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Abstract: Accurate atmospheric correction (AC) is one fundamental and essential step for successful
ocean colour remote-sensing applications. Currently, most ACs and the associated ocean colour
remote-sensing applications are restricted to solar zenith angles (SZAs) lower than 70◦. The ACs under
high SZAs present degraded accuracy or even failure problems, rendering the satellite retrievals
of water quality parameters more challenging. Additionally, the complexity of the bio-optical
properties of the coastal waters and the presence of complex aerosols add to the difficulty of AC. To
address this challenge, this study proposed an AC algorithm based on extreme gradient boosting
(XGBoost) for optically complex waters under high SZAs. The algorithm presented in this research
has been developed using pairs of Geostationary Ocean Colour Imager (GOCI) high-quality noontime
remote-sensing reflectance (Rrs) and the Rayleigh-corrected reflectance (ρrc) derived from the Ocean
Colour–Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART) in the morning (08:55 LT) and
at dusk (15:55 LT). The algorithm was further examined using the daily GOCI images acquired in
the morning and at dusk, and the hourly (total suspended sediment) TSS concentration was also
obtained based on the atmospherically corrected GOCI data. The results showed that: (i) the model
produced an accurate fitting performance (R2 ≥ 0.90, RMSD ≤ 0.0034 sr−1); (ii) the model had a high
validation accuracy with an independent dataset (R2 = 0.92–0.97, MAPD = 8.2–26.81% and quality
assurance (QA) score = 0.9–1); and (iii) the model successfully retrieved more valid Rrs for GOCI
images under high SZAs and enhanced the accuracy and coverage of TSS mapping. This algorithm
has great potential to be applied to AC for optically complex waters under high SZAs, thus increasing
the frequency of available observations in a day.

Keywords: atmospheric correction; ocean colour; optically complex waters; high solar zenith angles

1. Introduction

The ocean and coastal environments are subject to constant damage due to improper
anthropogenic activities and natural factors, such as reclamation, sewage discharge, extreme
weather and more [1,2]. Therefore, it is crucial to monitor ocean water to ensure the
protection of the ocean and coastal aquatic ecosystems. Instant and reliable techniques
are crucial in capturing the dynamic characteristics of oceanic and coastal ecosystems.
Although field surveys are typically employed to address the issue, the methodologies
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incur significant economic and temporal expenses. Field surveys for the management of
ocean and coastal ecosystems may be restricted by real-time constraints in capturing ocean
process characteristics, physical challenges in the field and the limitations of time, cost and
labour [3]. Moreover, a few field survey points could not provide sufficient representation
of large-scale oceanic changes [4]. To address these limitations, a combination of ocean
colour remote-sensing data and field surveys has been employed as a complementary
data source since the late 1980s [5]. Through synergistically combining remote sensing
and in situ measurements, researchers could surmount the limitations specific to each
approach, enabling a more comprehensive monitoring and management strategy for the
marine ecosystem [6–8].

Ocean colour remote sensing provides long-term data on the distribution and dy-
namics of coastal waters in a cost-effective manner, far exceeding the spatio-temporal
limitations of traditional in situ measurements. Many researchers are focusing on the
use of ocean colour data from low-altitude polar orbiting satellites ocean colour data to
monitor the aquatic ecological environment, including water quality and harmful algal
blooms [9,10], estimating chlorophyll-a concentrations and particulate organic carbon con-
centrations [11,12], managing fisheries resources [13], which provide valuable information
for ocean management, and understanding covariations between the ocean and coastal
environment and productivity. However, one polar-orbiting ocean colour satellite can
typically observe once or twice per day over most of the global region, making it difficult to
adequately monitor the highly dynamic water column in areas such as inland and estuarine
coastal zones. Compared with polar orbiting satellites, geostationary ocean colour satellites
demonstrate the unique advantages of monitoring the diurnal variations in the materials in
the upper ocean with a high sampling frequency [14]. More than 80% of the total radiation
received by ocean colour sensors comes from atmospheric sources, while the water-leaving
radiation that actually carries ocean colour information only accounts for about 10% [15].
The atmospheric correction (AC) is a crucial data-processing procedure that eliminates
interfering signals from the atmospheric path radiance [16].

