGO [61]
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2.4. Remotely Sensed Evapotranspiration and Soil Moisture Content Data Products

To evaluate the impact of remotely sensed ET and soil moisture products on the model
performance following the multivariable calibration, two ET datasets, MODIS and ALEXI,
and a recently developed soil moisture dataset, Soil MERGE (SMERGE), were considered
(Table 2).

Table 2. SWAT calibration input summary.

Data Resolution Source

MODIS Evapotranspiration 500 m × 500 m Running et al. [62]
ALEXI Evapotranspiration 4 km × 4 km Anderson [63]

SMERGE 40 cm volumetric soil moisture content 0.125◦ × 0.125◦ Crow and Tobin [64]

A brief description of these three remotely sensed datasets is provided as follows.

2.4.1. MODIS Evapotranspiration

The MODIS ET is an open-source global dataset widely used in hydrologic modeling
because of its good spatiotemporal resolution, well-documented assessment, and validation
over North America [65–67]. The MODIS ET algorithm is based on the Penman–Monteith
equation [46], which considers surface energy partitioning processes and atmospheric
drivers of ET. In this study, the monthly ET values were derived for each of the seven
subbasins in watershed by spatially aggregating the 8-day total 500 m gridded ET data
from MODIS (MOD16A2) for the period of 2001 to 2016. All MODIS pixels within each
subbasin were averaged to produce ET average values.

2.4.2. ALEXI Evapotranspiration

The ALEXI model [63] utilizes the two-source land surface algorithm to partition ET
into canopy transpiration and soil evaporation components, to compute daily fluxes of ET
at the 4 km resolution. The ALEXI ET products have been evaluated and validated against
observed data using a Landsat/MODIS-based downscaling algorithm called DisALEXI [68]
over a wide range of climatic conditions in North America [69,70]. In this study, daily 4-km
gridded ALEXI ET was spatially aggregated into monthly values for each of the seven
subbasins for the period of 2001 to 2016.

2.4.3. SMERGE Volumetric Soil Moisture Content

As discussed earlier, the multivariable calibration approach that targets streamflow
and ET does not necessarily improve the estimation of other hydrologic processes such
as soil moisture content. Soil moisture content has a significant impact on irrigation re-
quirements and crop productivity. However, most multivariable calibration studies with
streamflow and ET as target variables do not report the impact on soil moisture content. In
this study, we used the SMERGE volumetric soil moisture dataset (0–40 cm) [64,71] to un-
derstand the effect of multivariable calibration on the simulation of the soil moisture content.
The SMERGE daily soil moisture data are developed by combining the North American
Land Data Assimilation System land surface model output with surface satellite retrievals
from the Europeans Space Agency Climate Change Initiative. The SMERGE dataset has
been validated against the in situ measurements in the conterminous United States [72].
The SMERGE volumetric soil moisture content (m3/m3) is converted into depth units (mm)
by multiplying it with soil moisture depth (400 mm) for comparison with the soil moisture
estimates from the SWAT model.
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2.5. Model Calibration and Evaluation

The SWAT model was run from 1998 to 2016 with three years of warm-up period
(1998–2000) [73] calibrated at a monthly time step for the period of 2001–2008, and validated
for the period of 2009–2016. The model calibration was performed in two steps [74]: first,
the fractional potential heat units for planting and harvest dates for corn and soybean were
adjusted to ensure the model-simulated planting and harvest dates aligned with the dates
provided by USDA [55]; second, the model was calibrated against different combinations
of streamflow and the remotely sensed dataset (ET and soil moisture) simultaneously.
Streamflow data for model calibration were obtained for USGS streamgage station 06884025
(Figure 1).

Model sensitivity analysis and calibration were performed using Sequential Uncer-
tainty Fitting algorithm version 2 (SUFI-2) procedure in SWAT-CUP [75] (Figure 3). Model
parameters based on the existing literature were selected for sensitivity analysis. Using
global sensitivity in SUFI-2, the most sensitive parameters (p-value < 0.1) were selected
and adjusted during the calibration process for each calibration setup (Table 3). The mul-
tivariable calibration approach that has been shown to improve the ET calibration while
maintaining the streamflow calibration [1] was selected for this study. A total of nine simu-
lations were run using different combinations of observed MODIS ET, ALEXI ET, SMERGE
soil moisture, and streamflow data for multivariable calibration including simulations for
streamflow only, ET only, and soil moisture only calibration (Table 3).

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 23 
 

 

 
Figure 3. Flowchart showing the multivariable calibration and validation approach. Each set of var-
iables used for multivariable calibration are shown in calibration inputs. 

