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Abstract: Because of the recent advances in drones or Unmanned Aerial Vehicle (UAV) platforms,
sensors and software, UAVs have gained popularity among precision agriculture researchers and
stakeholders for estimating traits such as crop yield and diseases. Early detection of crop disease is
essential to prevent possible losses on crop yield and ultimately increasing the benefits. However,
accurate estimation of crop disease requires modern data analysis techniques such as machine
learning and deep learning. This work aims to review the actual progress in crop disease detection,
with an emphasis on machine learning and deep learning techniques using UAV-based remote
sensing. First, we present the importance of different sensors and image-processing techniques for
improving crop disease estimation with UAV imagery. Second, we propose a taxonomy to accumulate
and categorize the existing works on crop disease detection with UAV imagery. Third, we analyze
and summarize the performance of various machine learning and deep learning methods for crop
disease detection. Finally, we underscore the challenges, opportunities and research directions of
UAV-based remote sensing for crop disease detection.

Keywords: UAV; crop disease; drone; deep learning; remote sensing; detection; classification;
segmentation

1. Introduction

Crops are subjected to various stresses from their environment, which decreases
their productivity. Stress occurs in two forms: abiotic and biotic. Abiotic stress is due
to environmental factors, including drought, floods, extreme temperatures, and so on,
whereas biotic stress is caused by various pests and pathogens such as fungi, bacteria,
and nematodes [1].

The traditional farm practice relies on the manual scouting of crops for visual identifi-
cation of any crop disease by farm staff, with backup advice from a crop disease specialist or
plant pathologist [2]. Furthermore, the visual observation of symptomatology, microscopy,
and isolation of pathogen culture are used for crop disease diagnosis, which is quite te-
dious, time-consuming and often cumbersome [3,4]. In this scenario, the development of
Unmanned Aerial Vehicles (UAVs), the Internet of Things (IoT) and advanced artificial intel-
ligence techniques is creating promising tools for crop disease detection. These tools might
not require highly sophisticated and complex procedures and are less time-consuming
compared to other techniques [5]. Since the early detection of pests and crop diseases
allows sufficient time to mitigate the possible disease epidemic and yield losses for the
farmers and other stakeholders, precision agriculture researchers are constantly looking
for innovative and cost-effective solutions which would address the crop disease detection
problem in an easy and effective way [6-8]. A multidisciplinary approach which combines
remote sensing, drones and artificial intelligence (Al) techniques might be an alternative
for such a solution [9].
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Remote sensing is an alternative approach for fast and unbiased disease scouting
and measurement [6]. Here, the common information carrier is electromagnetic (EM)
radiation. The range of all types of EM radiation is known as the EM spectrum, which
consists of a range of spectra from shorter wavelengths (e.g., gamma-rays) to longer
wavelengths (e.g., radio waves). Various sensors such as RGB (or visible), multispectral
and hyperspectral [10,11] sensors are used to capture the different portions of the EM
spectrum. These sensors have different sensing capabilities and costs, where the cost and
sensing ability have an inverse trade-off [12]. Recently, UAV-based remote sensing has been
explored by researchers to tackle various precision agriculture (PA) tasks such as disease
detection [7], plant health monitoring [13], and yield estimations [14]. UAVs became a more
common choice among PA researchers because of their flexibility in revisiting the field and
their ability to capture high-resolution imagery at much closer distances to the plant in
comparison to other airborne imagery [15]. With such high-resolution images, automatic
disease detection for various crops, including yellow rust detection in wheat [16], peanut
leaf wilt estimation [8], and tomato spot wilt disease estimation [17], have been reported in
the literature.