The accuracy of ocean colour AC has a direct impact on the subsequent retrieval of
ocean colour elements and biogeochemical parameters [17]. However, AC often fails under
high solar zenith angles (SZAs) [18], limiting the potential application of ocean colour
satellite data in the aquatic environment monitoring to the noontime. The performance
of standard AC algorithms is significantly influenced by the SZA [19]. Under high SZAs
(≥70◦), the current AC algorithms usually fail to produce accurate ocean colour data prod-
ucts. This is primarily attributed to the inadequate consideration of the Earth’s curvature
effect in calculating Rayleigh radiance [18] and insufficient illumination [20,21]. Therefore,
it is essential to develop appropriate AC models for ocean colour remote sensing under
high SZAs. For examples, Li et al. [22–24] developed several AC models for Geostationary
Ocean Colour Imager (GOCI) data and polar-orbiting satellite sensors for high-latitude
seas in winter based on neural networks for the open ocean under high SZAs. Another
challenge of AC is its applications over turbid coastal and inland waters. In the open
oceans, the classical “black pixel” assumption is commonly employed to estimate aerosol
scattering contributions. This assumption assumes that the water-leaving radiance or Rrs
is zero in the near-infrared (NIR) band. Due to the complex influences of both the water
constituents and aerosol conditions in coastal regions, particularly the presence of absorb-
ing aerosols [25–27], the “black pixel” assumption at the near-infrared bands often fails in
coastal areas [28]. Therefore, standard AC algorithms yield biased water-leaving radiances
and overestimate the aerosol contribution [29,30], resulting in the failure of AC. To address
the abovementioned problems, several AC algorithms for optically complex waters have
been developed. One such algorithm is the spectral matching algorithm, which utilises the
complete spectrum available and employs an iterative optimisation scheme to separate
the radiometric contribution of water from the atmospheric and surface contributions [31].
Additionally, artificial neural network-based algorithms with powerful nonlinear fitting
capabilities have also been applied to ocean colour AC [32–34].
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Geostationary ocean colour satellites encounter a high-SZA observation environment
when detecting optically complex coastal and inland water bodies in the morning or at dusk.
Due to AC’s imperfect performance or failure, the successful retrieval of remote-sensing
reflectance (Rrs) and water quality parameter products from GOCI images for complex
water bodies under high SZAs is challenging. In winter, the SZA for GOCI data obtained
in the morning or at dusk usually exceeds 70◦, so it cannot be effectively processed by
standard AC algorithms or GOCI data-processing systems (GDPS). Figure 1 illustrates the
GOCI hourly Raleigh corrected reflectance (ρrc) and Rrs obtained from the Korea Ocean
Satellite Centre (KOSC) on 13 January 2021 at 15:55 local time (LT) (UTC+09:00, as adopted
below). Notably, no ρrc values are retrieved when the SZA is higher than 80◦, and few valid
Rrs values are available in the meantime. Therefore, it is highly important to develop an
effective AC algorithm for optically complex waters under high SZAs.
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Figure 1. GOCI hourly RGB image (a), ρrc (555 nm) (b), and the corresponding Rrs (555 nm)
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In this study, a novel AC algorithm (denoted as XGBAC) for optically complex waters
under high SZAs was developed based on the extreme gradient boosting (XGBoost). Pre-
vious studies have demonstrated machine-learning capabilities in ocean colour AC. For
example, based on the neural network, Li et al. [24] proposed a new AC algorithm for GOCI
data under high SZA conditions in the open oceans, and Fan et al. [35,36] developed an
Ocean Colour–Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART) to retrieve
ocean colour products for coastal and clear waters. Although these methods have been
effectively applied in turbid Case 2 waters under low SZAs or in clear waters under high
SZAs, the conditions of optically complex waters under high SZAs are not considered.
Therefore, the new XGBAC model was established to retrieve the Rrs considering the opti-
cal complex water under high SZA by training a large diverse matchup dataset between
GOCI high-quality noontime Rrs and ρrc derived from OC-SMART in the morning and
at dusk. Evaluation datasets were used to validate the XGBAC algorithm. Furthermore,
the application of the XGBAC algorithm to GOCI data processing and estimation of the
total suspended sediment (TSS) concentration from atmospherically corrected GOCI Rrs
data in the coastal waters of the Yangtze River Estuary (YRE) and Hangzhou Bay (HZB) is
also presented. The proposed algorithm could be helpful in accurately deriving Rrs from
GOCI images with high SZAs, thus improving the monitoring of the diurnal variations in
complex inland and coastal waters.
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2. Data and Methods
2.1. Satellite Images