The Kling–Gupta Efficiency criterion (KGE) [76] is used as the objective function for 
the multivariable calibration with equal weights assigned to each variable. For multivari-
able calibration, the aggregated value (KGE’) of KGE is calculated as follows: 

 퐾퐺퐸  =  푤 × 퐾퐺퐸  +  ∑ 푤 , × 퐾퐺퐸   +  ∑ 푤 , × 퐾퐺퐸    (2)

푤  +  ∑ 푤 ,   + ∑ 푤 ,     =  1, (3)

where 푤  =  ∑ 푤 ,   =  ∑ 푤 ,     ; subscript Q, ET, and SM indicate streamflow, 
evapotranspiration, and soil moisture; 푤  is the weight assigned to the objective variable 
of streamflow; 푤 ,  and 푤 ,  are the weights assigned to the objective variable of ET 
and soil moisture for subbasin j, where equal weights are assigned to each subbasin. This 
approach accounts for the spatial heterogeneity of ET and soil moisture in the watershed. 
The KGE for each variable is calculated as follows: 

 퐾퐺퐸 = 1 −  (푟 −  1)  −   −  1  −   −  1  , (4)

where r is the Pearson correlation coefficient; σ and µ are the standard deviation and mean 
of the variables, respectively; and the subscripts s and o indicate simulation and observa-
tion, respectively. KGE takes into account the variability, bias, and correlation between the 
observed and simulated values. KGE values range from −∞ to 1, with values closer to 1 
indicating be er model performance. 

In addition, Nash–Sutcliffe efficiency (NSE) [77] and percent bias (PBIAS) are used to 
further assess the performance of streamflow and ET modeling results. The NSE and 
PBIAS are calculated as follows: 

Figure 3. Flowchart showing the multivariable calibration and validation approach. Each set of
variables used for multivariable calibration are shown in calibration inputs.



Remote Sens. 2023, 15, 2417 9 of 22

Table 3. Calibrated SWAT model parameters under different calibration setups.

Parameters Unit
Benchmark
(Streamflow

Only)
MODIS

Only
ALEXI
Only

SMERGE
Only

Streamflow
+ MODIS

Streamflow
+ ALEXI

Streamflow
+ SMERGE

Streamflow
+ SMERGE
+ MODIS

Streamflow
+ SMERGE

+ ALEXI

r_CN2 * −0.004
(−17.49)

0.188
(47.71)

−0.122
(−35.42)

−0.149
(−56.73)

0.0035
(−14.06)

−0.004
(−18.57)

−0.008
(−19.50)

−0.0003
(−16.35)

−0.025
(−20.44)

v_EPCO * 0.946
(1.68)

0.904
(−3.01)

0.813
(2.26)

0.982
(3.38)

0.773
(1.50)

0.862
(1.72)

0.929
(1.78)

0.816
(1.62)

0.982
(−1.81)

a_GWQMN mm −250.75
(−1.58)

−486.25
(1.66)

329.25
(−1.74) – 373.25

(−1.54)
−58.75
(−1.60)

−210.75
(−1.55)

399.75
(−1.51)

−434.5
(−1.57)

r_SOL_AWC mmH2O/
mm soil

0.137
(−0.81)

−0.047
(−10.82)

0.067
(4.71)

0.282
(60.84)

−0.174
(−2.02) – 0.129

(1.88)
0.088
(0.93)

0.233
(2.03)

v_FFCB * 0.441
(0.88) – – – 0.128

(0.80)
0.505
(0.91)

0.243
(0.85)

0.571
(0.77)

0.282
(0.88)

v_SURLAG days 8.122
(−0.81) – – – 3.863

(0.68)
6.483
(0.67) – – –

v_REVAPMN mm 100.133
(−0.81)

0.135
(−2.43)

59.384
(3.40)

247.38
(−3.09)

236.63
(−1.14) – 218.13

(−0.92)
366.38

(−1.25)
174.256
(−0.71)

r_SOL_BD Mg/m3 −0.290
(−0.92)

0.058
(5.56) – 0.217

(−3.98) – 0.105
(−0.92)

−0.004
(−1.07) – 0.249

(−1.06)

v_ESCO * – 0.973
(29.75)

0.931
(2.04) – 0.948

(2.86) – – 0.989
(2.77) –

v_GW_REVAP * 0.023
(−0.90)

0.163
(5.24)

0.022
(−4.63)

0.143
(2.56) – 0.037

(−1.11)
0.029

(−0.77) – 0.021
(−0.97)

v_SLSOIL m – 29.21
(−2.14) – – – – – – –

Note: r, v, and a represent the relative, replacement, and absolute changes in model parameters, respectively.
“–” indicates that the parameter is not sensitive for model configuration and is not included in the model cal-
ibration; “*” indicates unitless parameters. The numbers inside the bracket represent the t-stat. The bench-
mark setup uses streamflow only. The other calibration setups used streamflow plus one or two more remote
sensing products.