Many studies on plant phenotyping have used the red-green-blue (RGB) [8], multi-
spectral [18] and hyperspectral sensors [16] embedded in UAVs. Vegetation indices (VIs)
are derived to measure the crop traits such as canopy coverage, biomass and height, thereby
estimating the crop yield and stress. A few studies have reported the successful appli-
cation of disease estimation using UAV-based remote sensing [8,16,17]. In these studies,
for plot-level data extraction, either a mean value of the vegetation index or the number
of pixels below a certain threshold in a given plot was used to estimate the disease score.
For instance, Patrick et al. [17] examined the use of multispectral image-derived vegetation
indices such as Normalized Difference Red Edge (NDRE) and Normalized Difference Veg-
etation Index (NDVI) for tomato spot wilt disease estimation in peanuts. They extracted
the vegetation index from the multispectral images acquired with a Micasense Red-edge
camera. They established a threshold to distinguish the healthy and disease pixel value in
these vegetation index (VI) images. Then they used the number of pixels below or above
the threshold as a predictor and disease percentage as a target variable for linear regression
analysis. Here, the optimal threshold for each vegetation index was selected manually,
which makes this approach less ideal for automation. Additionally, some vegetation indices
might not have a clear threshold for distinguishing healthy and diseased plot, which further
impedes the application of this approach to those vegetation indices.

Given the recent development of UAV platforms and sensors, the possibility of cheaper
and more frequent image acquisition has emerged rapidly, which might support more accu-
rate estimates of crop diseases using predictive approaches such as conventional machine
learning (ML) and deep learning (DL) methods [19]. For instance, Abdulridha et al. [20]
implemented a hyperspectral-based remote sensing technique for tomato disease detection
using vegetation indices (VIs) and machine learning methods such as artificial neural
networks (ANN). Similarly, a wheat yellow rust detection method using multispectral UAV
imagery and machine learning was proposed in [21]. For the machine learning method,
a random forest (RF) classifier was trained at pixel level, where image pixels were classified
into healthy, moderate, and severely diseased groups with high accuracy of 89.3% [21].

Initially, Barbedo et al. [22] synthesized various works on the use of UAVs and sensors
for monitoring and assessing plant stresses. The study critically analyzed 100 published
articles on crop stress monitoring using UAVs and listed out the challenges that have been
already addressed by the existing works as well as recommendations for future researchers
working on crop protection. However, the review did not discuss advanced data-driven
methods such as ML and DL for crop protection using UAVs comprehensively and system-
atically. Furthermore, Neupane et al. [23] surveyed the various sensors and methods for
the automatic monitoring and identification of crop diseases using UAV technology. It was
extensively focused on the discussion of various types of UAVs and cameras such as RGB,
multispectral and hyperspectral, thereby highlighting the advantages of employing sensors
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for accurate and effective crop disease detection to the growers. However, it still needs to
be complemented by elaborating the crucial ML and DL methods used for crop disease
detection, along with their evaluations. A short survey on the applications of UAVs and
deep learning for crop disease detection was reported by Bouguettaya et al. [24]. Their work
mainly focused on early crop disease identification utilizing UAV images and DL methods.
The survey was brief and did not cover competitive methods such as conventional machine
learning and vegetation index-based methods. Furthermore, it did not cover the taxonomy
of crop disease detection along with the performance comparison of various crop disease
estimation methods using UAV technology. In their recent work, Bouguettaya et al. [25] sur-
veyed various deep learning-based methods for crop disease detection using UAV images.
Their survey compared and contrasted the performance of various deep learning methods
for crop disease detection. However, they did not discuss the overall taxonomy of crop
disease detection using UAV imagery or a meta-analysis of the literature. The summary
of highly relevant existing survey works is presented in Table 1 including the focus area,
main features and limitations of each study.

Table 1. Summary of existing survey works on precision agriculture and crop disease estimation

using UAV imagery.

Ref. Focused Area Features and Highlights Limitations and Gaps

[22] Plant stress  ® UAVs and sensors. . Conventional ML methods were not covered.
monitoring J Listed the UAV challenges and recommendations ~ ® DL methods were not covered.

for PA.

[23] Crop disease ° Various UAV types and sensors were covered. . ML and DL methods were not the main focus of the
detection with ® Various data processing methods were included. survey.

UAVs . Deep learning methods were briefly discussed. . Performance comparison of Conventional ML and DL
was not covered.

[24] Early crop dis- ° An overview of UAVs and PA. . No taxonomy of crop disease detection was discussed.
ease identifica- °® Various DL methods were covered. . The survey was brief and did not cover ML and other
tion methods.