In this study, the GOCI images were used to develop and test the XGBAC model for
optically complex waters under high SZAs. The GOCI is the world’s first ocean colour
satellite sensor in geostationary orbit, launched by KOSC in 2010 [37]. It covers the coasts
of Eastern and Northern China, which are characterised by a variety of optically complex
waters. With its high spatial resolution and hourly observations from morning to dusk,
GOCI could monitor ocean colour in near real-time, and has been successfully applied
in the short-term dynamic monitoring of oceanic phenomena, such as planktonic algae,
suspended particulate matter and chlorophyll-a [14,38].

To develop the algorithm, hourly GOCI-L1B products were downloaded from the
KOSC website (http://kosc.kiost.ac.kr/, accessed on 16 March 2023). To ensure that the
training dataset was representative of high SZAs, a total of 17 days of winter satellite
images were acquired between 2010 and 2021, with 6 images per day. Specifically, four
images captured during the midday period (between 11:00 LT and 14:00 LT) were utilised
to identify stable waters, while two images captured in the morning and at dusk (at 9:00 LT
and 16:00 LT, respectively) were used to obtain matching data for model training. GOCI-
L1B data were processed with the OC-SMART to obtain the SZA, viewing zenith angle
(VZA), relative azimuth angle (RAA), Rrs, ρrc and quality control flags. OC-SMART is a
high-performance multi-sensor data analysis model based on machine learning, supporting
heritage, current and possible future multi-spectral and hyper-spectral sensors. It was
developed using extensive radiative transfer simulations and a comprehensive dataset.
And it can generate higher quality global ocean colour products than GDPS, including
Rrs, chlorophyll-a concentrations and inherent optical properties, even under complex
environmental conditions [36]. The SZA threshold of the OC-SMART was set to 70◦–88◦

to mask the pixels with low and super-high SZAs. To test the model performance, hourly
GOCI-L1B data on 13 January 2021 were applied to retrieve the Rrs in the coasts of Eastern
and Northern China.

2.2. Development of XGBAC Algorithm

The XGBoost is a machine-learning algorithm based on a distributed gradient-boosted
decision tree and widely used in regression, classification and ranking problems [39].
Compared with the neural network and random forest model, XGBoost works by fitting a
learner to the training dataset and then adding a regularisation term to the loss function to
prevent overfitting, which can be represented as follows:

obj =
n

∑
i

l(yi, ŷi) +
t

∑
k=1

Ω( fk) (1)

where l(yi, ŷi) is the loss function term that measures the difference between the actual
value yi and prediction ŷi for each sample i. Ω( fk) is a regularisation term used to penalise
the complexity of each model to avoid overfitting. In order to approximate this objective
function in the XGBoost model, a second-order Taylor expansion of the loss function is
performed.

XGBoost can provide good model interpretability and has demonstrated excellent
capability in previous ocean colour studies [12,40]. Therefore, XGBoost was used to train
the XGBAC models in this study. XGBoost model was implemented using the Scikit-learn
library in Python (version 3.9.13) [41]. The input factors include the SZA, VZA, RAA and
ρrc of seven GOCI bands (412, 443, 490, 555, 660, 680 and 745 nm), and the output layer
comprises the Rrs values at these seven bands. The parameter-setting scheme was based on
comparing the best results of different setting parameters, i.e., the booster is set to gbtree,
the number of regression trees is 500, the maximum depth of the trees is 6, the learning rate
is 0.1, the weight of L2 regularization term is 0.01 and the maximum number of iterations
is 100. A model was developed for each of the seven bands, respectively.

http://kosc.kiost.ac.kr/
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2.3. Training Dataset Selection

High-quality training datasets are essential for the development of good machine-
learning models. To ensure the quality of the Rrs data for the development of the XGBAC
model, the following data filtering criteria were applied.

