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Abstract: Binary tropical cyclones (BTCs) typically refer to the coexistence of two tropical cyclones
(TCs) within a specific distance range, often resulting in disastrous rainstorms in coastal areas of
China. However, the differences in rainfall and underlying causes between BTC-influenced typhoons
and general typhoons remain unclear. In this article, the TC closer to the rainfall center in the BTC
is referred to as the target typhoon (tTC), while the other is termed the accompanying typhoon
(cmp_TC). This study compares and analyzes the rainfall differences and potential causes of tTCs
and similar typhoons (sim_TC) with a comparable track but which are unaffected by BTCs from
1981 to 2020. The results show that: (1) On average, tTCs and cmp_TCs experience 18.79% heavier
maximum daily rainfall compared to general TCs, with a significantly increased likelihood of rainfall
≥250 mm. (2) Given similar tracks, the average rainfall for tTCs (212.62 mm) is 30.2% heavier than
that for sim_TCs (163.30 mm). (3) The analysis of potential impact factors on rainfall (translation
speed, intensity, direction change) reveals that sim_TCs move at an average of 21.38 km/h, which is
about 19.66% faster than the 17.87 km/h of tTCs, potentially accounting for the observed differences
in rainfall. (4) Further investigation into the causes of west–east oriented BTC rainfall in the Northern
Fujian (N_Fujian) region suggests that water vapor transport and slowing down of the translation
speed are the possible mechanisms of BTC influence. Specifically, 80% of tTCs receive water vapor
from the direction of their cmp_TC, and the steering flow for tTC is only 59.88% of that for sim_TC.

Keywords: binary tropical cyclones; similar-track tropical cyclones; extreme precipitation; China

1. Introduction

Tropical cyclones are fierce weather systems with extremely strong destructive power,
accounting for 38% of disasters caused by weather, climate and hydrology [1]. China, situ-
ated in the Western North Pacific Ocean (WNPO), experiences an average of 7-8 landfalling
TCs annually, making it one of the most frequently affected regions [2,3]. With the ongoing
effects of global warming, the TC disasters that China faces are on the rise [4,5]. According
to statistics reported by Lei et al. (2009) and Lei (2020), the direct economic losses due to
TC-induced rainstorms, strong winds and storm surges each year account for about 0.4%
of China’s GDP, and the casualties are about 9000 people (with more than 500 deaths) [6,7],
representing about 13% and 21% of China’s meteorological disaster economic and human
losses, respectively [8–10]. Therefore, improving the TC rainfall operational forecasting
capabilities is of great significance for improving the monitoring and early warning system
and enhancing the disaster-resilience capabilities.
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Despite steady improvements in predicting TC genesis and tracks, advancements in
fine-scale TC rainfall forecasting have been minimal [11–17]. Especially under the influence
of BTC, TC forecasts face heightened uncertainty, driven by more erratic movement and
complex water vapor exchange [18–25]. The BTC happens when two coexisting TCs
are within defined distance thresholds—approximately 12◦ latitude (Carr et al., 1997,
1998) [26,27], 1600 km (Jang and Chun, 2015) [22], or 1800 km (Ren et al., 2020) [28]—which
can influence the TC track, intensity and rainfall patterns. The intricate interplay between
the two TCs and the environmental flow field [18,24,29–32], as well as the water vapor
transport between the TCs [33,34], makes it difficult to accurately forecast the extreme
precipitation events under the BTC influence [25,35–38]. Previous studies mainly focused
on BTC impacts on the track [18,19,23] and intensity [29,31] of TCs, analyzing specific
cases of extreme rainfall induced by BTCs [34,36–38]. These studies have not addressed
critical scientific questions: what are the distinct differences in TC rainfall between those
influenced by BTC and normal TCs, and what are the underlying mechanisms contributing
to these differences? Addressing these inquiries holds significant importance for providing
comprehensive and practical guidance in operational forecasting.

This paper systematically conducts a comparative analysis of rainfall differences and po-
tential causes in similar-track TCs with and without BTC influence. Track is a critical factor
determining TC precipitation [39,40], and reflects the characteristics of the underlying topog-
raphy and large-scale environmental circulations of TCs [41]. Comparing similar-track TCs
is a widely adopted method in operational forecasting and scientific analysis [42–45], as they
share common features, especially concerning precipitation, providing a theoretical basis for
numerous statistic- or analog-based forecast models [46–53]. Thus, this study aims to deepen the
understanding of TC rainfall under BTC influence and provide some reference for TC rainfall
prediction by conducting a long-term comparative study (1981–2020) of rainfall and potential
rainfall influencing factors of tTC and its sim_TC. Subsequent sections describe the data and
methodology used in the study, with Section 3 presenting the results of rainfall differences and
possible causes for tTC and sim_TC, followed by the summary and concluding remarks in the
final section.

2. Data and Methodology
2.1. Data

The TC best-track dataset obtained from the Shanghai Typhoon Institute (STI) of the
China Meteorological Administration (CMA) is used in this study. It covers the period
from 1981 to 2020 and includes the observed TC locations and intensities over the WNPO
at 6 h intervals [54], measured as 2 min mean maximum sustained wind speed (VMAX)
and minimum sea-level pressure (PMIN). For TCs situated over open ocean areas, the
dataset employs the Dvorak [55] technique on satellite remote sensing data of infrared and
visible cloud images to identify critical information about TCs, such as position, intensity,
structure, size, and precipitation. Only TCs that reach or exceed the tropical storm level
(VMAX > 17.5 m/s) are included in this study.