The Kling–Gupta Efficiency criterion (KGE) [76] is used as the objective function for the
multivariable calibration with equal weights assigned to each variable. For multivariable
calibration, the aggregated value (KGE’) of KGE is calculated as follows:

KGE
′
= wQ × KGEQ + ∑n

j=1 wET,j × KGEET j + ∑n
j=1 wSM,j × KGESMj (2)

wQ + ∑n
j=1 wET,j + ∑n

j=1 wSM,j = 1, (3)

where wQ = ∑n
j=1 wET,j = ∑n

j=1 wSM,j; subscript Q, ET, and SM indicate streamflow, evap-
otranspiration, and soil moisture; wQ is the weight assigned to the objective variable of
streamflow; wET,j and wSM,j are the weights assigned to the objective variable of ET and soil
moisture for subbasin j, where equal weights are assigned to each subbasin. This approach
accounts for the spatial heterogeneity of ET and soil moisture in the watershed. The KGE
for each variable is calculated as follows:

KGE = 1−

√
(r− 1)2 −

(
σs

σo
− 1
)2
−
(

µs

µo
− 1
)2

, (4)

where r is the Pearson correlation coefficient; σ and µ are the standard deviation and
mean of the variables, respectively; and the subscripts s and o indicate simulation and
observation, respectively. KGE takes into account the variability, bias, and correlation
between the observed and simulated values. KGE values range from −∞ to 1, with values
closer to 1 indicating better model performance.

In addition, Nash–Sutcliffe efficiency (NSE) [77] and percent bias (PBIAS) are used
to further assess the performance of streamflow and ET modeling results. The NSE and
PBIAS are calculated as follows:

NSE = 1−

√
∑N

n
(
Qn

0 −Qn
s
)2√

∑N
n (Qn

0 −Qo)2
(5)
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PBIAS =
∑N

n
(
Qn

0 −Qn
s
)

∑N
n Qn

0
× 100, (6)

where Qn
0 and Qn

s are the nth observed and simulated value, respectively; Qo is the mean
of observations; and N is the total number of time steps. The NSE represents the match
between observed and simulated value. The NSE ranges from −∞ to 1, with 1 indicating
perfect agreement. PBIAS represents the bias of the model. Positive values of PBIAS indicate
underestimation and negative value indicate overestimation by the model. According to
Moriasi et al. [75], the model performance is considered to be satisfactory if NSE ≥ 0.5 and
PBIAS is within ±25%.

3. Results
3.1. Sensitive Parameters Resulting from Different Multivariable Calibration Setups

The sensitive parameters and the calibrated values for each of the six calibration
approaches are listed in Table 3. Sensitivity analysis reveals that eight out of the eleven pa-
rameters, in general, are important to all multivariable calibration approaches. SOL_AWC
is an important soil property that determines the field capacity of the soil. A higher value
of SOL_AWC increases the water-holding capacity of soil resulting in reduced surface
runoff, lateral flow, and percolation. GWQMN determines the shallow aquifer discharge to
the stream. Lower values of GWQMN increase the baseflow. EPCO controls plant water
uptake from soil by modifying the depth distribution of uptake in the soil profile. Higher
values of EPCO (when SMERGE is used) allow more of the plant water demand to be met
from lower soil layers, increasing the evapotranspiration and reducing the surface runoff,
groundwater recharge, and lateral flow. Overall, multivariable calibration tends to increase
baseflow and reduce surface runoff, lateral flow, and percolation in SWAT, and to improve
the streamflow, ET, and soil moisture simulation.

3.2. Impact of Multi-Variable Model Evaluation on Model Calbiration and Performance

The conventional SWAT model calibration approach that utilizes streamflow to opti-
mize model parameters is considered here as the single-variable or benchmark calibration
scenario. Figure 4 shows the SWAT-simulated monthly streamflow and ET for calibra-
tion and validation periods when calibrated with different combinations of streamflow,
soil moisture, and ET datasets. Model calibration and validation using combinations of
multiple calibration variables were also conducted, and their results are summarized in
Table 4. In the following, we present the results from the use of different variables for
model calibration.

Benchmark calibration (i.e., streamflow only) resulted in satisfactory performance of
streamflow and ET for SWAT in the calibration period (Table 4). The PBIAS values for
streamflow were within ±10% in the calibration period but deteriorated significantly to
43.3% in the validation period. This shows that model parameter adjustment for streamflow
simulation during calibration did not successfully optimize the model performance for
SWAT for the validation period. The NSE and KGE values for ET were >0.8 for SWAT in
calibration and validation periods. SWAT-simulated soil moisture produced KGE > 0.5
but did not meet the performance criteria for the NSE value (<0.5) in both calibration and
validation periods.