[26] UAVs for plant * Different UAV and remote sensing techniques. . No taxonomy for crop disease was covered.
and crop disease  * Effectiveness of DL for crop disease detection. . Comparison of the performance of different ML and
detection J Challenges and limitations of UAVs for crop disease DL algorithms was not covered.

identification. . Meta-analysis of literature was not covered.

9] UAVs for preci- o An exhaustive systematic survey was reported. . Not specifically focused on crop diseases.

sion agriculture ~ * An integrated PA framework was presented . ML and DL methods for crop disease detection were
. Al algorithms for PA were covered. not covered exclusively.

[27]  Aerial HS imag- * Background on hyperspectral sensors. . ML methods are not covered.
ing for crop dis-  * General pipeline for HS-based crop disease detec- Taxonomy for crop diseases was not discussed.
ease tion. . Recent advances in DL methods are not covered.

J DL methods for crop disease detection.

[28] UAV thermal ©*  Generalfocus was on overall PA tasks. ¢ ML and DL methods were not covered.

imagery for PA . Application of thermal imagery was covered. . No taxonomy was devised.

In this survey, we aim to fill the aforementioned gaps by providing an overall taxonomy
of crop disease estimation using UAV imagery. In addition, the main contributions of our
work are as follows:

(i) We present the importance of different UAV platforms and sensors for improving crop
disease detection.

(i) We provide a taxonomy for crop disease estimation and explain the general steps
involved in the working pipelines with UAV-based remote sensing.

(iii) We analyze and summarize the performance of various conventional ML and DL
methods for crop disease detection using UAV imagery.

(iv) We report a meta-analysis of the existing literature to gain the current research trends
and directions.

(v) We underscore the challenges, opportunities and research avenues of UVA-based
remote sensing for crop disease detection.
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The paper is organized as follows. The systematic approach used to find the research
publications included in this survey is discussed in Section 2. Some brief background infor-
mation on various related topics such as remote sensing, vegetation indices and ML /DL
that helps understand the survey better is provided in Section 3. The main taxonomy for
crop disease detection using UAV imagery is elaborated in Section 4. The meta-analysis and
synthesis of results from the survey are reported in Section 5. Finally, Section 6 concludes
our paper with future recommendations.

2. The Approach for the Survey

Since we aimed to highlight the existing research gap and potential avenues of machine
learning and deep learning methods for crop disease detection using UAV-based remote
sensing, we follow the standard approach for systematic literature reviews to collect the
research articles and integrated the information based on the research questions that we
aimed to explore in this study. This systematic literature review follows the PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines [29] and
utilizes the systematic procedure as shown in Figure 1 to retrieve the relevant publications.

g Number of articles retrieved
E after executing search query
g on different datab ases
§ (n=044)

h 4
=11 - +H .
g Number .of an tl(:lllES le.ft after 321 articles excluded
g duplicates screening > P
= from further screening
o’ (n=323)

v
LE Number of articles left after 272 articles excluded
= using exclusion criteria > .
B after full text screening
= (n=51)

h 4
k= Number of articles left after 4 articles added with
T: duplicates screening < snowb alling techniques
= (n=55)

Figure 1. A step-wise procedure used to retrieve the articles for systematic review.

We consider the following research questions as a guideline in this survey.

RQ1: What are the most popular and successful UAV platforms and sensors for
crop disease detection? This question helps us identify the most effective sensors among
the multiple sensors available, such as RGB, multispectral and hyperspectral sensors, for
deployment on various types of UAVs for crop disease detection.

RQ2: What different types of crop diseases were investigated using UAV-based remote
sensing along with data-driven methods such as conventional ML and DL? Since various
crop diseases are caused by different agents such as fungi, bacteria, insect pests and viruses,
each showing distinct symptoms over the canopy area such as the crop leaf and stem, it is
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essential to analyze what kind of crops and crop diseases were more successfully detected
using data-driven methods such as conventional ML and DL. This question will serve
this purpose.

RQ3: What are the most successful and accurate data-driven methods for crop disease
detection using UAVs? This question helps us to compare the performance of various
data-driven methods such as machine learning and deep learning for crop disease detection
using UAVs. This is the major research question that makes this work more impactful.