(1) Pixels with any of the following quality flags were excluded: unavailable satellite L1B
reflectance due to either saturation or missing values (flag 1), solar or sensor viewing
angle out of range (flag 4), land (flag 16), cloud (flag 64), ρrc out of scope (flag 56) or
negative ρrc (flag 1024). The numbers in brackets represent the 32-bit flag value;

(2) The percentage of pixels with effective values in a 5 × 5 pixel frame was calculated.
To avoid adjacency effects, only the data with a 100% effective amount were selected
for the next step [42]; Only the pixel frames with a coefficient of variation (CV) below
0.15 were kept for subsequent analysis [24];

(3) The temporal stability of valid pixel values was checked using four noontime (11:00
LT–14:00 LT) observations within one day. Pixels with a CV of multiple observations
below 0.15 were kept.

(4) After the high-quality Rrs data were extracted based on the above criteria, the Rrs
values at noontime with low SZAs were matched to the ρrc values in the morning and
at dusk with high SZAs. Within this time range, the water bodies were assumed to be
relatively stable. Finally, a total of 3,088,523 matchups of both turbid and clear waters
were obtained, of which 70% were randomly selected as the training dataset and the
remaining 30% were used as the validation dataset. The SZA ranges from 70◦ to 88◦

within the matchup dataset (shown in Figure 2).
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2.4. Model Performance Evaluation

The model performance was evaluated with the validation dataset. Several metrics
were used to determine the model performance, including the coefficient of determination
(R2), the mean absolute percentage deviation (MAPD), the mean relative percentage devia-
tion (RPD) and the root mean square deviation (RMSD), which were calculated as follows:

R2 =
∑N

i=1
(
Yi − X

)2

∑N
i=1

(
Xi − X

)2 (2)



Remote Sens. 2024, 16, 183 6 of 19

MAPD =
1
N ∑N

i=1
|Yi − Xi|

Xi
× 100% (3)

RPD =
1
N ∑N

i=1
Yi − Xi

Xi
× 100% (4)

RMSD =

√
∑N

i=1(Yi − Xi)
2

N
(5)

where Yi, Xi, X and N are the retrieved values, known values, the mean of known values
and the sample number, respectively. To compare the performance of XGBAC and other
popular models, the variations in the first quartile (Q1), median and third quartile (Q3)
of the MAPD of Rrs obtained by the XGBAC and OC-SMART models were analysed and
compared. Additionally, the Rrs retrievals at SZAs of up to 80◦–88◦ from the XGBAC and
OC-SMART were assessed with the quality assurance (QA) system [43]. The QA system
employs a set of 23 optical water types with Rrs spectra, spanning from blue to yellow
water, as references. By comparing the target Rrs with the reference Rrs, it assigns a score
ranging from 0 to 1, with 0 indicating that the Rrs is unsuitable for use, and 1 denoting that
the Rrs is in complete agreement with the reference spectra.

Furthermore, the XGBAC model was applied to retrieve Rrs products from GOCI data
to verify its reliability and applicability. For the evaluation of the stability of Rrs retrieval,
the Rrs (555) product in the morning and at dusk was generated by XGBAC and OC-SMART,
respectively. The RPDs of Rrs retrieval values between the morning (08:55 LT)/dusk (15:55
LT) observation times and noontime (11:55 LT) were calculated, respectively. Based on
the retrieved Rrs products after atmospheric correction by XGBAC, the TSS can be further
derived. Because TSS is a crucial parameter for assessing the estuarine and coastal waters’
quality, which is widely used in marine environmental management [44,45]. The YRE and
HZB with turbid water were taken as an example, and the regional empirical TSS inversion
algorithm from [14] was adopted as follows:{

TSS = 101.075+1.1230×Ratio,
Ratio = Rrs (745 nm)

Rrs (490 nm)

(6)