ALEXI ET-only calibration resulted in a modest improvement in ET, while the per-
formance of soil moisture improved significantly at the expense of the performance of
streamflow when compared to benchmark simulation in the calibration and validation pe-
riods. The NSE value for soil moisture increased from 0.05 to 0.19 and −0.28 to 0.22 during
the calibration and validation periods, respectively. However, the model performance for
streamflow deteriorated and did not meet the performance criteria for NSE (<0.5) and KGE
(<0.5) values in both calibration and validation periods.
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Figure 4. Comparison of observed and simulated monthly streamflow (a) and evapotranspiration
(b) in the Little Blue River Watershed.

Soil moisture-only calibration significantly improved the performance of soil moisture,
while the performance of streamflow worsened compared to the benchmark and ALEXI
ET only setups in both calibration and validation periods. The performance of ET was
similar to that obtained for benchmark simulation in the calibration period with modest
improvement in the validation period.

When calibrated with streamflow and ET simultaneously, in general, the SWAT per-
formance metrics for streamflow show negligible differences compared to the benchmark
simulation for the calibration period, suggesting that streamflow simulations were not
significantly affected by the consideration of the ALEXI ET dataset during calibration. It is
worth noting that compared to the benchmark, including ET improved SWAT for simulating
soil moisture from−0.28 to 0.03 in terms of NSE, but deteriorated KGE from 0.65 to 0.59 dur-
ing the validation period. In addition, adding ET helped reduce model bias in simulating
streamflow for the validation period (e.g., PBIAS decreased from 43.3% to 35.5%).

When calibrated with streamflow and soil moisture simultaneously, simulated stream-
flow and soil moisture also show similar results to those obtained for the benchmark
simulations for SWAT. Constraining the model with soil moisture in addition to streamflow
did not result in improved model performance for streamflow and soil moisture during
calibration. However, during the validation period, the NSE value (i.e., 0.12) for SWAT-
simulated soil moisture exhibited improvement compared to the benchmark simulation
(−0.28). In addition, constraining the model with streamflow and soil moisture did not
result in any noticeable improvement in ET simulation for SWAT. Adding soil moisture
in the target function did not help reduce the model-simulated bias of streamflow in the
validation period.
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Table 4. Model calibration (Cal) and validation (Val) results for setups with different combinations of
streamflow, ET, and soil moisture.

Calibration Setups Performance Metrics
NSE KGE PBIAS

Cal Val Cal Val Cal Val

Benchmark (Streamflow only)

Streamflow 0.56 0.72 0.78 0.55 4.48 43.31
ALEXI ET 0.85 0.79 0.88 0.83 0.25 3.03

Soil moisture 0.05 −0.28 0.69 0.65 7.02 10.96
Average 0.49 0.41 0.78 0.68 3.92 19.10

ALEXI ET only

Streamflow 0.19 0.44 0.17 0.13 56.07 69.31
ALEXI ET 0.86 0.81 0.88 0.85 −0.30 1.86

Soil moisture 0.19 0.22 0.71 0.66 −3.90 −1.37
Average 0.41 0.49 0.59 0.55 17.29 23.27

SMERGE only

Streamflow −0.22 0.20 −0.13 −0.11 81.47 86.48
ALEXI ET 0.85 0.81 0.89 0.86 0.21 1.34

Soil moisture 0.44 0.37 0.74 0.73 1.71 5.12
Average 0.36 0.46 0.50 0.49 27.80 30.98

Streamflow + ALEXI ET

Streamflow 0.53 0.75 0.77 0.63 2.82 35.52
ALEXI ET 0.86 0.81 0.87 0.83 3.57 4.38

Soil moisture 0.00 0.03 0.63 0.59 −6.71 −5.40
Average 0.46 0.53 0.76 0.68 −0.11 11.50

Streamflow + SMERGE

Streamflow 0.52 0.72 0.78 0.56 5.22 42.12
ALEXI ET 0.86 0.80 0.88 0.83 1.48 3.71

Soil moisture −0.01 0.12 0.69 0.66 −7.11 −4.48
Average 0.46 0.55 0.78 0.68 −0.14 13.78

Streamflow + ALEXI ET + SMERGE

Streamflow 0.53 0.71 0.77 0.53 2.32 44.97
ALEXI ET 0.86 0.80 0.89 0.83 0.49 3.15

Soil moisture 0.22 0.24 0.71 0.67 −2.91 0.14
Average 0.54 0.58 0.79 0.68 −0.03 16.09

Note: Benchmark setup represents model calibration with streamflow only. Other setups include streamflow and
additional one or two calibration variables. The aggregate performance metrics are the average of the metrics for
streamflow, ALEXI ET, MODIS ET, and soil moisture.