RQ4: What are the main challenges and opportunities in using UVA-based remote
sensing for crop disease detection? This question helps us to explore the limitations and
challenges of existing methods for crop disease detection, thereby suggesting possible
avenues of research on UAV-based remote sensing for crop disease estimation.

Based on the formulated research questions, we first designed an article search strategy
that is able to narrow down the search space from the major concepts such as “machine
learning” and “deep learning” to “crop disease” and “UAV” and take us to the most relevant
literature. Using such phrases, we designed the following query string: (“Unmanned
aerial vehicle” OR “UAV”) AND (“crop disease”) AND (“Machine Learning” OR “Deep
Learning”). This sting was used to perform a search on four popular databases: IEEE
Explorer, Scopus, Google Scholar, and MDPI. Initially, the search was limited to the title
and abstract of each article from 2012 to 2022 (as machine learning and deep learning
extensively evolved after 2012 [30]).

The article selection process includes the following steps. Firstly, duplicates and
non-peer-reviewed articles (e.g., pre-prints) received from multiple sources were removed.
Secondly, irrelevant articles were removed after a careful screening of article titles, abstracts,
keywords, and full texts based on the following exclusion criteria:

(i) Articles that are written in a language other than the English language;
(if) Publications that are about agriculture but do not address crop disease estimation;
(iif) Publications that are related to crop disease but do not use UAV-based remote sensing.

After applying the procedure depicted in Figure 1, we finally ended up with 55
publications that are considered for systematic analysis and synthesis to answer the research
questions (RQ1 to RQ4).

3. Background
3.1. Remote Sensing and UAVs

Remote sensing is a non-destructive way of detecting and monitoring the physical
characteristics of an object by acquiring information with the reflected or emitted energy
from targets at a distance [31]. The basic pipeline of active remote sensing techniques
consists of interaction with the target, recording the reflected energy from the target,
transmission, reception and analysis of images. Remote sensing techniques are widely
used for smart farm management or precision agriculture (PA). Since PA requires the
temporal and spatial information of the agricultural field to make more informed decisions,
advanced technologies such as field-based sensors, airborne sensors and networking are
essential. Various PA tasks such as precise pesticide applications [32], yield estimation [33]
and irrigation management [34,35] have been effectively managed using various sensing
technologies. Basically, the remote sensing techniques employed for PA tasks can be
grouped into three categories: field-based sensors, satellite or aircraft-based sensors and
drone-based sensors.

The field-based sensors [36] have the limitation of acquiring field information at scale
as they need to move from place to place, which adds extra labor and cost [37]. Furthermore,
satellite- or aircraft-based spectral images are costly to acquire and may not be available as
and when required [38]. Alternatively, unmanned aerial vehicles (UAVs), also known as
drones, which have recently been introduced to PA, can fly very close to crops and provide
very high spatial resolution field images. In addition, UAVs offer flexibility by allowing
users to revisit fields at any time, as long as weather conditions permit, resulting in high
temporal resolution imagery [39]. The UAVs come in a variety of designs based on their
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wings, size or weight and altitude. Based on the wings, rotatory wing and fixed-wing
UAVs are widely used in precision agriculture. Other UAVs such as flapping, hybrid and
para-foil wings are also employed by a few existing works. Figure 2 reports the popular
UAVs used in precision agriculture [12]. Since a fixed-wing UAV can fly at high speed and
cover a large area with more payloads, it is suitable for large-scale surveys. However, they
require a large space for a runway, whereas rotary-wing UAVs can take off like helicopters
and land vertically. Therefore, rotary wing UAVs are more popular in precision agriculture
for their easy operability and flexibility [40].

Figure 2. The popular UAVs used in precision agriculture: (a) rotary wing (tri-copter), (b) rotary
wing (quadcopter), (c) rotary wing (hexacopter) (d), rotary wing (octocopter), (e) fixed-wing (eBee™)

and (f) flapping wing (SmartBird) [41].