The daily precipitation data observed over the 40-year period are provided by the
CMA/National Meteorological Information Center, covering 2027 rain gauge stations
across most of China (Figure 1), with 2006 on mainland China and 21 on the island of
Taiwan. The daily amounts are defined as those from 1200 UTC to 1200 UTC.

The ERA5 dataset [56], a state-of-the-art product of the European Centre for Medium-
range Weather Forecasts (ECMWF), uses advanced four-dimensional variational (4D-Var)
assimilation techniques and sophisticated models to integrate a vast array of observations
from various sources. Remote sensing instruments, such as ground-based radar and satellite
sensors, play a crucial role in this integration. In particular, satellite sensors provide global
coverage and high-resolution data that are essential for accurate and reliable weather
forecasting. By calibrating and correcting the satellite data with in situ measurements, the
ERA5 dataset achieves a high level of robustness and comprehensiveness. In this study
this dataset with a grid spacing of 0.25◦ × 0.25◦ and 37 vertical layers at 6 h intervals
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(i.e., four times per day), including horizontal winds, specific humidity, temperature, and
geopotential height, is used to examine the large-scale environments in which the BTCs
develop.
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The GDAS1 dataset is the output of the Global Data Assimilation System (GDAS) devel-
oped by the National Centers for Environmental Prediction (NCEP). This system assimilates
multi-platform observational data, including satellite and radar data. In the present study, pa-
rameters from this dataset such as geopotential height, horizontal winds, temperature, specific
humidity, and surface pressure, with a horizontal resolution of 1◦ × 1◦ and 21 layers in the
vertical direction at 6 h intervals (i.e., 00, 06, 12, and 18 UTC) are used to drive the Hybrid
Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, which aims to simulate the
transport of water vapor and analyze its potential contribution to BTC heavy rainfall events.

To provide a clear overview of the datasets utilized in this study, the main characteris-
tics and sources of the data are summarized in Table 1.

Table 1. Data sources and related information.

Dataset Period Grid
Resolution

Temporal
Resolution Recourses

TC best-track 1949–present -- 6 h
https://typhoon.slt.zj.gov.cn/

default.aspx
(accessed on 13 March 2024)

Rain gauge observation 1949–present 2027 station 1 day https://data.cma.cn/en/
(accessed on 13 March 2024)

ERA5 1940–present 0.25◦ × 0.25◦ 1 h
https://www.ecmwf.int/en/

forecasts/datasets
(accessed on 13 March 2024)

GDAS1 2006–present 1◦ × 1◦ 6 h
ftp://arlftp.arlhq.noaa.gov/

pub/archives/gdas1
(accessed on 13 March 2024)

This work 1981–2020 -- -- --

2.2. Methodology
2.2.1. Definition of BTC Rainfall

The definition of BTCs in the WNPO, proposed by Ren et al. (2020) [28], considers
two coexisting TCs within a distance of 1800 km or less and persisting for a minimum

https://typhoon.slt.zj.gov.cn/default.aspx
https://typhoon.slt.zj.gov.cn/default.aspx
https://data.cma.cn/en/
https://www.ecmwf.int/en/forecasts/datasets
https://www.ecmwf.int/en/forecasts/datasets
ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1
ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1
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duration of 12 h. Once BTCs are identified, the Objective Synoptic Analysis Technique
(OSAT; Ren et al., 2001, 2007) is used to identify TC precipitation [57,58]. This technique is
based on the distance from TC center to the region of precipitation, i.e., the proximity and
continuity between neighboring raining stations, in order to trace TC-influenced rain belts
that may extend from 500 km to 1100 km away from the TC center. Then, the BTC rainfall
can be defined as the inland precipitation produced by one or both TCs in the duration of
BTC. A maximum value in a specific day, i.e., the date of the BTC maximum daily rainfall
(BTCMRD) at a certain rain gauge station, always exists. This refers to the center of the
BTC daily precipitation, namely the BTC maximum daily rainfall, which is our concern in
this study. In this way, a list of BTCs producing rainfall in China (or the N_Fujian region)
during 1981–2020 can be obtained.

2.2.2. Identify the Similar-Track Normal Typhoon of Target TC

Figure 2 shows the flowchart of obtaining the information of target TC (tTC) and its
similar TC (sim_TC). The first step involves identifying the tTC from the BTCs based on
the distance between two TCs and the rain gauge station with the BTC maximum daily
rainfall. The TC closer to the station is considered the tTC, while the other considered the
cmp_TC. Next, we determine a similarity region based on the track and direction of the
tTC on the day before, the day of, and the day after the BTCMRD. The similarity region
is a rectangular area bounded by the maximum and minimum latitudes and longitudes
of the tTC’s three-day track. The region is expanded in the direction perpendicular to
the orientation of the track. For example, if the track is oriented east–west, the region is
widened in the north–south direction; if the track is oriented south–north, the region is
widened in the east–west direction.