3. Results
3.1. Performance of XGBAC Model

The calibration performance of the XGBAC model is shown in Figure 3. The models
had a high fitting accuracy (R2 ≥ 0.90, RMSD ≤ 0.0034 sr−1), with the Rrs values retrieved
by XGBAC versus satellite Rrs values (referred to as reference values) scattering closely
around the 1:1 line. Figure 4 shows scatterplots comparing the Rrs values in the validation
dataset and the Rrs values derived by XGBAC at each GOCI band. The XGBAC-retrieved
Rrs values were basically consistent with the reference values, with R2 exceeding 0.92
and RMSD lower than 0.0033 sr−1 for validation datasets. The validation statistic results
for XGBAC are summarised in Table 1. The XGBAC algorithm gave the best estimate
for Rrs (490 nm) with an R2 of 0.96, an RMSD of 0.0012, a MAPD of 8.2% and an RPD of
−0.72%, respectively, followed by Rrs (443 nm) and Rrs (412 nm), while Rrs (745 nm) was
found to perform the worst with an R2 of 0.94, an RMSD of 0.0026 sr−1, a MAPD of 26.81%
and an RPD of −7.05%, respectively. It is noteworthy that the Rrs at 745 nm exhibited
a low magnitude, resulting in relatively high MAPD and RPD values. The accuracy of
the XGBAC model-derived Rrs (490 nm) was further evaluated and compared for three
different SZA ranges (shown in Figure 5). A decreasing pattern of accuracy was observed
with increasing SZAs (MAPD of 7.2% and 11.15% at the SZA of 70◦–75◦ and 80◦–90◦,
respectively). However, the XGBAC model still worked well at the SZA of up to 80◦–88◦

with R2 = 0.94 and RMSD = 0.0016 sr−1. Overall, the Rrs values estimated by XGBAC
exhibited good agreement with the reference values, and the small difference in statistical
parameters between the training and validation datasets also indicates that the developed
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XGBAC model can competently acquire knowledge from the training datasets, with a
commendable level of stability and reliability.

Table 1. Statistic results of the validation performance for each GOCI band.

Parameters R2 RMSD (sr−1) MAPD RPD

412 nm 0.92 0.0010 9.29% −0.89%
443 nm 0.94 0.0011 8.61% −0.77%
490 nm 0.96 0.0013 8.2% −0.72%
555 nm 0.97 0.0019 9.79% −1.03%
660 nm 0.97 0.0032 19.2% −3.71%
680 nm 0.96 0.0033 20.16% −4.06%
745 nm 0.94 0.0026 26.81% −7.05%
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Figure 6 shows the variations in the Q1, median and Q3 of the MAPD of the Rrs
retrieved from XGBAC and OC-SMART as a function of SZA. The Q1, median and Q3 of
the MAPD of the Rrs obtained from the XGBAC model were obviously lower than those
from OC-SMART. The Q1, median and Q3 values of the MAPD in the Rrs (490 nm) using
the XGBAC model exhibited a slight increase with the SZA, reaching approximately 10%
(shown in Figure 6). On the contrary, these parameters from OC-SMART were significantly
higher than those from the XGBAC model at high SZAs and increased sharply with
increasing SZA. Based on the above results, it can be concluded that the XGBAC algorithm
is better than OC-SMART and decreases slightly under super-high SZAs (>80◦).
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The satellite and model-estimated Rrs were evaluated with the QA system. The fre-
quency distribution and the statistical parameters of the QA scores obtained using the
XGBAC are shown in Figure 7 and given in Table 2, respectively. Similar statistical parame-
ters of the QA score were observed for the XGBAC model and OC-SMART (mean = 0.99,
median = 0.99). The percentages of the QA score > 0.99 were 92%, 89% and 87% for reference
Rrs, XGBAC-estimated Rrs and OC-SMART-estimated Rrs, respectively. The QA scores
obtained by XGBAC were highly concentrated above the threshold of 0.99 with smaller
standard deviations of 0.006, which indicated that the spectral shapes of validation dataset
from XGBAC were more consistent than those from OC-SMART.

Table 2. Statistical parameters for the QA score obtained using XGBAC and OC-SMART.

Dataset Mean Median Min Max Std.

XGBAC 0.99 0.99 0.90 1 0.006
OC-SAMRT 0.99 0.99 0.84 1 0.022
Reference * 0.99 0.99 0.93 1 0.005

Note: * the reference indicates the reference Rrs in the validation dataset.
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3.2. Application to GOCI Images