In UAV-based remote sensing, various sensors are used to capture the light spectrum
reflected by Earth objects such as water, soil and green plants. The amount of reflectance
from such objects is differentiable and can be useful while monitoring crop growth [42].
Differentiable information can be derived as a result of pixel-level information calculated
with various algebraic operations on multiple bands of spectral images, which is widely
known as vegetation index (VI) images. Based on the types of sensors used to capture the
light spectrum, the VIs can be grouped into (a) RGB-based VIs, (b) multispectral VIs and
(c) hyperspectral VIs [43]. Vegetation indices that are used in plant disease monitoring are
mostly based on the red and near-infrared bands (multispectral and hyperspectral sensors).
However, RGB-based VIs are also used in conjunction with multispectral or hyperspectral
VIs. As an illustration, a list of widely used vegetation indices along their derivation
formulas are reported in Table 2.
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Table 2. An illustrative list of vegetation indices (VI) with their derivation formulas. Note that
“R”, “G”, “B”, “NIR” and “RE” denote the red, green, blue, near-infra red and red edge spectral
bands, respectively.

Ref. Vegetation Index Formula
[44] Normalized difference VI (NDVI) %
[45] Normalized difference red edge VI (NDRE) %
—R
[46] Green VI (GVI) Eg - R;
[47] Difference VI (DVI) NIR — R
[48] Excess Green (ExG) VI 2xG—R—B
[49] Green normalized difference VI (GNDVI) %
[49] Soil adjusted VI (SAVI) W
[17] Simple ratio (SR) RE
[16] Plant senescence reflectance index (PSRI) %
[50] Chlorophyll Index (CI) MR _1
[51] Green leaf index (GLI) %

3.2. Machine Learning

In the last few years, there has been tremendous progress in machine learning and
data analytics. The success of machine learning techniques not only lies in the traditional
data-intensive domains such as stock market prediction [52], computer vision [19] and text
mining [53] but also in other domains such as biomedical image analysis [54] and preci-
sion agriculture [55]. Their success in these domains is attributed to their capability of
finding decisive insights from a large amount of data. Due to advancements in sensors,
GPS technology and the Internet of Things, agricultural farms are now integrated with
such technologies and produce a large amount of agriculture data, thereby demanding
agricultural data analysis at a large scale. Machine learning methods can be explored for
such a large-scale data analysis to make more accurate decisions concerning farm man-
agement activities, such as yield prediction, disease detection, crop monitoring, irrigation
management and so on [40].

Machine learning methods firstly learn the patterns or rules from the training data and
apply them to the test data. The training process can be achieved in two ways: supervised
learning and unsupervised learning. Most works [56-59] used supervised learning such as
support vector machine (SVM), decision tree (DT), random forest (RF), Naive Bayes (NB)
and multi-layer perceptron (MLP) neural networks. Notable, supervised machine learning
requires the manual labeling of diseased areas on the UAV images to train the model [60].
Once the model is trained with the given data, it can be deployed on previously unseen
crop field images to predict diseased crops [57].

An unsupervised ML model works on unlabeled data and can learn the associated
pattern from the data by itself [61]. For instance, the K-means clustering technique was
used for cotton rot root disease detection by Wang et al. [62]. Here, they grouped the image
pixels based on their similarity, measured using the K-means strategy, thereby being able
to cluster the healthy pixels vs. diseased pixels into two distinct clusters.

3.3. Deep Learning

Deep learning (DL) is one of the fastest growing technologies in the last decade and
has caused a paradigm shift in data analysis and pattern recognition in various domains,
including computer vision [19], satellite image analysis [63] and precision agriculture [55].
Deep learning is an extension of neural networks in both width and depth. The success
of deep learning mainly lies in the stacking of layers one over the other to learn the
hierarchical object features. Among the deep learning architecture, convolutional neural
networks (CNN), as shown in Figure 3, are the most widely used and most popular
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architectures for computer vision tasks such as image classification and recognition [64].
CNNs capture the higher-order semantic features from their intermediate layers using
different operations such as convolution, pooling, activation and so on. These are the basic
operation involved in different CNNs, such as VGG [65], DenseNet [66], ResNet [67] and
GoogleNet [68]. As a result, CNNs have produced groundbreaking performances in several
areas such as health informatics [54,69], remote sensing and drones [40,70] and natural
language processing [71].