Subsequently, the third step involves identifying a sim_TC within the similarity region.
This sim_TC should be unaffected by BTC during its rainfall process. To identify such a TC,
the Track Similarity Index (TSAI) is calculated for the tTC and all historical BTCs unaffected
TCs in this similarity region. The TSAI represents an enclosed area bounded by two TC
tracks with two lines connecting their initiating and ending points (cf. Figure 1 in Ren et al.,
2018 [50]). A smaller TSAI value indicates higher similarity between historical TCs and the
tTC. Thus, the TC with the smallest TSAI value is considered the sim_TC of the tTC. Upon
identifying sim_TC, the subsequent steps include determining the average location of tTC
on the BTCMRD. The time when the sim_TC is closest to this position is obtained, serving
as a reference point T. Subsequently, we screen for any daily rainfall of sim_TC within the
period between T − 12 h to T + 12 h; the period may span across two different days. The
day closest to T is selected as the corresponding rainfall day for sim_TC in relation to the
BTCMRD. However, if the distance between the mean position of tTC on the BTCMRD
and the mean position of sim_TC on the corresponding rainfall day is ≥240 km (which is
approximately the mean radius of TCs in the WNPO [59,60]), the samples are discarded.
Finally, we gather information about tTC on BTCMRD and sim_TC on the corresponding
rainfall day.
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Figure 2. Flowchart (a) and example (b) of obtaining the information of the target TC (tTC) that caused
the primary impact in BTC and its similar-track TC that without BTC influence (sim_TC), where blue
represents the tTC (Typhoon Morakot, 2009), red represents the sim_TC (Typhoon Toraji, 2001), green
ellipse represents the Northern Fujian region, the raindrop shape represents the location of the BTC’s
maximum daily rainfall, the blue dot represents the mean position of the tTC on the day of BTCMRD,
the red five-pointed star represents the mean position of the sim_TC on the corresponding day of the
BTCMRD, and the orange dashed line represents the similarity region.
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2.2.3. Diagnosis of Moisture Transport between BTCs

The HYSPLIT model, developed by the National Oceanic and Atmospheric Admin-
istration (NOAA) [61], is widely used to generate air mass backward trajectories, which
allows users to simultaneously release particles from all points within a specified matrix
at a given time and height. In this study, we focus on the moisture sources of the tTC on
the day it produced maximum daily rainfall in the Northern Fujian region. To this end, we
define a target area as a 6◦ × 6◦ square, which encompasses 49 grid points and is centered
around the location of the tTC. Then, particles are released at each grid point at an altitude
of 1500 m, and the 72 h backward trajectories of these particles are calculated hourly by
HYSPLIT, resulting in the generation of 1176 trajectories for each tTC. Next, the trajectories
are clustered into groups (hereafter referred to as clusters) with similar transport patterns
based on the Total Spatial Variance (TSV) method [62]. For specific steps, please refer to
Section 2.3 in (Su et al., 2015 [63]). Subsequently, the distance between each cluster and the
track of cmp_TC was calculated. Clusters originating from the direction of cmp_TC and
having a minimum distance of ≤450 km (roughly corresponding to the mean size of TCs in
the WNPO [59,60]) to cmp_TC are considered to indicate a water vapor transport passage
for the tTC coming from the direction of cmp_TC. The contribution rate of each cluster
is determined by the number of trajectories it contains (since the differences in specific
humidity between clusters are negligible in this study, a qualitative assessment suffices for
diagnosing moisture transport between two TCs). After all the previous steps, the existence
and contribution rate of water vapor transport between BTCs can be determined.

3. Results
3.1. Rainfall Differences and Causes of tTC and Its sim_TC for Nationwide Samples

The fundamental premise of this study is that there is a difference in typhoon rainfall
patterns between those influenced by the BTC effect and general typhoons. As depicted
in Figure 3a, the mean and median of the maximum daily rainfall for BTC-affected cases
(comprising both tTC and cmp_TC) were 233.96 mm and 201.4 mm, respectively, which
surpassed those of the general TC cases (196.96 mm and 174.75 mm). The probability
distribution histograms for both groups illustrate the distribution of rainfall across various
intervals, following a parabolic shape and peaking in the heavy rain interval (100–250 mm).
Notably, the probability of BTC-influenced TCs producing maximum daily rainfall ex-
ceeding 100 mm was 13.05% higher than that of general TCs (79.59% vs. 70.40%). As the
extremity of rainfall increased, the disparities in the occurrence rates of strong precipitation
between the two groups became more pronounced. As illustrated in Figure 3b, the proba-
bility distribution histograms for maximum process rainfall in both BTC-influenced and
unaffected cases exhibit similar characteristics to those observed in maximum daily rainfall.
The mean and median values of maximum process rainfall influenced by the BTC effect
were 345.84 mm and 268.65 mm, respectively, surpassing the values for cases unaffected by
the BTC, which were 271.84 mm and 215.80 mm, respectively.

These observations were further supported by statistical analysis. Specifically, a one-
tailed two-sample t-test was conducted at a significance level of α = 0.01 to test for a
statistically significant impact of the BTC effect on rainfall, with the expectation that the
mean daily (process) maximum rainfall for BTC-affected TCs (tTC and cmp_TC) would
be greater than that for general (BTC-unaffected) TCs. The results indicated statistically
significant differences (p < α), supporting our expectation that BTC-affected TCs exhibit
higher maximum daily (process) rainfall compared to general TCs.