Simultaneously using streamflow, ET, and soil moisture data for model calibration did
not result in significant improvement in the model performance in simulating streamflow,
ET, and soil moisture. SWAT did not meet performance criteria for soil moisture in terms of
NSE (<0.5) during calibration and validation. Including all three variables helped to attain
the highest NSE (0.22) for soil moisture during the calibration, which translated to an NSE
of 0.24 during the validation period.

Although adding ET or soil moisture as target variables can improve model perfor-
mance regarding a specific variable, we found that adding additional target variables
(i.e., ET and soil moisture) did not help achieve much improvement to overall model
performance as indicated by the average performance metrics when compared with the
benchmark simulation. However, using ET or soil moisture data only as the target calibra-
tion variable could result in a substantial decrease in model performance. For example,
the ALEXI ET-only and SMERGE soil moisture-only calibration setups led to considerably
lower KGE values (≤0.55) as compared to other calibration setups that include streamflow
(≥ 0.68). This finding highlights the potential challenge in calibrating hydrologic models
for ungauged basins where measured streamflow is not available.

It is also worth noting that all model setups were able to provide satisfactory model
performance for both streamflow (except for ALEXI ET only and SMERGE only) and ET
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reasonably well (NSE > 0.5) (Table 4) during calibration and validation periods. However,
for soil moisture simulation, none of the calibration setups resulted in satisfactory model
performance (in terms of NSE). This finding could be attributed to the challenge of simulat-
ing soil moisture dynamics and the potentially large uncertainties associated with remotely
sensed soil moisture products.

3.3. Effects of Choice of ET Products on Model-Simulated ET

In addition to ALEXI ET, the MODIS ET products have also been widely used.
Figure 4b shows the dramatic difference between the ET estimates from ALEXI and MODIS
over the LBRW; MODIS ET estimates were much lower than those of ALEXI. Not sur-
prisingly, the sensitive parameters and their calibrated values are considerably different
when using MODSI vs. ALEXI ET. For example, the calibrated a_GWQMN values were
373.25 and −58.75 for the streamflow + MODIS and streamflow + ALEXI setups, respec-
tively. The large difference between MODIS ET and ALEXI ET results in a substantial
difference in streamflow estimates when calibrated using ALEXI ET only (Table 4) and
MODIS ET only (Table 5), as seen in Figure 4a. SWAT failed to meet the streamflow perfor-
mance criteria in terms of NSE (<0.5), KGE (<0.5), and |PBIAS| > 50% in both calibration
and validation periods when calibrated with ET only. The MODIS ET-only setup consid-
erably overestimated (PBIAS < −180%) the streamflow, while the ALEXI ET-only setup
underestimated (PBIAS > 50%) the streamflow during calibration and validation periods.

Table 5. Model calibration (Cal) and validation (Val) results for setups with MODIS ET as a
calibration variable.

Calibration Setups Performance Metrics
NSE KGE PBIAS

Cal Val Cal Val Cal Val

MODIS ET only

Streamflow −7.60 −3.37 −1.92 −1.46 −213.13 −182.22
MODIS ET 0.33 0.51 0.62 0.74 −14.45 −2.11

Soil moisture 0.05 −0.11 0.52 0.43 5.11 6.05
Average −2.41 −0.99 −0.26 −0.10 −74.16 −59.43

Streamflow + MODIS ET

Streamflow 0.52 0.75 0.77 0.71 2.39 25.96
MODIS ET −0.16 0.38 0.30 0.60 −37.20 −24.08

Soil moisture 0.05 −0.10 0.58 0.52 5.77 6.91
Average 0.14 0.34 0.55 0.61 −9.68 2.93

Streamflow + MODIS ET + SMERGE

Streamflow 0.49 0.73 0.75 0.78 3.51 15.97
MODIS ET −0.13 0.41 0.30 0.62 −35.46 −22.09

Soil moisture −0.05 0.00 0.68 0.62 −7.67 −6.49
Average 0.10 0.38 0.58 0.67 −13.21 −4.20

