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Abstract: Attaining precise target detection and channel measurements are critical for guiding beam-
forming optimization and data demodulation in massive multiple-input multiple-output (MIMO)
communication systems with hybrid structures, which requires large pilot overhead as well as
substantial computational complexity. With benefits from the powerful detection characteristics of
MIMO radar, we aim for designing a novel sensing-assisted semi-blind detection scheme in this
paper, where both the inherent low-rankness of signal matrix and the essential knowledge about
geometric environments are fully exploited under a designated cooperative manner. Specifically, to
efficiently recover the channel factorizations via the formulated low-rank matrix completion problem,
a low-complexity iterative algorithm stemming from the alternating steepest descent (ASD) method
is adopted to obtain the solutions in case of unknown noise statistics. Moreover, we take one step
forward by employing the denoising convolutional neural network (DnCNN) to preprocess the
received signals due to its favorable performance of handling Gaussian denoising. The overall
paradigm of our proposed scheme consists of three stages, namely (1) target parameter sensing,
(2) communication signal denoising and (3) semi-blind detection refinement. Simulation results show
that significant estimation gains can be achieved by the proposed scheme with reduced training
overhead in a variety of system settings.

Keywords: sensing-assisted communication; deep CNN; semi-blind detection; target AoA/AoD
estimation; low-rank matrix completion

1. Introduction

With the vigorous development of the wireless communication industry and the deep
integration with intelligent information processing technology, various remote sensing
applications, e.g., vehicle-to-everything, smart manufacturing and environmental monitor-
ing, come to the force, which puts forward increasing demand for network capacity and
spectrum utilization [1–3]. As an important solution to support ultra-high transmission
rate and intelligence requirements of the future mobile communications, massive multiple-
input multiple-output (MIMO) inherently allows for simultaneous serving of multiple
users by deploying large-scale antennas at a base station (BS) and facilitates the generation
of directed beams towards target users, thereby expanding connected density and reducing
the mutual interference in scenarios involving multiple users [4,5]. To obtain larger antenna
gains and alleviate the pressure of spectrum scarcity, exploring novel transceiver design
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and frame structure operating at higher frequencies, such as the millimeter wave (mmWave)
band [6,7], paves the way to guarantee reliable communications while enabling satisfactory
user experiences.

1.1. Background

Considering that major obstacles preventing the deployment of massive MIMO are
related to huge hardware costs and power consumptions imposed on the excessive number
of radio frequency (RF) chains, hybrid analog/digital structures have been utilized to canon-
ically route the RF chains via a well-designed phase-shifter network [8–10]. Furthermore,
to compensate for prominent path loss encountered in mmWave channels and mitigate
severe interference among multiple users, optimization on hybrid beamforming is expected
to strike a favorable tradeoff between cost and rate [11–13]. One of the critical premises for
obtaining the optimal beamforming is to acquire channel state information. Nevertheless,
accurate channel estimation is challenging due to increased dimensionality of signal matrix
and the application of hybrid architecture that limits the available observations. In this
way, developing an efficient receiver scheme to enhance the transmission performance is
essential in hybrid massive MIMO systems.

Recently, based on the fact that radar and communication systems share similar
underline signal processing and gradually work in approximate frequency bands, there
emerges a technological trend to integrate both functionalities into a single system [14–16],
which offers an exciting opportunity to implement radar sensing by inherent wireless
infrastructures. Given the potential ability of rapid and wide-range detection, it would
be beneficial to leverage the radar sensing to fully extract geometric information from
the surrounding environment [17,18] and thus assist in obtaining more precise parameter
estimations. Toward this end, the coexistence of radar and communication components
will constitute the primary architecture of this paper for enhanced performance gains.

1.2. Problem Being Addressed

Against the above background, as the dimensionality of antennas and carrier frequen-
cies proliferate, the task of effectively balancing detection performance with computational
cost becomes increasingly arduous. Consequently, the critical problem to be addressed is
to propose novel solutions for comprehensive extraction of valuable information from the
received signals in hybrid massive MIMO communication systems, thereby contributing to
more reliable and cost-effective channel estimators.

1.3. Existing Solutions

In the literature, various channel estimators have been conducted for guiding the follow-
up decoding and beamforming operations in hybrid massive MIMO systems. Among them,
many techniques refer to the non-blind detections, which perform explicit channel estimation
basically by transmitting and dealing with pilot symbols [19–21]. However, as the number of
antennas increases, the pilot overhead could be enlarged accordingly and makes a negative
impact on spectral efficiency. To address such issue, several research works began to focus on
leveraging the sparse representation exhibited in delay-domain or angle-domain of mmWave
channels [22–24], based on which a number of compressed-sensing (CS) tools have been
adopted to figure out the formulated sparse recovery problem. Considering the grid-based
CS estimator may lead to effects of basis mismatch, another gridless method appeared to
construct continuous parameter domain by employing the atomic norm minimization [25].
Moreover, in order to avoid substantial computational complexity caused by high-dimensional
optimizations and exploit more information from the payload data, our prior work [26] has
proposed a semi-blind detection scheme for a hybrid massive MIMO system over frequency-
selective fading channels, which utilized the uplink data as virtual pilots to improve the
accuracy of channel estimation and data detection. However, the existing research has not
sufficiently capitalized on the intrinsic features of massive MIMO systems and realistic channel
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characteristics, which constitute a significant challenge for achieving better tradeoff between
training overhead and detection performance.

In addition to searching for rich scattering assumptions at higher frequencies, the
low-rankness of massive MIMO systems has also been widely considered. In [27], accord-
ing to the fact that both the number of BS antennas and the number of symbols in one
coherence block are typically larger than the number of active users, the joint channel and
data estimation was modeled as a low-rank matrix completion problem, for which two
iterative algorithms were put forward to effectively recover the original channel and data.
Moreover, schemes exploiting both the low-rank property and the knowledge of array
responses have been proposed in [28–30], where the initial channel estimates provided by
solutions to an inductive matrix completion would be further refined through multiple
stages. Without loss of generality, most of the existing methods need to recover the matrix
factorizations following an alternating minimization procedure [31–33]. Adhering to the ex-
isting methodologies, the intricate matrix multiplication or matrix inversion would induce
unacceptable computational costs, especially when generalized to large-scale problems.
As an effort to relieve the computational burden, an alternating steepest descent (ASD)
algorithm was introduced in [34] to replace the least squares (LS) subproblem solutions
with exact line-search updates. In view of the simplicity and moderate accuracy in the
presence of non-negligible noise, we are inspired to tailor the ASD algorithm for estimating
channels in hybrid massive MIMO systems.