The above findings suggest that the BTC effect significantly influences typhoon precip-
itation, leading to heavier rainfall and increased probabilities of rainfall extremes. Further
investigation is needed to understand the mechanism through which the BTC effect influ-
ences typhoon rainfall.
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Since the track of TC reflects, to some extent, the large-scale circulations and underlying
topography where the TC situated [39,41], the target TC and its historical analogs share
similar topography and large-scale circulation systems that jointly influence precipitation.
Hence, to emphasize the BTC effect more distinctly, we compare similar-track TCs with
and without the BTC influence. As described in Section 2.2.2, we obtained the rainfall,
translation speed, intensity, and other information of 94 pairs of tTC and sim_TC from 1981
to 2020. This study focuses on the differences in rainfall and rainfall influencing factors
between tTC on the date of the BTC maximum daily rainfall (BTCMRD) and sim_TC on the
corresponding rainfall day. Therefore, unless otherwise specified, the rainfall and rainfall
influencing factors of tTC and its sim_TC mentioned in the following text all refer to this
period.

The rainfall differences between tTC and sim_TC are illustrated in Figure 4. The rainfall
of tTC was heavier than that of sim_TC, with the mean and median values of 212.63 mm and
189.55 mm, respectively, compared to 171.37 mm and 159.05 mm for sim_TC. The results of
the one-tailed two-sample t-test, conducted with the expectation that the maximum daily
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rainfall for tTCs would be greater than that for sim_TCs, confirm (p < 0.01) the significant
contribution of the BTC effect to heavier rainfall. Figure 4a also shows the probability of
tTC experiencing heavy rainfall (≥50 mm) was 13.5% higher than that of sim_TC, and as
the rainfall extremity increased, the difference in the occurrence rate of rainfall between
tTC and sim_TC became more pronounced. In other words, under the influence of the
BTC effect, TC precipitation was not only heavier, but also more likely to result in extreme
rainfall events. The rainfall differences between individual cases of tTC and sim_TC are
illustrated in Figure 4b. When the rainfall of tTC was <300 mm, the corresponding rainfall
of sim_TC fluctuated around it, and in some cases, the two were nearly identical. However,
when the rainfall of tTC was ≥300.00 mm, the corresponding rainfall of sim_TC was
always lower than that of tTC. Additionally, tTC had six occurrences of extreme rainfall
(exceeding 475 mm), which was beyond the reach of sim_TC. These results indicate that,
under the constraint of similar underlying topography and environmental conditions, the
TC rainfall influenced by the BTC effect was generally heavier and had a higher probability
of producing extreme heavy rainfall.
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Factors such as translation speed and intensity have a significant impact on TC pre-
cipitation [39,64,65]. Moreover, many studies have shown that the BTC effect causes the
track of TCs to change irregularly and suddenly [23,26,27,29,32]. Therefore, we consider
the translation speed (V = distance(Pt+1 − Pt−1)/2t, where Pt−1 and Pt+1 represent the TC
positions at the previous and next time steps, respectively), intensity, and direction change
(∆θ = abs(θt − θt−1), where θt = direction(Pt − Pt−1), θt = 0◦, 90◦, 180◦, 270◦ represent TC
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moving eastward, northward, westward, and southward, respectively) as factors that may
influence typhoon precipitation for diagnostic analysis.

Figure 5a shows distinct differences in the translation speed of tTC and sim_TC. The
Probability Density Function (PDF) estimate curve of tTC’s translation speed roughly
follows a parabolic distribution, peaking at around 15.5 km/h with a probability density at
the peak falling within the range of 0.3 to 0.35. The mean and median of the translation
speed were 17.87 km/h and 16.78 km/h, respectively. In contrast, the PDF curve of
sim_TC’s translation speed is also unimodal, with the peak around 19 km/h and the
probability density at the peak over 0.4, indicating that sim_TC’s translation speed was
more concentrated around 19 km/h. The mean and median of the translation speed were
21.38 km/h and 19.71 km/h, respectively, both faster than tTC’s. The one-tailed two-
sample t-test was conducted to evaluate the mean translation speed difference, with the
expectation that sim_TC would move faster than tTC. The results, significant at the 99%
confidence level, support this expectation, indicating that sim_TC indeed translates at
a higher speed compared to tTC. Figure 6 helps illustrate a statistically significant weak
negative correlation between tTC’s translation speed and precipitation (R = −0.284, p < 0.01),
indicating that this relationship is unlikely to have occurred by chance. This correlation may
suggest that slower-moving TCs are more likely to result in sustained heavy precipitation
in specific regions, which aligns with the well-established consensus in meteorological
research [64,66]. Sim_TC has a 19.66% faster translation speed, which possibly contributes
to the smaller precipitation compared to tTC. However, the low correlation coefficient and
the deviations between the fitting line and the data points indicate the intricate mechanisms
underlying TC rainfall. TC rainfall is influenced by various factors, including translation
speed, moisture supply, the typhoon’s internal structure, the presence of strong upward
motion, and local terrain, among others.
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As depicted in Figure 5b, notable differences in intensity between tTC and sim_TC are
evident. The mean and median intensity for tTC were 25.8 m/s and 22.375 m/s, respectively.
Its PDF curve follows a unimodal distribution, peaking around 18.5 m/s with a probability
density at the peak falling in the range of 0.4 to 0.45, indicating that tTC’s intensity was
more concentrated around 18.5 m/s. In contrast, the PDF curve of sim_TC’s intensity
exhibits a bimodal distribution, with the primary peak around 19.5 m/s and a secondary
peak around 33.0 m/s, suggesting a more dispersed distribution of sim_TC intensities. The
mean and median of sim_TC’s intensity were 30.02 m/s and 29.125 m/s, respectively, both
higher than those of tTC’s. The t-test for the mean intensity difference between tTC and
sim_TC indicates that sim_TC is stronger than tTC, and this difference is significant at the
99% confidence level. A Pearson correlation test shows a positive correlation between tTC’s
intensity and its rainfall, with a correlation coefficient of 0.171. However, this correlation
fails to pass the significance test (p = 0.099). Therefore, we can only cautiously assume that
stronger typhoons may be somewhat associated with more extreme precipitation events.