Compared to the multivariable model calibration using ALEXI ET (Table 4), the
multivariable calibration using MODIS ET achieved comparable calibration and validation
results for streamflow (Table 5). However, the performance of SWAT in simulating ET
substantially decreased when MODIS ET was used. For example, the NSE values for the
multivariable calibration setups that include MODIS ET were less than 0 for the calibration
period and less than 0.5 for the validation period. There were also large biases in model-
simulated ET for the calibration setups with MODIS ET, with absolute PBIAS values larger
than 30% in calibration and greater than 20% during validation. This result clearly shows
that the choice of remotely sensed ET can have significant impacts on the calibration of
SWAT. Therefore, it is critical to evaluate the quality of remotely sensed ET data before
their use in model calibration. In addition, this finding highlights the importance of using
multivariable calibration to constrain hydrologic model performance when the quality
of a remote sensing product is unknown. The overall model performance (averaged
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performance metrics (Table 5)), in general, increased when more variables are used. For
example, the average KGE values increased from −0.10, 0.61, and 0.67 for MODIS-only,
Streamflow + MODIS ET, and Streamflow + MODIS ET + SMERGE setups, respectively.
The multivariable approach helps minimize the impacts of errors in a single remote sensing
product on the overall model performance.

3.4. Variations in Hydrologic Pathways under Different Calibration Schemes

The seasonal values of key hydrologic pathways at the watershed level (Figure 5)
were analyzed to evaluate the overall impact of multivariable calibration on the SWAT
simulations. Although the performance metrics of SWAT-simulated streamflow are similar
for the multivariable calibration setups (Tables 4 and 5), the results clearly show that
the difference in calibration setup meaningfully affected the surface runoff, percolation,
lateral flow, and groundwater discharge. The simulated surface runoff among different
multivariable calibration setups shows little variance, whereas single variable calibration
setups show considerable variability. Spatial distribution of surface runoff for different
calibration setups is shown in Figure 6. Surface runoff, in general, is low in the western
and southern region and high over the north-central portion of the watershed.
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The monthly distribution of SWAT-simulated percolation/groundwater discharge is
spread out with varying magnitude. In general, the downstream subbasins are the main
contributors to the groundwater discharge, as shown in Figure 7. The SMERGE-only and the
MODIS-only setup stands out among the calibration setups as the simulated groundwater
discharge to streams is negligible throughout the year. Both MODIS-only and SMERGE-
only setups have high GW_REVAP values, i.e., 0.163 and 0.143, respectively, compared
to other calibration setups (Table 3). The GW_REVAP controls the water movement from
the shallow aquifer to overlying unsaturated soil layers. The high value of GW_REVAP
reduces the water level in the shallow aquifer resulting in a corresponding decrease in
groundwater discharge. In addition, the MODIS-only setup simulated considerably higher
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surface runoff and lateral flow. On the other hand, the SMERGE-only setup simulated
much lower surface runoff and high lateral flow with increased water holding capacity of
soil layers (Table 3). This results in negligible/no groundwater discharge in the MODIS
only and SMERGE only setups.
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Among the multivariable calibration setups, the streamflow + ALEXI + SMERGE
simulated the lowest percolation and groundwater discharge, while the streamflow +
MODIS estimated the highest. In addition, the simulated lateral flow, although of negligible
magnitude compared with surface runoff and groundwater discharge, showed variation
by a factor of two. These differences in simulated hydrologic pathways can have impli-
cations for assessing water management effects on groundwater resources in arid and
semi-arid regions.

3.5. Influence of Model Structure on Multivariate Model Calibration

We also calibrated the SWAT-C model for the benchmark and three multivariate cali-
bration scenarios (Table 6). In general, the overall performance of SWAT-C, as indicated by
the averaged performance metrics, is comparable to that of SWAT for the calibration period
(Table 4). For example, the averaged KGE values for SWAT-C range between 0.79 and 0.80
for the calibration periods, which are close to the corresponding range of 0.76–0.79 for
SWAT. However, there are substantial differences in terms of the validation results. For
the validation period, the averaged KGE values, ranging between 0.77–0.78, are gener-
ally consistent with the calibration results for SWAT-C; in comparison, the averaged KGE
values for SWAT decreased to 0.68 for the benchmark and three multivariate calibration
setups. Furthermore, the averaged PBIAS values for SWAT-C were within ±10% for both
calibration and validation periods under the four calibration setups (Table 6). In contrast,
SWAT attained larger average PBIAS values, particularly for the validation period, ranging
from 11–19% (Table 4).

Table 6. Model calibration (Cal) and validation (Val) results for SWAT-C under setups with different
combinations of streamflow, ET, and soil moisture.