Instead of simply obeying stochastic distributions, more realistic channels consisting
of multiple propagation paths usually display a certain geometric structure. Since the
process of communication channel estimation is similar to the radar target detection to
some extent, research on making full use of sensing parameters to support communication
functionality has attracted growing attention [35–37]. For example, by combining both
functionalities of phased-MIMO radar and hybrid communication in the mmWave band, a
novel strategy for joint target detection and channel estimation was proposed in [35]. To
reduce the spectral resources as well as hardware cost, the employment of radar sensing for
assisting the prediction of motion parameters in vehicular communication networks was
investigated in [36]. Moreover, a robust MIMO-radar-aided channel estimation scheme de-
ployed in multi-user (MU) MIMO communication systems has proven to be advantageous
in improving the estimation accuracy with fewer training overhead [37]. Given that channel
estimation may suffer from severe performance degradation in low signal-to-noise ratio
(SNR) regions due to conceivable noise enhancement along with the LS-based estimation
process, a supervised deep-learning (DL)-based signal denoiser was also involved in [37]
to eliminate the noise on received signals before estimating the channel gains. However,
training a neural network with high-dimensional signals and large datasets seems not
tolerable in terms of complexity and latency [38]. Therefore, developing a cost-effective
signal denoising module to make the state-of-the-art intelligent algorithms practically
implementable for massive MIMO channel estimation is worth exploring.

1.4. Motivations and Objectives

A summary of the existing literature is provided in Table 1. The motivation for this
paper stems from the notable limitations in current receiver techniques for hybrid massive
MIMO communication systems. As one can see, challenges of large pilot overhead and sub-
stantial computational complexity will arise due to increased dimensionality and complicated
signal nature in hybrid architectures, which restrict observation capabilities. Additionally,
the growing demand for employing radar sensing in extracting environment information
motivates us to seek advisable coordination between sensing and communication modules.
In light of these challenges, the objective of this paper is to develop an efficient detection
scheme tailored for hybrid massive MIMO systems with the aid of radar sensing, aimed at
enhancing estimation performance and alleviating computational burdens.
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Table 1. Existing works comparison on receiver techniques.

Existing
Works System Models Receiver Techniques Limitations or Features

[19–21] mmWave MIMO communications non-blind detection based on
pilots only

Pilot overhead can be enlarged
greatly with massive antennas.

[22–24] mmWave MIMO communications CS leveraging the channel sparsity Gird-based estimator may lead to
effects of basis mismatch.

[25] mmWave MIMO communications atomic norm minimization
High-dimensional optimizations
may cause substantial
computational complexity.

[26] mmWave MIMO communications semi-blind detection aided with
payload data

Neglect of geometric structure of
channel distributions.

[27] massive MIMO communications LS leveraging the channel
low-rankness

Underexploitation of realistic
channel characteristic with multiple
propagation paths.

[28–30] mmWave MIMO communications multiple stages exploiting both the
low-rankness and sparsity

High computational complexity
when generalized to large-scale
problems.

[35] joint radar and communications multiple signal classification
(MUSIC) for angle estimation

Joint signal processing strategy can
simultaneously detect targets while
estimating the communication
channel.

[36] joint radar and communications maximum likelihood (ML)
estimator

Sensing parameter estimation can
promote the dynamic topology
construction of surrounding
environments.

[37] joint radar and communications LS detection vs. DL-based denoiser
Efficient estimation with fewer
training resources by eliminating
noise before recovering channels.

1.5. Our Proposal and Contributions

In this paper, we propose a sensing and deep CNN-assisted semi-blind detection
refinement scheme for a hybrid massive MU-MIMO system, where different functional
modules, i.e., radar and communication, are integrated into the BS by partitioning multiple
antennas. Specifically, both the low-rankness and geometric characteristic of high-frequency
channels are fully exploited in a progressive manner. To reduce the large training overhead
and substantial computational complexity, a novel transmission frame and an efficient
receiver scheme are presented that can be split into three stages, namely (1) target parameter
sensing, (2) communication signal denoising and (3) semi-blind detection refinement.
Below, we crisply summarize the main contributions in this paper:

• A novel time-division duplex (TDD) transmission frame capable of coordinating the
radar and communication operations is designed, based on which the root multiple
signal classification (MUSIC) algorithm is firstly applied to environment sensing and
then the extracted target angle information is utilized for refining the subsequent
communication detection results.

• A generic representation for analog combining with phase shifters is considered, and
the signal recovery problem is transformed into a low-rank matrix completion. To
obtain the matrix factorizations with lower complexity, an iterative algorithm modified
from ASD is proposed without any prior knowledge of noise statistics. In addition,
different from the conventional pilot-only method, the semi-blind detection scheme is
employed with reduced training overhead.

• A pre-trained denoising convolutional neural network (DnCNN) is adopted to prepro-
cess the received signals before performing the semi-blind detection, which attempts
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to handle Gaussian noise removal with unknown noise level and shows powerful
ability of improved accuracy especially in low SNR regions.

The remainder of this paper is organized as follows. In Section 2, the system model is
presented and the conventional pilot-only estimation method is reviewed. By transforming
the signal recovery problem into a low-rank matrix completion, our proposed sensing and
deep CNN-assisted semi-blind detection scheme is detailed with three stages in Section 3.
Simulation results are provided in Section 4. Finally, conclusions are given in Section 5.

Notations: The list of acronyms used in this paper is summarized in Table 2. Unless
otherwise specified, bold uppercase letters are used to represent matrices, bold lowercase
letters are used to represent vectors and scalars are denoted by normal font. A(i, :) and
A(:, j) denote the i-th row and j-th column of A, respectively. Ai,j denotes the (i, j)-th
entry of A. AT , AH and A∗ denote the operations of transpose, Hermitian transpose and
element-wise conjugate, respectively. diag(a) stands for a diagonal matrix with diagonal
elements given by the vector a. E and vec(·) represent the expectation operation and
vectorization operation, respectively.

Table 2. List of acronyms.