In terms of direction change (Figure 5c), the median values of tTC and sim_TC are
almost identical, both around 12◦, but tTC’s direction change has much higher dispersion
than sim_TC’s. Under the premise of similar tracks, tTC, influenced by the BTC effect,
exhibits greater uncertainty in the movement direction, potentially leading to 90◦ turns
and spinning. The correlation test shows that tTC’s direction change has no obvious
relationship with its rainfall. However, the negative correlation between tTC’s direction
change and translation speed (R = −0.423, p < 0.01) indicates that larger direction changes
may contribute to more erratic or spinning movements, subsequently leading to slower
translation speeds (figure omitted). Slower-moving TCs are more likely to produce greater
precipitation. Therefore, if the typhoon track involves turning and lingering, it may
indirectly lead to large rainfall.
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The findings above indicate that tTCs exhibit statistically significantly heavier rainfall
compared to their similar-track counterparts, which can be partially attributed to the slower
translation speed of tTCs, leading to increased precipitation accumulation.

3.2. Rainfall Differences and Causes of tTC and Its sim_TC for the Northern Fujian
Region Samples

Due to the extensive coastline in China, the primary influencing factors on TC rainfall
may vary across different regions [41,67]. As pointed out by Wang et al. (2020), extreme
rainfall associated with the BTC effect in China is prominent in three typical regions—the
Pearl River Delta, Northern Fujian Province, and Taiwan Island [33]. Therefore, a thorough
investigation into the impact of the BTC effect on precipitation requires focus on a specific
area. This study, limited by space, concentrates on 32 BTC samples that influenced the
Northern Fujian (N_Fujian) region from 1981 to 2020 to explore the causes of BTC-associated
heavy rainfall in this representative region.

As depicted in Figure 7, the mean and median of tTC precipitation in the N_Fujian
region are 164.97 mm and 153.8 mm, respectively, whereas those of sim_TC are 97.35 mm
and 68.9 mm, respectively, both of which are lower than tTC. A paired sample Student’s
t-test revealed statistically significant a mean difference between the two at the 99% confi-
dence level. In summary, tTC exhibits a heavier precipitation pattern than sim_TC, with a
higher probability of producing extremely heavy precipitation in the N_Fujian region.
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Figure 7. As Figure 5, but for the precipitation (units: mm) of tTC and sim_TC in the Northern Fujian
(N_Fujian) region from 1981 to 2020 (n = 32).

In the diagnostic analysis, BTC rainfall cases in the N_Fujian region, similar to the
national-scale samples, translation speed, intensity, and direction change were selected as
potential factors influencing typhoon precipitation. From the perspective of translation
speed (Figure 8a), significant differences are observed between the tTC and the sim_TC in
the N_Fujian region. The PDF curve of tTC’s translation speed roughly follows a unimodal
distribution, peaking at around 12 km/h with a probability density at the peak falling in
the range of 0.4, to 0.45. The mean and median translation speeds for tTC are 17.78 km/h
and 15.75 km/h, respectively. Conversely, the PDF curve of sim_TC’s translation speed
exhibits a bimodal distribution, with the primary peak around 17.5 km/h and a secondary
peak around 27.5 km/h, and the probability density of both peak is slightly larger than
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0.4, suggesting that sim_TC’s translation speed is more concentrated around these values.
The average translation speed of sim_TC is 22.53 km/h, which is 39.59% faster than that
of tTC, and the mean translation speed difference is statistically significant at the 95%
confidence level. This marked difference in movement may be a key factor contributing to
the significant differences in precipitation between tTC and sim_TC.
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In terms of intensity (Figure 8b), the mean and median of tTC’s intensity in the
N_Fujian region are 22.26 m/s and 21.50 m/s, respectively. The PDF curve of tTC’s intensity
displays a roughly unimodal distribution, peaking at 23.0 m/s, with the probability density
at peak falling in the range of 0.45 to 0.5, indicating that tTC’s intensity is more concentrated
around 23.0 m/s. In contrast, the PDF curve of sim_TC’s intensity also shows a unimodal
distribution, but its peak is around 19.0 m/s, and the probability density at peak falling in
the range of 0.3 to 0.35, suggesting that sim_TC’s intensity is more dispersed. The average
and median intensity of sim_TC are 25.88 m/s and 24.75 m/s, respectively, both stronger
than those of tTC. Despite the higher mean and median intensities of sim_TC compared to
tTC, the intensity difference did not reach statistical significance.