Recently, there is an immense application of deep learning to address precision agri-
culture tasks. For instance, Zhang et al. [72] proposed a deep learning-based framework for
yellow rust disease detection on wheat from UAV aerial images. They used existing deep
learning architectures, such as Inception-v3 [73], ResNet50 [74], VGG [65] and Xception [75],
for yellow rust classification. They achieved an accuracy of 99.04% when they trained
and tested these models on the RGB images acquired by flying the drone at an altitude of
2 m. This shows that highly accurate disease estimation is possible with such advanced
deep-learning models. However, they require high-resolution imagery that should be taken
at the lowest altitude, which may not be possible due to legal and other constraints such as
battery capacity. Here, it should be noted that the flight altitude is inversely proportional
to the area covered by the UAV’s trail.

Convolution Pooling Flatten Fully connected

Output

L J
~ \ v J

Feature extraction Classificaiton/Regression

Figure 3. An illustration of a typical convolutional neural network (CNN).

3.4. Evaluation Matrices

In this section, a brief discussion of various evaluation metrics used by existing works
to report the performance of crop disease detection methods is provided, as it will help shed
light while comparing the different models in the later sections of this paper. The coefficient
of determination (R?) (Equation (1)) is widely used to evaluate the disease estimation
methods when the dependent variable is continuous (e.g., represents the disease score or
percentage of diseases):

i (i —zi)?
i (vi—9)?

The precision (Equation (2)), recall (Equation (3)), f-score (Equation (4)) and accu-
racy (Equation (5)) are mostly used to evaluate the disease estimation methods when the
dependent variable is discrete (e.g., represent the class or category):

RZ=1- 1)

Ty

pP= )
T, +F,
T
R=—F 3
T, +Fy @)
Foox DXR )
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Crop disease
recognition using
UAYV imagery

B Ty + Tn
Ty+Tu+Fy+F

A ®)
where Ty, Ty, F, and F, represent true positive, true negative, false positive and false nega-
tive, respectively. In addition, P, R, F and A denote precision, recall, f-score and accuracy.

4. Taxonomy of Crop Disease Assessment Using UAV Imagery

In this section, we devise a taxonomy to group the existing work on the basis of meth-
ods used for crop disease recognition from UAV imagery. While conducting this survey, we
found that there are mainly three approaches used to address crop disease estimation using
UAVs (Figure 4) First, statistics-based methods use correlation and regression analyses.
They establish the linear relationship between disease and the spectral information acquired
from UAV imagery. Here, the various vegetation indices (VIs) were used for extracting
crop-related traits. Second, conventional ML-based methods which are based on traditional
supervised or unsupervised machine learning methods use the vegetation indices as input
features while building the disease estimation model. Finally, the deep learning methods
use the raw images in addition to other features to train the model in an end-to-end fashion
for disease recognition with UAV.

Statistics-
based

Correlation
and regression

Figure 4. A taxonomy of crop disease assessment using UAV-based remote sensing. Note that the
elements included in the dotted box represents the image features used in one and/or all branches.

4.1. Statistics-Based Methods

Statistics (ST)-based methods for crop disease estimation utilize the disease score as the
target variable and crop-related traits derived from UAV imagery as independent variables.
The correlation between these independent variables and the disease score determines
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the strength of a linear relationship. The overall pipeline of such methods involves three
steps: UAV image pre-processing, vegetation index generation and statistical analysis.
Image pre-processing is essential to prepare spatial data products such as reflectance maps
and a digital surface model which can be used to extract the crop-related traits at the plot
or field level. Once the reflectance map is generated, the individual spectral band form
such a reflectance map can be employed to generate the various vegetation indices. Most
existing works used these vegetation indices as independent variables and performed the
correlation and regression analysis for crop disease estimation.