Abbreviations Expansion

ALS Alternating Least Squares

AoA Angle-of-Arrival

AoD Angle-of-Departure

BS Base Station

CNN Convolutional Neural Network

CS Compressed Sensing

DnCNN Denoising Convolutional Neural Network

DL Deep Learning

LMMSE Linear Minimum Mean Squared Error

LoS Line-of-Sight

LS Least Squares

mmWave Millimeter Wave

MIMO Multiple-Input Multiple-Output

MU-MIMO Multi-User MIMO

MUSIC Multiple Signal Classification

NMSE Normalized Mean Squared Error

RF Radio Frequency

RMSE Root Mean Squared Error

SNR Signal-to-Noise Ratio

SVD Singular Value Decomposition

TDD Time-Division Duplex

UE User Equipment

ULA Uniform Linear Array

2. System Model and Background

In this paper, we consider a sensing-assisted hybrid massive MU-MIMO communi-
cation system, as shown in Figure 1, where K single-antenna users are served by a BS
with two modules: one for the uplink communication and the other for the target sensing.
Similarly as introduced in [37], the system operates in TDD mode and the multi-functional
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transmission frame structure is designed as shown in Figure 2, which consists of two parts.
In the former part, the sensing module transmits probing signals and receives the echoes
to detect the target directions. In the latter part, the communication module receives the
pilots and payload data to complete the channel estimation and recover the uplink signals.

RF

...

...
Nr

Na

...

...
RF

LNA LNA

LNA

LNA
LNA

LNA

LNA

LNALNA

...

Ns

RF Chain ...
...

RF Chain

RF Chain

AoA/AoD

Estimation

Received 

Signal 

Denoising

Semi-Blind 

Detection

Refinement

B
aseb

an
d

    P
ro

cessin
g

uplink

Sensing Module

Communication Module

Figure 1. Sensing-assisted hybrid massive MU-MIMO communication system. The blue solid lines
denote the probing signal sent by the sensing module. The red solid lines denote the corresponding
echoes reflected by target users. The green dashed lines denote the uplink communication signals.

pilots payload data

Sensing Part

probing 

signals

Target detection

TDD coherence block T

Communication Part

received

echoes

Ts Ts

Channel estimation

Tp Td

Figure 2. The structure of multi-functional transmission frame. Ts denotes the duration of trans-
mitted waveform by radar module. Tp and Td denote the duration of uplink pilots and payload
data, respectively.

Suppose the uniform linear arrays (ULAs) are employed and are parallel with the
users such that the angle-of-arrival (AoA) is identical to the angle-of-departure (AoD).
Given the massive MIMO scenario and asymptotical orthogonality of steering vectors, we
assume the sensing signals are emitted through line-of-sight (LoS) channels. Meanwhile,
for the uplink communication, the transmitted signals from each single-antenna user will
be scattered by the others around it when regarding them as point targets [36]. In addition,
we consider the block-fading channel model, whose coefficients stay constant during the
coherence block T.

Specifically, we first introduce the sensing model for assisting the AoA/AoDs estima-
tion of target users. Then, the uplink communication model is presented, based on which
the channel estimation problem for the hybrid massive MU-MIMO system is formulated.
Finally, the conventional linear minimum mean squared error (LMMSE) estimator for
solving the corresponding problem is reviewed.
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2.1. Sensing Model

For the sensing module, we consider the mono-static radar case, where both the
transmit and receiver arrays are equipped with Ns antenna elements and we assume there
is sufficient isolation between them. Let Xs ∈ CNs×Ts denote the probing signal sent by the
BS, then the corresponding echoes reflected by target users can be expressed as [35]

Ys =
K

∑
k=1

βkb(θk)b
H(θk)Xs + Ns, (1)

where Ns ∼ CN (0, σ2
s I) represents the additive white Gaussian noise plus interference,

βk ∼ CN (0, σ2
βk
) denotes the reflection coefficient of the k-th target user, θk denotes the

k-th user’s azimuth angle relative to the BS and b(θk) ∈ CNs×1 represents the steering
vector satisfying

b(θk) =
1√
Ns

[1, ej 2π
λ d sin(θk), . . . , ej 2π

λ d(Ns−1) sin(θk)]T , (2)

where λ and d represent the signal wavelength and inter-element spacing, respectively.
Generally, we set d = λ/2.

For notational brevity, we arrange all steering vectors into a uniform matrix B(Θ) =
[b(θ1), . . . , b(θK)] ∈ CNs×K with Θ = {θ1, . . . , θK} and set Λs = diag(β1, . . . , βK). Then,
we rewrite the sensing signal model in (1) as a matrix form given by

Ys = B(Θ)ΛsBH(Θ)Xs + Ns. (3)

2.2. Uplink Communication Model

For the uplink communication module, suppose the BS adopts a hybrid analog–digital
architecture with Na antennas and Nr (Nr < Na) RF chains to combine the incoming
signals as depicted in Figure 1. Let xk[t] be the t-th transmitted symbol from user k with
unit average power. Then, the received signals across Na BS antennas is given by

rc[t] =
K

∑
k=1

hkxk[t] + nc[t], 1 ≤ t ≤ Tc, (4)

where nc[t] ∼ CN (0, σ2
c I) and hk ∈ CNa×1 denotes the channel between user k and the BS.

Considering the hybrid arrays deployed, rc[t] will further pass through the RF phase
shifter network. In particular, let W[t] ∈ CNr×Na denote the analog combining matrix, then
the signal model combined in the RF band is consequently formulated as

yc[t] = W[t]Hxc[t] + W[t]nc[t], (5)

where yc[t] ∈ CNr×1 indicates the received signal after passing through the analog structure,
xc[t] ∈ CK×1 denotes the transmitted signal vector from K users at time slot t and H ≜
[h1, . . . , hK] ∈ CNa×K denotes the channel matrix between K users and the BS.

Next, we elaborate on the high-frequency channel model containing the intrinsic
geometric structure. Instead of simply modeling the channels by stochastic distributions
as [27], we adopt the scattering model here to describe the geometric environment over
which the communication takes place. Suppose the users equipped with single-antenna are
randomly distributed within communication distance, then the transmitted signal from
each user will be scattered by its surrounding users. In this case, according to the widely
used Saleh–Valenzuela channel model as presented in [7], the multi-path channel vector
between user k and the BS can be provided as

hk =

√
Na

K

K

∑
l=1

αl,ka(θl,k), (6)
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where αl,k and θl,k denote the complex scattering coefficient and the azimuth angle relative
to the BS for the l-th path of user k, respectively. Specifically, the path l = k contributes to
the direct path from user k to the BS [36]. In addition, a(θl,k) ∈ CNa×1 denotes the steering
vector expressed as

a(θl,k) =
1√
Na

[1, ej 2π
λ d sin(θl,k), . . . , ej 2π

λ d(Na−1) sin(θl,k)]T . (7)

By referring to (5)–(6), we arrive at the input–output relationship for uplink communi-
cation signals, which is given by

yc[t] = W[t]A(Θ)Gxc[t] + v[t], (8)

where v[t] ≜ W[t]nc[t] and v[t] ∼ CN (0, σ2
c W[t]W[t]H), A(Θ) = [a(θ1), . . . , a(θK)] ∈

CNa×K corresponds to the steering vector matrix and G ∈ CK×K merges the channel path
gains and scattering coefficients that satisfies

gi,j =

√
Na

K
αl,k, ∀i = l, j = k, i, j ≤ K. (9)

According to the communication signal model in (8), even with sufficient resolution
for target sensing parameters, i.e., the geometric pattern of the channel matrix A(Θ) is
known to the BS, the stochastic channel gains of different paths are still unable to infer.
Therefore, a certain amount of pilots is required for completing the channel estimation.