Figure 8 shows the Rrs maps at 443 nm, 555 nm and 680 nm retrieved using XGBAC
from GOCI images in the morning and at dusk (08:55 LT and 15:55 LT), and the corre-
sponding SZA values are also presented in Figure 8. Obviously, the XGBAC model could
generate more valid data under high SZAs compared with the KOSC algorithm (shown
in Figure 1). Furthermore, XGBAC demonstrates effective processing of the ocean colour
remote-sensing data even when the SZA is higher than 80◦. Figure 9 shows the RPD results
at the 555 nm band retrieved by XGBAC and OC-SMART, respectively. It is evident that the
Rrs (555 nm) values obtained using OC-SMART showed considerable variation over the
two GOCI observation times, with an RPD exceeding 100% in the Yellow Sea, indicating
large uncertainties in the Rrs in the morning and at dusk retrieved from OC-SMART. In
contrast, XGBAC yielded more stable Rrs (555 nm) retrievals at morning/dusk. Although
the Rrs retrievals from the two algorithms were consistent at noon, XGBAC produced
more dependable Rrs retrievals in the morning and at dusk. However, there are also some
underestimations in the Bohai Sea with high turbidity and SZAs, which might be attributed
to the complex and unstable nature of the water conditions in inshore regions with a higher
CV (shown in Figure 10).
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The YRE and HZB is one of the most turbid regions with sediment-laden waters in
the world [46], making the standard AC algorithms invalid [47,48]. Using the Rrs data
retrieved by the XGBAC and the regional TSS model following Equation (6), we obtained
hourly TSS concentration maps in the YRE and HZB at every 1 h from 08:55 LT to 15:55 LT
on 13 January 2021 (shown in Figure 11a–h). There are no retrievals in the YRE and HZB
regions on the KOSC TSS products at 08:55 LT and 15:55 LT (shown in Figure 11i,j). With the
XGBAC, the first noticeable aspect is the recovery of the area that had a previous algorithm
failure in the GOCI-derived TSS, as well as significantly changed values in the regions after
the correction. The TSS concentration throughout the HZB was over 100 mg/L, and even
over 1000 mg/L in most areas. High TSS concentrations in the HZB were probably caused
by the re-suspension of sediment by strong tidal currents and wind. The spatial distribution
of TSS concentration in this area is similar to the previous study [14,49], where a higher TSS
concentration was observed for coastal waters and decreased in moving further away from
the outer shelf area. It is also evident that TSS values around the YRE are also significantly
increased due to improved Rrs, and numerous plumes of TSS are also clearly present in the
coastal region with TSS concentrations ranging from 50 to 500 mg/L. This result can assist
environmental management agencies in understanding the intra-day fluctuations of TSS to
make better decisions to safeguard coastal ecosystems. Compared to the KOSC standard
products, there are obvious improvements in GOCI ocean colour products after applying
the XGBAC.
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4. Discussion

Over the past several decades, most remote-sensing algorithms have been established
and validated based on satellite and in situ data under conditions of low-to-moderate SZA
(<70◦). In recent years, however, some studies showed the ability of satellites to detect ocean
colour components under high SZAs [19,50]. Coastal waters are complex due to various
factors, including changes in optical properties, absorbing aerosols effects, interactions
with land and high SZAs in the morning and at dusk. Therefore, it is essential to develop
specific AC algorithms for turbid coastal waters. However, the current AC algorithms
only take into account either the optical complexity of coastal waters or high SZAs [24,36],
without considering the joint effect of both. This study proposed a novel AC algorithm for
optically complex waters under high SZAs. As more geostationary ocean colour satellite
images become available over time, such as GOCI-II, Himawari-8 and Himawari-9, and
the geostationary ocean colour satellite to be launched by China, the merits of XGBAC
could be further demonstrated. The XGBAC can be easily applied to other remote-sensing
data sources, leading to the better monitoring frequency and time coverage of the aquatic
environment. This will facilitate the identification of patterns and underlying mechanisms
responsible for diurnal changes in the aquatic ecosystem, providing decision support for
ocean and coastal management.