Regarding the direction change (Figure 8c), the mean and median direction change
of tTC in the N_Fujian region are 26.34◦ and 13.30◦, respectively, while those of sim_TC
are 16.35◦ and 13.09◦, respectively. The PDF curves indicate that tTC’s direction change
is relatively unstable with high dispersion, and there is a possibility of abrupt changes in
the track, such as reverse movement (∆θ ≈ 180◦) or right-angle turn (∆θ ≈ 90◦), whereas
sim_TC’s direction change is more concentrated around the peak (∆θ ≈ 13◦), with a peak
probability density ≈ 0.5, and a smaller variance. The difference in track deflection angle



Remote Sens. 2024, 16, 1692 13 of 21

between tTC and sim_TC may explain the notable difference in translation speed between
the two, subsequently accounting for their pronounced difference in precipitation.

The results indicate that in the N_Fujian region, tTC exhibits lower intensity compared
to sim_TC. However, tTC’s precipitation is heavier than that of sim_TC. This difference
may be partly attributed to the BTC effect, which leads to the erratic movement and slower
translation speed of tTC, contributing to increased precipitation.

Beyond intrinsic factors such as translation speed, intensity, and direction change,
environmental factors like water vapor also play a crucial role in influencing the develop-
ment and maintenance of TCs [40,68], thereby impacting typhoon rainfall. In both research
and practical applications, the analysis of water vapor often focuses on lower atmospheric
levels, particularly at 850 hPa. In this study, particles were released at an altitude of 1500 m
above sea level, corresponding to 850 hPa level. A backward 72 h water vapor tracing was
conducted to identify the sources of water vapor for tTC on the day it produced maximum
daily rainfall in the N_Fujian region (details provided in Section 2.2.3). Due to data limi-
tations (as GDAS1 data are available from 2006 onward), only 15 tTCs that impacted the
N_Fujian region between 2006 and 2020 were traced.

As shown in Table 2, 80% of the samples exhibit water vapor sources originating from
the direction of the accompanying typhoon (cmp_TC) in the BTC. These water vapor sources
accounted for 6% to 73% of the total water vapor sources of tTC. The three tTCs without
water vapor transport from the cmp_TC had relatively small precipitation amounts, ranking
(15/15), (11/15), and (9/15), and much lower than the overall mean (175.37 mm). This
implies a high likelihood of water vapor transport between BTCs, and these water vapor
transport passages play a crucial role in the occurrence of extreme typhoon precipitation in
the N_Fujian region.

Table 2. Tracing results of water vapor sources for tTC on the day of maximum daily rainfall in the
Northern Fujian (N_Fujian) region.

tTC cmp_TC Maximum Rainfall on
N_Fujian (Units: mm)

Distance 1

(Units: km)
Total Clusters Cluster

Number 2
Accounting 3

(Units: %)

200610 200611 212.5 77.1 3 3 34
200909 200908 415.2 412; 175.3 4 1; 4 38; 14
200909 200910 415.2 200.2 4 3 29
201007 201008 66.7 364.9 6 6 6
201009 201007 66.7 16.4; 24.2 5 1;4 21;20
201009 201008 66.7 374.0; 32.8 5 3;6 34; 6
201205 201206 99.5 450> 3 / /
201210 201211 189.9 40.3; 23.7 3 1; 3 39; 34
201210 201212 170 23.8; 105.4 3 1; 3 44; 29
201325 201326 221.4 69.5 3 3 16
201616 201618 251.1 286.2 4 1 23
201711 201710 174.1 43.8 3 2 18
201819 201817 103.3 54.2; 350.1 6 2; 3 15; 37
201821 201817 55 450> 4 / /
201821 201819 123.2 450> 3 / /

1 “Distance”: The minimum distance between the cluster and cmp_TC track. A distance greater than 450 km
indicates no water vapor transport from cmp_TC, and the ‘Cluster number’ and ‘Accounting’ columns will be
denoted by ‘/’. 2 “Cluster number”: As described in Section 2.2.3, tTC’s water vapor source trajectories are
grouped into clusters, each denoted by a unique “Cluster number” automatically assigned by HYSPLIT model.
The fifth table column shows “Cluster numbers” within 450 km of the cmp_TC’s track. 3 “Accounting” refers to
the water vapor contribution rate of each cluster listed in the fifth table column.

The comparative analysis of rainfall impact factors and the results of tracing water
vapor sources suggest that the BTC effect may create favorable conditions for more intense
precipitation in the N_Fujian region by slowing down tTC’s movement and transporting
water vapor to tTC. However, further validation of these findings requires a more thorough
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diagnostic examination of the surrounding environmental circulations of tTC during heavy
rainfall events.

To comprehensively diagnose whether BTC water vapor transport is one of the reasons
for the increased likelihood of heavy rainfall in the N_Fujian region, the study conducted
a dynamic composite analysis [69,70] for tTCs. Despite restricting the study area to the
N_Fujian region, there is still a considerable difference in the relative positions of the two
TCs that constitute the BTC (such as their east–west or north–south orientation), and the
effects of different orientations of the BTC may be different [37,71]. Therefore, this study
further selected eight samples with relatively consistent positions of tTC and its cmp_TC
on the BTCMRD for dynamic composite analysis centered on tTC. Aiming to delve deeper
into understanding the potential impacts of BTC effect on precipitation.