2.3. The Conventional LMMSE Estimator

The conventional pilot-only estimation methods may cause large training overhead,
especially with massive MIMO scenarios. To be specific, let Xp ≜ [xc[1], . . . , xc[Tp]] ∈ CK×Tp

denote the transmitted pilots, where Tp indicates the number of pilots. Then, the signal
model of (8) can be transformed as [27]

yc[t] =
(

xT
p [t]⊗W[t]

)
(IK ⊗A(Θ))g + v[t], (10)

where g ≜ vec(G) ∈ CKK×1 and ⊗ denotes the Kronecker product.
In terms of whether the azimuth angles information is known or unknown to the BS,

we define the channel counterparts to be estimated as g and hu ≜ (IK ⊗A(Θ))g, respec-
tively. By further defining yp ≜ [yT

c [1], . . . , yT
c [Tp]]T ∈ CNrTp×1, vp ≜ [vT [1], . . . , vT [Tp]]T ∈

CNrTp×1 and Wp ≜ [xT
p [1]⊗W[1]; . . . ; xT

p [Tp]⊗W[Tp]] ∈ CNrTp×NaK, the LMMSE estimates
of the uplink channels can be given by [39]

ĥu = (WH
p Wp + σ2

c I)−1WH
p yp, (11)

and
ĝ =

(
AH

I (Θ)WH
p WpAI(Θ) + σ2

c I
)−1

AH
I (Θ)WH

p yp, (12)

for which AI(Θ) = I⊗A(Θ) and we suppose W[t]W[t]H = I according to popular choices
of analog combining matrix.

Upon determining the estimated channels, let Xd ≜ [xc[Tp + 1], . . . , xc[Tc]] ∈ CK×Td

with Td = Tc − Tp indicating the length of payload data, then the LMMSE-based data
detection can be performed by [39]

x̂d[t] =
(
(W[t]Ĥ)HW[t]Ĥ + σ2

c I
)−1

(W[t]Ĥ)Hyc[t], (13)

where Ĥ = vec−1(ĥu) or Ĥ = vec−1(AI(Θ)ĝ) depends on whether the azimuth angles of
target users are already known to the BS.
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From the above discussions, we can conclude that for the conventional pilot-only esti-
mator, the number of transmitted pilots and the variance of noise have significant influences
on the accuracy of channel estimation. To be specific, for the most common case without
knowledge of geometric information [27], since there are involved Na × K unknowns in
Ĥ, the number of required pilots needs to scale with Tp ∝ NaK/Nr, which may occupy
a large portion of transmission frame given the massive receive antennas. For the case
where the channel estimation is conducted after resolving the AoA/AoDs [37], although
the number of required pilots can be reduced to Tp ∝ KK/Nr, the accuracy of the LMMSE
estimator will be greatly affected by non-negligible noise even with super-resolution of
angle detections [40]. Therefore, to reduce the large training overhead while maintaining
acceptable estimation accuracy, we will propose a sensing and deep denoising-assisted
semi-blind detection scheme to improve the performance achieved by the existing methods.

3. Proposed Sensing and Deep CNN-Assisted Semi-Blind Detection Scheme

In this section, we introduce the proposed scheme to recover the signals formulated in
Section 2. Based on the transmission frame structure designed in Figure 2, the proposed
estimator will successively address the AoAs estimation, low-rank matrix completion and
semi-blind detection refinement to exploit both the low-rank property and the geometric
knowledge of channels in hybrid massive MIMO systems. In particular, by integrating
the low-complexity spectrum estimation algorithm and high-efficiency matrix completion
algorithm, MIMO radar’s rapid detection characteristics can be fully utilized to assist in
obtaining more accurate channel estimation as well as taking up less training overhead.

3.1. Target Parameter Sensing

Considering the potential superiority of MIMO radar in achieving high-resolution
angular estimations of target users, especially in identifying user positions, scattering paths
and channel scenarios, the primary task of the sensing module is to detect and acquire the
geometric directions of target users.

As shown in Figure 2, the angular estimation phase at the sensing module consists
of two parts, during which the BS firstly sends probing signals and then receives the echo
signals. Suppose the azimuth angles of K users are randomly distributed as Θ ∼ U[−π

2 , π
2 ].

To achieve the optimal estimation performance, we assume the probing signals sent by
different antennas are mutually orthogonal such that the energy is evenly dispersed at each
angle, i.e.,

Rs =
1
Ts

XsXH
s =

Ps

Na
INs , (14)

where Ps denotes the total energy of the BS. Moreover, under the assumption that the
additive white Gaussian noise is unrelated to the probing signals and the averaged received
power at each antenna being fixed as one, we can obtain the covariance matrix of the
received echoes as

RYs =
1
Ts

YsYH
s = B(Θ)Rs̃BH(Θ) + σ2

s INa , (15)

where
Rs̃ =

1
Ts

ΛsBH(Θ)B(Θ)Λ∗s . (16)

To recover the AoAs of different target users, subspace decomposition-based methods
can be invoked to separate the effective signals from background noise. Specifically, the
signal subspace contains information from different directions, while the noise subspace
comprises unrelated noise information. Then, following the standard subspace decom-
position process [41], we present the signal and noise subspaces by taking eigenvalue
decomposition of (15) as follows

RYs = (Us, Un)Λr(Us, Un)
H , (17)
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where Λr ∈ CNs×Ns is a diagonal matrix with eigenvalues in descending order and Us ∈
CNs×K and Un ∈ CNs×(Ns−K) correspond to eigenvector matrices that constitute the signal
and noise subspaces, respectively. It can be seen that the columns of B(Θ) and Us span the
same subspace. Without loss of generality, given the orthogonal relationship between the
signal and noise subspaces, the pseudo-spectrum used for locating the AoAs of K target
users can be readily formulated as

Pa(θ) =
1

|bH(θ)UnUH
n b(θ)| . (18)