Vegetation indices (VIs) have been employed for the remote sensing of vegetation,
such as to detect canopy cover, growth and vigor, using various remote sensing platforms
such as satellites and UAVs [36]. The canopy information obtained from Vls is effective to
measure crop traits such as yield, leaf area index and water stress [76]. Several researchers
have utilized the different vegetation indices extracted with UAV-based sensing platforms
for crop disease estimation [56,57]. However, the basic pipeline for disease estimation using
VlIs includes the extraction of vegetation indices from crop field images and performing
the correlation and regression analysis considering VIs as the independent variables and
disease score as a dependent variable [8,16,17]. For VI extraction, the crop field is first
divided into individual plots, and then the plot-level vegetation extraction is carried out
using the mean value of the vegetation index in the given plot. Some works also employed
the threshold-based technique for such the extraction of such data, as demonstrated by
Patrick et al. [17]. They first calculated multiple vegetation indices, such as NDRE, NDVI
and DVIL Then, a threshold was determined to count the number of healthy pixels vs.
diseased pixels in the given threshold. Finally, the count of healthy pixels or diseased pixels
was used as an independent variable, whereas the disease score was used as the dependent
or target variable. However, it might be difficult to clearly distinguish between healthy
and diseased plots with a particular threshold because some vegetation indices might not
have a clear threshold for healthy and diseased plot segmentation. In such a situation,
the alternative may be to use the coefficient of variation or the measurement index, as
proposed by Shahi et al. [77]

As reported in Table 3, peanut wilt disease detection using NDRE, NRRE, GDVI and
other vegetation indices derived from UAV images has the highest correlation of 0.73 with
a manual disease score. In their study, the NDRE performs the best when calculated with
UAV images taken after 120 days from a seedling. Chang et al. [50] implemented the UAV-
based crop disease estimation framework for citrus greening diseases. They experimented
with four VIs, namely, the normalized difference VI (NDVI), the modified soil-adjusted
VI (MSAVI), the normalized difference RedEdge index (NDRE) and the chlorophyll index
(CI). Using a two-sample t-test, they showed that the four VIs have ability to differentiate
the healthy and disease groups at the 5% significance level. Sugiura et al. [78] utilized a
technique different but similar to VI for potato blight monitoring using UAVs. They derived
the HSV color space images from RGB images acquired with UAVs and attempted to
distinguish between the diseased and healthy crops with a high coefficient of determination
(R?) of 0.73. Ye et al. [79] attempted to estimate Fusarium wilt in bananas. Here, they used
three VIs, namely, CI, NDVI and NDRE, and achieved an overall accuracy of 91.7%, which is
the highest accuracy. Hyperspectral (HS) vegetation indices were explored by Guo et al. [16]
for wheat yellow rust monitoring. They added extra features such as texture along with
VI while analyzing the yellow rust using partial least square regression (PLSR). Similarly,
Bhandari et al. [51] assessed foliar disease in wheat with vegetation indices derived from
RGB sensors. They calculated three VIs and found their correlation with a coefficient of
infection (CI) by foliar disease on wheat and achieved the highest R? of 0.79 using the GLI
index. Furthermore, wheat leaf rust and stripe rust were estimated using RGB-based VIs
such as SRI and LRI. They achieved a correlation coefficient (r) of 0.92 (R? =0.81) and 0.96
for white leaf rust and white stripe rust severity, respectively. This study demonstrated the
possibility of using RGB sensors for crop disease estimation using UAVs.
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While comparing the existing studies based on the sensors they employed, the majority
(6 out of 11) of the works utilized multispectral sensors followed by RGB (3 out of 11) and
hyperspectral sensors (2 out of 11). The reason for this might be the costs and spectral
resolutions associated with these sensors. For instance, hyperspectral sensors are costly but
cover more than hundreds of spectral bands and hence can capture more useful canopy
information. However, multispectral sensors are in the middle of hyperspectral and RGB
sensors in terms of their cost and spectral resolution. Multispectral sensors can cover a
wider range of the spectrum (including outside of visible range) compared to RGB sensors
but at a higher cost, whereas RGB sensors are of special interest because of their low cost
and wide availability. However, they only capture the spectral information in the visible
range and hence might miss important crop disease information. Besides these sensors,
a few works [80,81] investigated the potential of thermal sensors to estimate abiotic stress
on the crop.