It is worth mentioning that this subsection primarily analyzes the contribution of
BTC to the extreme rainfall in the target region (N_Fujian) on the BTCMRD. Given that
the movement distance of tTC and sim_TC within a day is limited, and the selected BTC
samples are all east–west oriented with relatively consistent positions of tTC (within 2.0
latitudes from the mean position), the longitude and latitude coordinates were reallocated
after the dynamic composite, centering on the mean position of tTC/sim_TC.

The majority of water vapor is present in the lower and middle atmosphere below
300 hPa, and the degree of water vapor transport and convergence determines the distribu-
tion of water condensate in clouds and the amount of precipitation [72,73]. As illustrated
in Figure 9, the overall water vapor flux field shows that both tTC and sim_TC receive
ample water vapor from the low latitudes of the Indian Ocean, carried by the southwesterly
monsoonal airstream. However, the South China Sea summer monsoon index (calculated
following the method proposed by Dai et al. in 2000 [74]) suggests a stronger southwesterly
monsoonal airstream for tTC compared to sim_TC, indicated by a monsoon index of 11.47
for tTC and 10.03 for sim_TC. This implies that the southwesterly monsoonal airstream may
contribute more favorably to moisture conditions for tTCs’ maintenance and development,
resulting in heavier precipitation over the N_Fujian region. This differential monsoonal
impact may partly explain the greater rainfall for tTCs compared to sim_TCs.
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Figure 9. Dynamic composites showing the 1000–300 hPa water vapor flux vectors (arrows) and flux
convergence (shadings) for (a) tTC (30 time step samples, corresponding to 02:00, 08:00, 14:00, and
20:00 BJT on 21 August 1990; 19 August 1991; 7 August 1996; 9 July 2002; 9 August 2009; 31 August
2010; 4 August 2012; and 7 October 2013) and (b) sim_TC (32 time step samples, corresponding to
the same four time points on 25 July 2006; 26 August 2004; 18 May 2006; 8 June 1995; 31 July 2001;
25 August 2004; 15 July 2006; and 11 July 2018) on the day of maximum daily rainfall. Black contours
denote the 500 hPa subtropical high; ellipses outline the N_Fujian region.
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Comparing tTC to sim_TC, the Western North Pacific subtropical high (WNPSH) asso-
ciated with tTC exhibits slightly weaker intensity and is displaced to a more northerly and
easterly position. tTC’s cmp_TC is positioned approximately 1300 km to its east, situated
to the southwest of the WNPSH. The strong pressure gradient between cmp_TC and the
WNPSH stimulates a robust westward flow or low-level jet [75–77]. This environmental
field configuration causes cmp_TC to intercept a portion of the southwest water vapor
transport channel that would otherwise continue toward the Bohai Bay and the Korean
Peninsula. Additionally, cmp_TC gathers water vapor and energy on the south side of
the WNPSH, transporting them towards tTC through this westward flow. In contrast, the
WNPSH influenced sim_TC is relatively stronger and located on the east of sim_TC. With-
out an accompanying typhoon, there is only an easterly wave at the corresponding position,
which is almost embedded in the south side of the WNPSH. This configuration strengthens
the northward flow between the sim_TC and the WNPSH, accelerating the southwesterly
water vapor transport northward to the mid-high latitudes, which is unfavorable for water
vapor convergence in the region affected by sim_TC.

From the perspective of water vapor flux divergence, both tTC and sim_TC exhibit
strong convergence covering the N_Fujian region. However, sim_TC appears to have
stronger eyewall convection, but the intense northward flow on its east side prevents the
convergence zone from covering the northeastern part of N_Fujian. Regardless of tTC or
sim_TC, the overall picture is that the N_Fujian region is covered by the eyewall circulation
of the typhoon, resulting in strong moisture convergence in this region. However, due to
the stronger average intensity (24.9 m/s) of sim_TC compared to tTC (19.43 m/s), the water
vapor convergence in the N_Fujian region under sim_TC’s influence is stronger, which is
more favorable for the occurrence of heavy rainfall.

To further diagnose the differences in moisture conditions between the tTC and the
sim_TC, an examination of the specific humidity field (Figure 10) reveals a significant
distinction. In the specific humidity field, cmp_TC to the east of tTC acts as an upstream
reservoir, collecting abundant energy fluxes from the surrounding ocean surface through
the air–sea interaction. This reservoir effect, coupled with the robust westward airflow
generated by the joint influence of cmp_TC and the subtropical high, continuously trans-
ports water vapor and energy into the tTC. In combination with Figure 9, the N_Fujian
region under the influence of tTC appears more humid, with a sustained water vapor
transport between BTCs. This continuous transport establishes favorable conditions for
heavy rainfall occurrence in this region, contributing to the reason why, despite exhibiting
weaker water vapor flux convergence and TC intensity (19.43 m/s vs. 24.91 m/s) compared
to sim_TC, tTC displays stronger precipitation. Additionally, the steering flow (which is
defined by the average of winds inside an annulus between 300 and 700 km from TC center
from 700 to 300 hPa [78,79], following Chien and Kuo 2011; Chien, 2014) that dominates
the movement of the typhoon was also compared. Evidently, tTC’s steering flow (1.97 m/s)
is significantly lower than that of sim_TC (3.39 m/s), explaining tTC’s slower movement
(12.72 km/h compared to sim_TC’s 23.33 km/h). The smaller steering flow and the slower
movement further create favorable conditions for the accumulation of tTC’s heavy rainfall
in the N_Fujian region.
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Figure 10. As Figure 9, but for the specific humidity difference (tTC-sim_TC) (shadings, units: g/kg)
and the wind field at 850 hPa for tTC (vectors). The blue elongated arrow indicates the average
steering flow for tTC and the red elongated arrow indicates the average steering flow for sim_TC.