Instead of applying the classical approach that finds the angles at peaks through
tedious spectrum search, we here employ the root-MUSIC approach, which transforms
the problem of spectral peak detection into polynomial root finding, thus eliminating
the dependence on a predefined angular grid. As a result, the proposed approach can
avoid the grid mismatch phenomenon induced by superficial quantization and identify
distinct source signals even when their angular differences are minimal, which allows for
super-resolution angular estimation with low complexity. Specifically, according to [30],
we rewrite the denominator of (18) as

bH(θ)UnUH
n b(θ) =

Ns−1

∑
n=0

Ns−1

∑
m=0

e−jξm sin θCm,nejξn sin θ =
Ns−1

∑
l=−Ns+1

Cle−jξl sin θ , (19)

where ξ = 2πd
λ , C = UnUH

n represents the correlation matrix with Cl denoting the sum of
elements along its l-th diagonal. Let z ≜ e−jξ sin θ, then we can further simplify (19) to a
polynomial

f (z) =
Ns−1

∑
l=−Ns+1

Clzl . (20)

Then, the 2(Ns − 1) roots of f (z) exactly correspond to the poles of the MUSIC spec-
trum given by

zi = |zi|ejarg(zi), i = 1, . . . , 2(Ns − 1), (21)

K roots out of which lying closest to the unit circle are chosen to yield the AoAs as

θ̂i = sin−1(−arg(zi)

ξ
), i = 1, . . . , K, (22)

where arg(zi) denotes the phase angle of zi.

3.2. Low-Rank Matrix Completion

When the sensing module obtains the knowledge of all the AoAs of target users, the
angle information will be transferred to the communication module, which is devoted
to identifying the coefficients of different scattering paths by using the uplink pilot and
payload data. For the sake of saving the training overhead while making full use of
available information at hand, we consider to explore the low-rankness of the massive
MIMO system and then recover the uplink channels based on low-rank matrix completion.

Before constructing the signal recovery problem, we show a generic model of the
analog combining matrix and discuss how the transmitted signals from K users are related
to the received signals at the BS. Specifically, given the fully-connected hybrid structure
as presented in Figure 1 such that each RF chain is connected to all antennas, various
realizations of the phase shifter with constant modulus can be modeled by ωejϕ and then
make up the combining matrix W[t]. To this end, we can regard the generation of analog
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combining matrix at each time slot as randomly selecting Nr rows from a DFT matrix
F ∈ CNa×Na with elements given by [42]

Fm,n =
1√
Na

e−
j2mnπ

Na , m, n = 0, . . . , Na − 1. (23)

According to the signal model formulated in (5), by further defining H̃ ≜ FH ∈ CNa×K

and z[t] ≜ H̃xc[t] ∈ CNa×1, we can find that the received signal yc[t] is exactly composed
of Nr elements from z[t]. Then, let Ω ∈ CNr×Tc represent the index set indicating each
independent selection of W[t] during the communication period, and denote YΩ

c ∈ CNa×Tc

as the observation matrix with entries in Ω given by {yc[t]}Tc
t=1 and otherwise zero, then

the received signals can be recast as a matrix form

YΩ
c = PΩ(Z + N), (24)

where Z ≜ [z[1], . . . , z[Tc]] ∈ CNa×Tc , N ∼ CN (0, σ2
c I) and PΩ(·) represents a linear

operation that preserves the entries in Ω while filling them not in Ω with zero.
Based on (24), we plausibly view YΩ

c as an incomplete observation of the matrix Z
corrupted by the Gaussian noise N, where Z = HXc with Xc ≜ [xc[1], . . . , xc[Tc]] ∈ CK×Tc .
Noting the fact that in massive MIMO scenarios, the number of users is normally much
smaller than the number of BS antennas and the length of coherence block, i.e., Na, Tc ≫ K,
the matrix Z displays an inherent low-rank property, i.e., rank[Z] ≤ K ≪ min{Na, Tc}.
Moreover, since multiplying by unitary matrix does not change the distributions, H̃ and H
are interchangeable for the channel estimation. Consequently, as derived in [27], the channel
and data estimation is formulated as the following low-rank matrix completion problem

min
U∈CNa×K ,V∈CK×Tc

rank[UV], s.t. YΩ
c = PΩ(UV + N), (25)

where U and V are related to the solutions of channel and data estimates Ĥ and X̂c, respectively.
Different from the LMMSE estimator, which requires channel and noise second or-

der statistics, we here propose to employ a low-complexity algorithm invoked in [34] to
solve (25) without any prior information and exclusively based on matrix-wise updates. In
this vein, considering the original rank-minimization problem is non-convex and generally
NP-hard, an approximate relaxation scheme such as Frobenious norm minimization comes
to the scene, which suggests to recover the matrix factorizations from

(U∗, V∗) = arg min
U∈CNa×K

V∈CK×Tc

1
2

∥∥∥YΩ
c −PΩ(UV)

∥∥∥2

F
. (26)

To solve the above optimization problem, alternative minimization techniques, i.e.,
successively finding out U and V with the minimized residual, have been widely used due
to their simplicity and flexibility. As an effort to circumvent the computational burden, a
better choice called ASD algorithm incorporates a simple line-search to update solutions
instead of dealing with the least squares subproblems. To be specific, let ∇ fV(U) and
∇ fU(V) define the gradient of the function f (U, V) = ||YΩ

c −PΩ(UV)||2F with respect to U
and V, respectively, the stepsizes for updating solutions along the steepest gradient descent
direction can be explicitly computed as [34]

tU =
||∇ fV(U)||2F

||PΩ(∇ fV(U)V)||2F
, (27)

and

tV =
||∇ fU(V)||2F

||PΩ(U∇ fU(V))||2F
, (28)
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where
∇ fV(U) = −(YΩ

c −PΩ(UV))VH , (29)

∇ fU(V) = −UH(YΩ
c −PΩ(UV)). (30)

For initializations, the intuition behind (8) tells that the random realization of the
channel mainly depends on the distribution of G assuming perfect estimates of angles.
In view of this, given the angle information Θ̂ estimated by Section 3.1, we initialize
U0 = A(Θ̂)G0 ∈ CNa×K and V0 ∈ CK×Tc with elements of G0 ∈ CK×K and V0 drawing
from i.i.d. Gaussian random variables with zero mean and unit variance. Then, the key
idea of our proposed algorithm is to alternatively update U and V until the termination
criteria are reached. Specifically, for the (t + 1)-th iteration, after obtaining the steepest
descent stepsizes and gradient descent directions following (27)–(30), we propose to update
Ut to Ut+1 in a two-step way, i.e.,

U
′
t+1 = Ut − tUt∇ fVt(Ut), Ut+1 = A(Θ̂)Gt+1, (31)

where
Gt+1 = (AH(Θ̂)A(Θ̂))−1AH(Θ̂)U

′
t+1. (32)

As a similar procedure, Vt will be updated to Vt+1 by

Vt+1 = Vt − tVt∇ fUt+1(Vt), (33)

where

tVt =
||∇ fUt+1(Vt)||2F

||PΩ(Ut+1∇ fUt+1(Vt))||2F
. (34)

Note that obtaining the gradient and stepsize will involve the product of a residual
matrix and a Na × K or K × Tc matrix. However, such operation only implements once
at the beginning of each iteration and then can be efficiently used to update variables.
Moreover, since the above approach replaces the least square solutions with an exact line-
search step and thus avoids complex operations of matrix inversions, the computational
cost for each iteration is much smaller than that of alternating least squares (ALS) and the
conventional singular value decomposition (SVD) methods.