Calibration Setups Performance Metrics
NSE KGE PBIAS

Cal Val Cal Val Cal Val

Benchmark (Streamflow only)

Streamflow 0.63 0.72 0.80 0.79 −2.02 18.59
ALEXI ET 0.84 0.81 0.87 0.83 1.86 7.13

Soil moisture 0.08 0.11 0.71 0.73 0.41 0.82
Average 0.52 0.55 0.79 0.78 0.08 8.85

Streamflow + ALEXI ET

Streamflow 0.64 0.71 0.81 0.76 5.45 17.68
ALEXI ET 0.84 0.81 0.88 0.83 2.28 7.39

Soil moisture 0.08 0.11 0.71 0.72 −0.43 −0.22
Average 0.52 0.54 0.80 0.77 2.43 8.28

Streamflow + SMERGE

Streamflow 0.62 0.69 0.80 0.77 7.59 5.49
ALEXI ET 0.86 0.82 0.87 0.84 2.61 7.61

Soil moisture −0.03 −0.05 0.73 0.71 6.25 6.20
Average 0.48 0.49 0.80 0.77 5.48 6.43

Streamflow + ALEXI ET + SMERGE

Streamflow 0.63 0.69 0.80 0.77 8.31 5.48
ALEXI ET 0.85 0.82 0.87 0.84 2.74 7.63

Soil moisture −0.04 −0.05 0.73 0.72 6.26 6.27
Average 0.48 0.49 0.80 0.78 5.77 6.46

The performance of SWAT and SWAT-C also differed substantially from each other for
individual target variables. For the benchmark calibration, PBIAS values for streamflow
were within ±10% in the calibration period but deteriorated to 43.3% for SWAT and to
18.6% for SWAT-C in the validation period. For the three multivariate calibration setups,
SWAT-C also achieved much smaller PBIAS as compared with SWAT for streamflow in the
validation period (35–45% for SWAT vs. 5–18% for SWAT-C). Despite the large difference
between SWAT and SWAT-C in simulating streamflow, their performances in simulating
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ALEXI ET and soil moisture were similar (Tables 3 and 5). Both models achieved high
correlation and small bias in simulating ALEXI ET but performed poorly in simulating
soil moisture.

In addition, we also found that, like SWAT, adding additional target variables did not
much improve the performance of SWAT-C as compared to the benchmark calibration that
only used streamflow. For example, the average KGE values for SWAT-C ranged between
0.77–0.78 for the validation period under the four calibration setups.

4. Discussion

The use of different combinations of target calibration variables can have pronounced
impacts on the sensitive parameters. Although eight out of the eleven parameters (Table 3)
are commonly sensitive parameters for different calibration setups, there are noticeable dif-
ferences between the number and values of sensitive parameters. In general, the calibration
setups that included streamflow achieved comparable overall model performance (Table 4),
indicating that the calibrated parameter sets were equally good for representing hydrologic
processes in the LBRW. Such equifinality in calibrated parameter sets has been broadly
discussed in the previous literature [78]. Even though the use of remotely sensed ET and
soil moisture helps constrain the model parameters, further information regarding their
validity for simulating hydrologic processes, such as runoff, percolation, and groundwater
discharge (Figure 5), is required to identify robust models. Without data to evaluate the
calibrated SWAT models, the calibrated parameter sets can be used to derive ensemble
estimation of the hydrologic processes of interest.

When streamflow is not included in a calibration setup (e.g., ALEXI ET only and
SMERGE soil moisture only), the model calibration resulted in poorer model performance
compared to those calibration setups with streamflow considered as a target variable
(Table 4). This finding shows that using streamflow for hydrologic model calibration
is critical. The quality of remotely sensed ET and soil moisture products deserve fur-
ther examination and improvement to ensure robust model calibration, particularly for
ungauged basins.

When multiple remotely sensed products are available, it is critical to evaluate their
quality and choose the one that is best suited for model calibration. In our study, we noticed
a substantial difference between ALEXI ET and MODIS ET over the LBRW, though both of
them have been widely used in hydrologic model calibration. Specifically, we found that
the MODIS ET values were substantially lower than ALEXI ET. This is consistent with the
findings reported by Zhang et al. [79] and Miralles et al., [80], where the MODIS algorithm
was found to systematically underestimate ET in semi-arid regions, while ALEXI tended to
overestimate ET in semi-arid region.

The use of MODIS ET for multivariate model calibration substantially decreased the
model performance compared to using ALEXI ET (Tables 3 and 5). In particular, when
MODIS ET was the only target variable, streamflow was overestimated by ca. 200%, which
is much higher than the ca. 60% overestimation for the ALEXI ET-only calibration setup.
This is likely because MODIS ET underestimated ET and led to more runoff generation
(Figure 5). Previous studies showed that MODIS ET could be subject to a relative error of
25% at the global scale [81], with potentially even greater errors at the regional scale. These
findings highlight the importance of assessing the quality of remotely sensed products
before including them in model calibration. When data quality information is not available,
it is recommended to use multiple target variables to calibrate hydrologic models to
minimize the potential negative impacts of errors in one target variable on the overall
performance of the model. As shown in Table 5, the use of streamflow and SMERGE soil
moisture could help achieve better model calibration results than using MODIS ET only.