Table 3. Summary of ST-based methods for crop disease estimation using UAV imagery. The ab-
breviations used for diseases are WD (wilt disease), FD (foliar disease), GD (greening disease), LB
(late blight), FW (Fusarium wilt), WLD (white leaf disease), LR (leaf rust), SR (stripe rust), VW
(Verticillium wilt) and YR (yellow rust). Note that the other notations used are OA (overall accuracy),
R2 (coefficient of determination), MS (multispectral sensor), HS (hyperspectral sensor) and RGB (red,
green and blue).

Ref. Crop Disease Sensors VIs Eval. Metrics Remarks
[80] Olive VW Thermal PRI, CWSI R%2=0.83 The early detection of disease was achieved using
and HS CWESI index with strong correlation
[82] Potato LB MS NDVI - NDVI map was used to visually map the regions af-
fected by the disease
[83] Grape Leaf stripe ~ MS NDVI - Statistical analysis was performed to distinguish the
healthy vine vs. diseased vine
[17] Peanuts WD MS NDRE, NRRE, R?=0.82 The NDRE was best suited for wilt disease estimation,
GDVI, GNDVI, with high correlation between manual disease score
etc. and UAV images taken at 120 days from seed
[51] Wheat FD RGB NDI, GI and R2?2=0.79 They calculated three VIs and found their correlation
GLI with a coefficient of infection (CI) by foliar disease on
wheat and achieved the highest R? with the GLI index
[50] Citrus GD MS NDVI, MSAVI, R2?=0.90 Using two-sample t-test, it was shown that the four
NDRE and CI VIs have the ability to differentiate the healthy and
diseased citrus group at a 5% significance level
[78] Potato LB RGB HSV R2=0.73 They utilized the HSV color space to distinguish the
diseased and healthy crops
[79] Banana FW MS CL, NDVI, OA=091 The VIs were used in conjunction with binary logistic
NDRE regression to classify the pixels into either diseased or
healthy classes
[45] Sugarcane ~ WLD MS NDRE, NDVI, - Twelve vegetation indices were calculated and used
GNDVI, RVI, to distinguish the healthy vs. diseased leaf area.
OSAVI, etc. The NDRE and GNDVI were able to make a differ-
ence of 49.88% and 49.37% between the two groups.
[84] Wheat LRand SR RGB SRI, LRI R?2=0.81 The correlation coefficients (r) of 0.92 (R? = 0.81) and
0.96 were achieved for white leaf rust and white stripe
rust severity between UAV-estimated values and ob-
served values
[16] Wheat YR HS SIPI, PRI, R?>=0.88 VIs and texture features were analyzed for yellow
TCARI, PSRI, rust detection with PLSR. The combination of VIs and
YRIGI, ete. TFs provided the highest accuracy (R? = 0.88) at the

late infection stages.
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Data Collection

4.2. Conventional Machine Learning (ML)-Based Method

Traditional machine learning methods, such as support vector machines [85], artificial
neural networks [20] and random forest [21], have been used for crop disease and stress
detection using UAV imagery. The machine learning methods attempt to learn the patterns
associated with the given data [53]. The two broad categories of machine learning methods
are supervised and unsupervised learning. Here, supervised learning is based on labeled
pairs of input and output data, whereas unsupervised learning explores the hidden patterns
of unlabeled data. Furthermore, supervised learning algorithms, such as support vector
machine (SVM), random forest (RF), decision tree (DT) and so on, use the training data
to learn the rules and use these rules to classify or predict the output for the test data.
However, unsupervised learning algorithms such as the K-means and SLIC methods
process the input data to uncover the hidden patterns without any external supervision [40].

As the general pipeline of machine learning includes input data collection, feature
extraction and model building [63], the conventional ML-based approach for crop disease
detection with UAV imagery can be depicted as shown in Figure 5. Data collection, pre-
processing, feature extraction and model building are the major steps involved in this
pipeline. Once the field images are collected with drones, it is necessary to perform image
pre-processing activities such as image corrections and image stitching to generate the final
data product, such as orthomosaic images [40]. Next, useful information is extracted from
the orthomosaic images using various feature extraction strategies, such as canopy features,
vegetation indices and so on. Finally, model-building activities such as model training,
validation and deployment are performed.

Data pre-processing Feature extraction Model building
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