3.3. Refined Semi-Blind Detection
3.3.1. Ambiguity Removal

Although the above approach is able to provide solutions to (26) directly from the
received observation YΩ

c , the non-uniqueness of matrix factorization may lead to great
estimation bias. More clearly, suppose the initial channel and data estimates obtained
from the ASD iterations are denoted by Û and V̂, respectively. If there exists an invertible
matrix Σ ∈ CK×K satisfying HXc = ÛΣΣ−1V̂, then solving (26) would not guarantee a
unique recovery for H and X. Therefore, a certain amount of pilots are required to resolve
the ambiguity.

On this basis, considering the number of elements that need to be determined is K× K,
we develop a pilot and data placement as Xc ≡ [Xp, Xd], where Xp ∈ CK×Tp with Tp ∝ K.
Then, we have

V̂ = ΣXc = Σ[Xp, Xd]. (35)

Due to the fact that pilot sequences are usually selected to be orthogonal, i.e., XpXH
p =

Tp · IK, we can obtain Σ as

Σ =
V̂(:, 1 ∼ Tp) · XH

p

Tp
, (36)
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where V̂(:, i ∼ j) refers to the sub-matrix consisting of i-th to j-th column vectors of V̂.
Upon resolving Σ, the data and channel estimation can be accordingly given by [26]

X̂d = Σ−1V̂(:, Tp + 1 ∼ Tc), (37)

and
Ĥ = ÛV̂(:, 1 ∼ Tp)XH

p /Tp. (38)

The process of our proposed sensing-assisted semi-blind detection scheme is detailed
in Algorithm 1. By carefully inspecting the workflow of the proposed approach, we can
observe that the resulting estimation is not directly obtained from matrix factorization
solutions; indispensable pilots are needed to facilitate the overall estimation as shown in
Line 14, which explains the origin of the name “semi-blind detection”. The advantage
of employing semi-blind detection lies in the fact that while the conventional non-blind
detection implements channel estimation based on pilots only as displayed in (11)–(12),
semi-blind detection can reduce the number of required pilots from an order of Na to K,
naturally leading to the consideration of its application in large-scale MIMO systems.

Since the core idea of semi-blind detection hinges on full exploitation of prior informa-
tion carried by both known pilots and estimated payload data, the efficiency of semi-blind
detection mainly depends on the efficiency of the preceding matrix completion processes
as illustrated in Line 4–13. As the scale of antennas or users increases, some computational
delays may arise. Fortunately, instead of adopting the conventional LMMSE/ALS, the
proposed ASD also offers advantages in terms of cost-effectiveness, which will be validated
by experimental results in Section 4.

Algorithm 1 The proposed sensing-assisted semi-blind detection with reduced pilot overhead

1: Input A(Θ̂) ∈ CNa×K, YΩ
c ∈ CNa×Tc , Xp ∈ CK×Tp

2: Randomly initialize G0 ∈ CK×K and V0 ∈ CK×Tc .

3: Set U0 = A(Θ̂)G0 and t = 0.

4: repeat

5: Step (1) Update Ut to Ut+1 as follows

6: Compute ∇ fV(U) = −(YΩ
c −PΩ(UV))VH

and tU = ||∇ fV(U)||2F/||PΩ(∇ fV(U)V)||2F.

7: U
′
t+1 ← Ut − tUt∇ fVt(Ut).

8: Ut+1 ← A(Θ̂)(AH(Θ̂)A(Θ̂))−1AH(Θ̂)U
′
t+1.

9: Step (2) Update Vt to Vt+1 as follows

10: Compute ∇ fU(V) = −UH(YΩ
c −PΩ(UV))

and tV = ||∇ fU(V)||2F/||PΩ(U∇ fU(V))||2F.

11: Vt+1 ← Vt − tVt∇ fUt+1(Vt).

12: Step (3) Update t to t + 1.

13: until Convergence

14: Get Σ← V̂(:, 1 ∼ Tp) · XH
p /Tp.

15: Output Ĥ = ÛΣ

3.3.2. Signal Denoising

Given that the estimation accuracy of the semi-blind method partially relies on as-
sumptions about the signal structure, it may suffer from pilot contamination and exhibit
performance degradation, especially in the presence of high noise levels. In this way, it may
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be beneficial to firstly recover the latent clean signal from the noisy observations before
performing the semi-blind detection for enhancing the reliability of payload data estimates.

With the recent development of deep learning, approaches based on CNNs have
achieved remarkable success in the task of signal denoising, among which DnCNN formu-
lated in [43] provides the state-of-the-art performance. Due to the integration of residual
learning and batch normalization in the network architecture design, DnCNN has been val-
idated to be highly effective in removing the Gaussian-type noise, which is exactly suitable
for our considered signal models, especially at high noise levels. Specifically, the residual
learning makes the inputs to each layer Gaussian-like distributed and less correlated with
the image content, therefore avoid oversmoothing at high noise level. Furthermore, batch
normalization alleviates the internal covariate shift by incorporating a normalization step
and a re-scaling step before the nonlinear layer, which makes the model less sensitive to the
noise level and generalizes well to inputs with strong noise. Moreover, DnCNN is shown
to be able to extend to general denoising tasks, for example, the blind Gaussian denoising,
which means the capacity of signal denoising without being informed of the noise level.
Based on the above reasons, we propose to apply the DnCNN as a preprocessing procedure
before performing the semi-blind detection, which aims to denoise the received signal
Yc ∈ CNr×Tc and expects better estimation accuracy in noisy environments.

Specifically, we choose to use the pre-trained model provided in [43] for Gaussian
denoising, which takes the noisy signals as the input and generates the residual noise as the
output. By subtracting the residual from the input, we then obtain the denoised signal Y

′
c.