Notably, the SWAT model could not satisfactorily capture the magnitude and dynamics
of soil moisture derived from SMERGE products. There are two possible reasons. First, the
SWAT model’s bucket-based soil moisture simulation algorithm has been shown to slightly
underperform compared to physically based soil water routing approaches [82]. Further
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improvements to the SWAT soil moisture algorithms to increase its performance hold
promise. Second, the quality of the SMERGE soil moisture products may not warrant its
direct use for calibrating hydrologic models. The previous assessment showed a noticeable
discrepancy between SMERGE and other remote sensing-based soil moisture products
and field observations [72]. In addition, it is worth noting that the ET and soil moisture
products are derived from remote sensing observations and models. Taking those remote
sensing products as observations risks assuming model outputs as ground truth.

The use of different ET datasets in multivariable calibration substantially altered the
model hydrologic responses (surface runoff, percolation, lateral flow, and groundwater
discharge) (Figure 5). These uncertainties might be reduced by using the blended ET dataset
obtained from the data fusion of multiple remotely sensed ET products that compensate
for their deficiencies [83], instead of using a single ET product. Finally, model calibration
results are dependent on the structure of the model. The multivariate calibration results
using SWAT-C shared multiple findings with SWAT, such as the use of remotely sensed
ET and soil moisture products. These data do not provide much improvement compared
with using streamflow only, and result in poor performance for simulating soil moisture.
However, multivariate calibration of SWAT-C also showed different results, particularly in
terms of the model performance in the validation period. In general, SWAT-C performance
was comparable to SWAT during the calibration period, but much better in the validation
period as indicated by the much smaller bias in simulated streamflow. This result shows that
the use of multiple target variables in model calibration helps constrain model performance
regarding multiple hydrologic processes, but it could not address uncertainties from the
model structure. Therefore, multiple structures of the SWAT model or even multiple models
should be examined or combined to achieve robust hydrologic modeling.

The findings of this study share bo”h si’Ilarities and differences with other studies
that showed improvements in model calibration using remote sensing ET products, such
as those conducted by Lee et al. [10,11]. They found that using ET products improved
the model performance for ET, whereas we did not find substantial differences in model
performance when including ET products in model calibration. The assessment studies by
Lee et al. [10,11] were concentrated on the energy-limited watershed situated in the eastern
United States. In contrast, our research focuses on a water-limited watershed, which poses
different challenges due to varying climate, land cover, soil properties, and management
practices. Therefore, multivariable calibration with ET may not necessarily improve model
performance for watersheds with varying characteristics. Despite these differences, our
research shares some common findings, such as that calibration with remotely sensed data
alone resulted in the degradation of model performance for streamflow.

5. Conclusions

The use of measured variables in addition to streamflow is critical for robust hy-
drologic model calibration. In this study, we evaluated the impact of using different
combinations of remotely sensed datasets in the multivariable calibration of SWAT for
simulating streamflow, ET, and soil moisture. We found that using remotely sensed data in
conjunction with streamflow for model calibration may not necessarily improve the simula-
tion of streamflow, ET, and soil moisture. For example, the use of MODIS ET products can
cause deterioration in model performance compared to the benchmark calibration scheme
(i.e., streamflow only), while the use of ALEXI ET helps to achieve comparable or even
better model performance.

It is worth noting that SWAT can capture well the variability in ET and streamflow
but generally fails to reproduce the dynamics of soil moisture derived from the SMERGE
dataset. This could be explained by two reasons: (1) the SWAT model’s soil moisture
algorithms have been widely discussed as an oversimplified bucket model and cannot
adequately represent soil moisture dynamics; and (2) the SMERGE dataset was derived by
combining remote sensing-observed surface soil moisture and model simulations, which
may be subject to large uncertainties and is not suitable for direct use in model calibration.
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Overall, the choice of using remote sensing-based hydrologic variables for model
calibration can have substantial influence on model-simulated hydrologic processes, such
as surface runoff and groundwater discharge. Although this study showed the potential
of using remote sensing-based hydrologic variables to improve the calibration of SWAT
for robust representation of hydrologic processes, careful assessment of the quality of the
remote sensing datasets is critical for ensuring reliable model performance. The relatively
poor performance of SWAT in simulating soil moisture points to the need for future efforts
to identify better strategies to improve the use of remotely sensed soil moisture datasets for
calibrating hydrologic models. In addition, the difference in model structure can impact
the performance of multivariate model calibration, indicating the need for careful model
structure assessment to ensure robust model calibration for hydrologic modeling.
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