The proposed XGBAC model is based on machine-learning models. To ensure the
applicability of the model, a diverse dataset covering large Rrs and SZA variations is
required. Therefore, the high quality Rrs–ρrc matchup data were collected to train and
validate the proposed XGBAC model. For high-quality Rrs, the stable waters with a low
CV were used for the extraction of high-quality Rrs. The model can also be well migrated
to applications when higher quality Rrs data at lower SZAs is acquired through alternate
AC algorithms. The successful retrieval of Rrs from the satellite-observed ρrc data in this
study could be partially attributed to the competence of XGBoost in learning nonlinear
relationships and executing intricate fitting tasks [51]. Nevertheless, it is important to note
that as an ensemble tree-based method, XGBoost is known to be highly dependent on
sample size during model training [52], and therefore has a limited generalisation ability
for small sample sizes. Therefore, more in situ Rrs samples have the potential to further
improve the performance of XGBoost. Particularly, for water quality assessment and AC
in small regional water bodies, it is necessary to conduct a validation analysis of remote-
sensing data with the model data and the in situ measurements. The MAPD and RPD
of Rrs were used to assess the performance of the atmospheric correction, as they are a
dimensionless metric to measure the estimation bias for each sample. A dimensionless
metric is important considering the large-scale variation in Rrs from below 10−5 to above
10−1 sr−1.

The results indicate that the proposed XGBAC algorithm can effectively retrieve
Rrs in the morning or at dusk and outperforms the KOSC products. However, due to
the opacity and difficulty in the explaining of machine-learning methods, understanding
the mechanism of the relationship between Rrs and ρrc requires further investigation.
The uncertainty of the noontime Rrs may have a limited effect on the accuracy of the
XGBAC algorithm. And the complex variations in coastal turbid water might introduce
uncertainties in extracting stable Rrs–ρrc matchup data, which could also limit the accuracy
of the training model. Additionally, adjacency effects are a critical factor to consider
when analysing coastal waters, can be challenging to correct at high SZAs and would
contaminate larger areas at high SZAs and VZAs [53]. The accuracy of XGBAC would
decrease slightly under super-high SZAs (>80◦). This is due to the accuracy of the ρrc
declining and the limited amount of effective Rrs data under high SZAs. The decrease
in AC accuracy under high SZAs is mainly affected by the high total air mass, Earth
curvature and Fresnel reflectance [54]. Furthermore, the AC procedure must consider the
various components of the atmosphere, which significantly impact physical and chemical
processes and serve as climatic and environmental factors. Therefore, there is still a need to
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investigate the radiative transfer mechanisms that underlie the variations in Rrs due to the
Earth’s curvature and other high SZA processes.

Taking advantage of the hourly observations, GOCI data with XGBAC clearly and
accurately capture the dynamic of TSS in the YRE and HZB. These products will be useful
to researchers, modellers and those currently involved in assessing the impact of water
quality. Many factors could impact the accuracy of TSS retrievals, including the natural
high-frequency variability of the TSS, sensor noise and the uncertainty of the TSS retrieval
algorithm [55,56]. Diurnal changes and drivers of water quality variability should be
further investigated in the YRE and HZB using TSS products and data on coastal processes
such as tides, winds and freshwater discharge.

5. Conclusions

To solve the problem of the number and magnitude of errors in the operation of the
atmospheric-correction algorithm for optically complex waters under high SZAs, this study
proposed a new XGBAC model. The proposed model utilised the XGBoost algorithm to
retrieve the Rrs from the GOCI ρrc data directly. The retrieval of Rrs using the XGBAC
model agreed well with the noontime high-quality Rrs (R2 ≥ 0.92, MAPD ≤ 26.81% and QA
score ≥ 0.9). Estimates of Rrs in the coasts of Eastern and Northern China are investigated
using the newly proposed XGBAC method. Furthermore, the atmospherically corrected
GOCI data were used to map the TSS concentration in the coastal waters of the YRE
and the HZB. The results show that the XGBAC model obtained reasonable Rrs values
in the optically complex water under high SZAs, which clearly worked better than the
OC-SMART model and KOSC standard algorithms. The GOCI-derived ocean colour
products are improved in spatio-temporal coverage after applying the new correction
method, especially for TSS products that are derived using the Rrs ratio algorithms. The
XGBAC model has the potential to extend the temporal coverage of effective ocean colour
remote-sensing data, thereby enabling more frequent monitoring of aquatic ecosystems and
their diurnal variations. This could provide valuable insights into the dynamics of oceanic
processes, such as phytoplankton blooms, ocean currents and river plumes, which are
critical for understanding and managing aquatic ecosystems. In the future, the integration
of ocean colour remote-sensing data with government management data is expected to
provide more effective support for ocean and coastal management. This research can
potentially provide information to support the sustainable development and management
of coastal and oceanic environments.
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