It is worth noting that the model is without fine-tuning on our dataset because our signals
exhibit similar distributions with the Gaussian noise, which can be seen by comparing
Figure 3d,e, making it difficult for the DnCNN model to distinguish our signal from the
noise. In this way, if the model is trained using our dataset, it tends to overestimate the
noise level and over-smooth the input signal. On the contrary, the pre-trained model is
trained with natural images with distinct distribution from the Gaussian noise, which can
be seen by comparing Figure 3d,f, making it easier to implement proper denoising strength
and avoid over-smoothing the input signal. Therefore, the pre-trained model is adopted,
which not only saves the effort of the time-consuming training process but also enhances
the denoising accuracy.

(a) (b) (c)

(d) (e) (f)

Figure 3. Comparisons among sample signals of (a) Gaussian noise, (b) our signal and (c) natural
image, with corresponding histograms in (d), (e), (f), respectively. (e) exhibits similar distribution
with (d), while (f) is distinct from (d).
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The overall framework of our proposed sensing and deep CNN-assisted semi-blind
detection scheme for hybrid massive MU-MIMO systems is summarized in Figure 4, which
can be divided into three stages, i.e., target parameter sensing, communication signal
denoising and semi-blind detection refinement. In the sensing stage, the BS detects and
acquires the azimuth angles of target user equipments (UEs) by sending probing signals
and receiving echoes. Then, the uplink communication signals transmitted by UEs are
processed in the RF band and denoised by using the pre-trained DnCNN model. Finally,
based on the estimated angles and denoised signals, the refined semi-blind detection will
be performed at the communication module.

Stage 3)  Semi-Blind RefinementStage 1)   Target Parameter Sensing

BS sends probing 

signals and 

receives echoes

Stage 2) Communication Signal Denoising

UE transmits 

uplink pilots 

UE transmits 

payload data

Signal and 

noise subspace 

construction

Azimuth angles  

estimation at 

sensing module

BS combines 

received signals 

in RF band

Signal 

denoising by 

DnCNN

BS formulates a low-rank matrix 

completion problem

BS employs the ASD iterations to 

recover channel and data 

Refined semi-blind detection at 

communication module

Figure 4. The overall framework of the proposed sensing and deep CNN-assisted semi-blind detection.

4. Simulation Results

Simulation results are provided in this section to demonstrate the superior perfor-
mance of the proposed sensing and deep CNN-assisted semi-blind detection scheme. We
consider a hybrid massive MU-MIMO system as given in Figure 1, where K = 6 single-
antenna users tend to communicate with the BS-integrated radar and communication
modules. For the sensing module, the transmit and receive arrays of radar are equipped
with Ns = 64, and the length of snapshots are set to be Ts ≥ Ns. For the communication
module, the receiver is equipped with Na = 64 antennas and Nr = 32 chains. Here, we
assume the pilot sequences are mutually orthogonal with the pilot length satisfying Tp ≥ K.
In addition, we choose the payload data independently from the QPSK constellation with
unit average power. Moreover, all the scattering and reflection coefficients are supposed to
obey the standard complex Gaussian distributions.

4.1. The Proposed Transmission Frame

We firstly compare the channel estimation performance of adopting the multi-functional
transmission frame as shown in Figure 2 with some existing schemes, i.e., the conven-
tional pilot-only estimator [39] and the original semi-blind estimator relying solely on
the communication module without aid of radar sensing [27]. Specifically, the channel
estimation performance is evaluated by the normalized mean squared error (NMSE) de-
fined as NMSE = E[||Ĥ−H||2F ]/E[||H||2F ]. For fair comparison, we assume the process
of solving the low-rank matrix completion in Algorithm 1 is temporarily replaced by the
same ALS iteration as derived in [27], and the noise variance is approximated according
to SNR = 10lg(P̄/σ2) with P̄ being the average received power. The other configurations
for the transmission frame are set as Ts = 100, Tp = 2K and Td = 100. Unless otherwise
stated, each simulation result is obtained through Monte-Carlo with 1000 independent
channel realizations. Figure 5 depicts the NMSE performance versus SNR by using different
transmission schemes. We can observe that the proposed sensing-assisted scheme shows
significant performance gains especially with low SNRs compared to the alternative estima-
tors, which thanks to that more geometric information about the scattering environments
can be gleaned from the target sensing stage, while the other two schemes neglect the
structural characteristics of the multi-path channel models.

To further validate the superiority of utilizing radar sensing function to yield the
target angles rather than extracting the path angles from the roughly estimated channels
as conducted in [30], which designed a three-stage estimator (denoted by “TSTE”) and
suggested to obtain the knowledge of array responses directly from an initial low-rank
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channel estimate, Figure 6 illustrates the root mean squared error (RMSE) defined as

RMSE = 10lg
√
E[∑K

k=1 ||θ̂k − θk||22/K] to measure the performance of AoAs resolutions
of target users by using different detection schemes. Since the estimation deviation of
the subspace decomposition-based method mainly depends on the dimension of received
covariance matrix and some preset parameters such as the array spacing, we consider
two settings of d/λ. It can be seen that the proposed sensing-assisted detection scheme
achieves better resolutions, especially when the inter-element spacing is larger. Moreover,
it is noteworthy that the RMSE under our proposed scheme would improve as the SNR
increases, while that obtained by the TSTE estimator only fluctuates slightly versus different
SNR, which is reasonable because their path angles are learned from the low-rank matrix
solutions instead of straight from the received echoes, and the noise components have been
removed before constructing the signal subspaces.

0 1 2 3 4 5 6
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0.55

0.6
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N
M

S
E

Sensing-assisted transmission scheme

Semi-blind estimator without sensing

Conventional pilot-only estimator

Figure 5. The NMSE performance versus SNR by using different transmission schemes.
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TSTE scheme with d/ =0.6

Figure 6. The detection performance of AoAs resolutions under different schemes.
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4.2. Refined Semi-Blind Detection

Next, we illustrate the performance gain of our proposed Algorithm 1. To show the
advantage of performing semi-blind detection at the receiver rather than the LS/LMMSE-
based detection [37], suppose the comparison experiment is set as performing the LMMSE
channel estimation after obtaining the knowledge of target angles from the sensing module.
Considering two settings of pilot length, Tp = K and Tp = 1.5K, Figure 7 plots the NMSE
performance of channel estimation with different receiver schemes. From Figure 7, we
observe that the NMSE performance of Algorithm 1 outperforms the LMMSE method
even if the sensing module is involved, which indicates the necessity of exploiting low-
rank characteristics in massive MIMO systems to improve the estimation accuracy with
relatively lower pilots. In addition, we can note that the NMSE performance of Algorithm 1
improves as the length of data sequences Td increases, while the performance of LMMSE
remains almost the same in all settings. The reason is that by incorporating data into
the decomposition process of received signals, Algorithm 1 can take full advantage of
payload data as “virtual pilots” to glean more useful information over the conventional
pilot-only method.