Based on the analysis above, we can conclude the mechanism of BTC producing ex-
treme rainfall in the N_Fujian region for those east–west oriented BTCs. The manifestation
of the BTC effect in this configuration is evident in two aspects. Firstly, the cmp_TC on the
east side of tTC and the subtropical high collaborate, intercepting a portion of the south-
westerly water vapor flux transport and gathering the energy fluxes from the surrounding
ocean surface, acting like a reservoir upstream, continuously supplying water vapor to tTC,
establishing favorable water vapor conditions for precipitation. Secondly, the BTC effect
changes the steering flow of tTC, resulting in a sluggish movement, further facilitating the
accumulation of heavy rainfall in the N_Fujian region. Additionally, the presence of the
N_Fujian region, situated in the onshore wind direction of tTC and complemented by local
elevated hilly terrain, enhances upward motion and convergence of the warm and wet air.
These combined factors contribute to the extremely intense precipitation in the N_Fujian
region under the influence of tTC (Figure 11).
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Subtropical High, and the two typhoon symbols represent tTC (typhoon on the west side) and
cmp_TC (typhoon on the east side), respectively. Thick blue arrows indicate water vapor flux,
upward arrows represent upward motion, and the shaded topography denotes the N_Fujian region.

4. Summary and Concluding Remarks

A statistical comparison analysis of the TC rainfall difference and possible causes
between similar-track TCs, whether under the influence of the BTC or not, during the
40-year period of 1981–2020 on the coastal regions of China, was conducted to initially
diagnose the effect of the BTC on precipitation. Subsequently, a more in-depth diagnosis
and analysis of the mechanisms behind extreme rainfall affected by the BTC were conducted,
with a focus on the Northern Fujian (N_Fujian) as the representative high-impact region of
BTC-induced rainfall. The key findings are summarized as follows:

(1) The target typhoon (tTC), influenced by the BTC, exhibits significantly greater rainfall
compared to the similar-track normal typhoon (sim_TC) (212.63 mm vs. 171.37 mm).
Moreover, tTC shows a notably higher likelihood of extreme rainfall, with a 99.77%
increased probability of rainfall exceeding 400 mm.

(2) tTC, impacted by the BTC effect, moves in a complex and variable way, resulting in a
slow translation speed. This sluggish movement may contribute to heavier rainfall
than sim_TC, even when its intensity is lower than sim_TC. These effects consistently
influence the rainfall patterns of tTC nationwide, including the N_Fujian region.

(3) Most of the tTCs that influenced the N_Fujian region have water vapor sources from
the direction of their accompanying typhoons; the water vapor transport between the
BTCs is a possible factor contributing to tTC’s intensified rainfall. The mechanism
of east–west oriented BTCs producing extreme rainfall in the N_Fujian region is
evident in two aspects. Firstly, the strong pressure gradient between cmp_TC and
the WNPSH stimulates a robust westward flow, acting like a reservoir upstream and
continuously supplying water vapor to tTC. This water vapor is sourced from cmp_TC
intercepting southwesterly water vapor flux transport and collecting energy fluxes
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from the surrounding ocean surface. Secondly, the BTC effect changes the steering
flow of tTC, resulting in a sluggish movement, which facilitates the accumulation of
heavy rainfall in the N_Fujian region. Additionally, the N_Fujian region, located in
the onshore wind direction of tTC and with local hilly terrain, enhances the upward
motion and convergence of the warm and wet air. These factors lead to the extremely
intense precipitation in the N_Fujian region under the influence of tTC.

Our study deepens the understanding of TC rainfall under the influence of BTC and
reveals that water vapor transport and slowing down the movement are likely the two
main ways for BTC effect contributing to intensified rainfall. However, it is crucial to
acknowledge that our study relies on some approximations and idealized assumptions,
yielding qualitative analytical results. Furthermore, some of our insights were derived
from studies conducted in the Fujian region. Their broader application requires empirical
validation in diverse regions. Therefore, to thoroughly validate the impact mechanisms of
the BTC effect on precipitation, further investigation requires the selection of representative
cases. Utilizing numerical models will facilitate the quantitative verification of the BTC
effect, particularly in assessing its influence on TC rainfall by changing translation speed
and water vapor transport. This additional step is essential for refining and confirming
our findings, ensuring a more robust and comprehensive understanding of the intricate
dynamics associated with the BTC influence on typhoon-induced precipitation. Moreover,
our study exclusively focuses on the onshore precipitation center of typhoons, constraining
the exploration of the spatial distribution of precipitation under the BTC effect. To achieve
a more comprehensive understanding of BTC effects on rainfall, further research is impera-
tive, incorporating high-resolution observational data, including satellite and radar data, to
cover a broader spatial range encompassing both land and ocean areas.
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