0 20 40 60 80 100 120

T
d

0.35

0.4

0.45

0.5

0.55

0.6

M
S

E

Proposed Algorithm 1, T
p
 = K

Proposed Algorithm 1, T
p
 = 1.5K

LMMSE with sensing,T
p
 = K

LMMSE with sensing,T
p
 = 1.5K

Figure 7. The NMSE performance versus length of data sequences under different receiver schemes
with SNR = 2dB.

We then characterize the performances of Algorithm 1 in terms of the computational
efficiency and the estimation accuracy without any prior knowledge of channel or noise
statistics. By fixing Tp = K and Td = 100, Figure 8 depicts the convergence rates by
employing different types of iterations, where “R-ALS iteration” refers to the regularized
alternating least squares approach proposed by [27] for solving the formulated low-rank
matrix completion problem (26). As shown in Figure 8, both the ASD iterations presented
in Algorithm 1 and the R-ALS iterations will converge within limited iterations, and their
convergence behaviors are similar for different SNR levels. Although the convergence
rate of R-ALS iterations seems faster that that of ASD iterations, the calculations of Ut+1
and Vt+1 in Algorithm 1 avoid two matrix inversion operations for each iteration, which
would otherwise involve additional complexity with cubic order of the matrix dimension,
i.e., O(N3

a ). Therefore, the total computational overhead incurred by Algorithm 1 can be
relatively reduced especially with high-dimensional matrices.
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Figure 8. Convergence rates of adopting different iterative algorithms, where NMSE = E[||Ẑ−
Z||2F ]/E[||Z||

2
F ] with Ẑ = ĤX̂c.

To further validate the computational complexity of the proposed ASD approach, we
conduct more experiments compared with the conventional LMMSE and R-ALS, focus-
ing on their execution time and memory consumption. Following the principles of con-
trolled variable experimental methodology, and with reference to the results illustrated in
Figures 7 and 8, we initially quantify the averaged computational cost for all three ap-
proaches, under the conditions of SNR = 2 dB and the number of iterations set to 6.
Subsequently, given that the LMMSE approach would induce a single execution at the
receiver adhered to Equations (12) and (13) without convergence issues, we only record
the time and memory expenditures for the proposed ASD and R-ALS iterations by es-
tablishing the termination criterion as ϵ = ||Ĥt − Ĥt−1||2F/||Ĥt||2F < 0.01. The outcomes
are presented in Table 3, from which we can observe that the proposed ASD approach
exhibits lower time and memory consumption compared to its existing alternatives, thereby
demonstrating the advantages in reduced complexity and higher computational efficiency.

Table 3. Comparisons on computational cost by using different approaches.

Approaches Averaged Computational Cost Total Cost until Convergence

performance memory time memory time

proposed ASD 0.216 Kb 3.11 ms 10.22 Kb 22.80 ms
R-ALS 8.644 Kb 43.22 ms 46.61 Kb 86.96 ms

LMMSE 0.636 Kb 3.50 ms / /

In order to visualize the influence with unknown prior knowledge on the estimation
accuracy, Figure 9 compares the NMSE performance versus different SNRs by adopting
Algorithm 1 and the R-ALS-based estimator, which mimics and modifies the process in [27]
given the target angles. For the former scenarios without available noise, the maximum
iteration number is set to be tmax = 20; while for the latter, the regularization parameters
used to incorporate the prior information are set to be consistent with the noise variance.
It can be seen that benefiting from taking noise effect into account, the R-ALS estimator
performs better with low SNR values, which is owing to the non-negligible noise that
imposes great challenges on accurate estimations in such SNR ranges. Nevertheless, the
performance differences between two algorithms become narrow as the SNR increases,
and Algorithm 1 would even achieve better performance under the condition of higher
SNRs. By combining the results in Figure 8 and Table 3, we can conclude that our pro-
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posed Algorithm 1 is a good choice for refining semi-blind detection due to its comparable
performance and lower complexity.
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Figure 9. The NMSE performance versus SNR by adopting different iterative algorithms.

4.3. Signal Denoising by DnCNN

Finally, we confirm the effectiveness of signal denoising by DnCNN before perform-
ing semi-blind detection in low SNR regions. To evaluate the denoising performance
of adopting different DnCNN models for our received signal dataset, we select the pre-
trained DnCNN models in [43] for Gaussian denoising with specific noise levels (which
are referred to as DnCNN-15 and DnCNN-25) and for blind Gaussian denoising (which
is referred to as DnCNN-B) as comparisons. During the denoising phase, we succes-
sively obtain the output Ydenoise as the denoised data of the input Ynoisy = Yc. Suppose
the clean signal that refers to Ynoiseless is related to the combined results of HXc, then
the following performance metrics include NMSE and NMSE-Y defined as NMSE-Y =
E[||Ydenoise −Ynoiseless||2F ]/E[||Ynoiseless||2F ], which are used to measure the accuracy of chan-
nel estimation and signal denoising, respectively.

The averaged NMSE and NMSE-Y results over 1000 samples by adopting different
signal denoising models are shown in Table 4, where the best results for each SNR value
are highlighted in bold. As one can see, all the selected DnCNN models outperform
the competing method without signal denoising when SNR is below −2 dB due to the
consideration of noise influence in low SNR regions. In contrast, as the noise level decreases,
both DnCNN-25 and DnCNN-B produce better results on NMSE-Y while fail to reach
higher estimation accuracy, which is intuitively reasonable because the models with strong
denoising power are likely to distort the original signal structures. It is pleasant to find
that the model DnCNN-15, which is trained with lower noise level, can not only yield
the best denoising performance on most of the discussed SNRs but also generate better
channel estimates, which indicates the feasibility of deploying the signal denoising before
performing the semi-blind detection.
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Table 4. Performance comparison by adopting different signal denoising models.

SNR Value −5 dB −4 dB −3 dB

Selected Model NMSE-Y NMSE NMSE-Y NMSE NMSE-Y NMSE
Without DnCNN 3.1727 1.6561 2.5430 1.2967 1.9962 0.9956

DnCNN-15 1.5223 1.0362 1.1352 0.8159 0.8320 0.6679
DnCNN-25 0.8566 0.8875 0.8618 0.8951 0.8888 0.9199
DnCNN-B 0.9424 0.9635 0.9265 0.9488 0.8888 0.9042

SNR Value −2 dB −1 dB 0 dB

Selected Model NMSE-Y NMSE NMSE-Y NMSE NMSE-Y NMSE
Without DnCNN 1.6025 0.8733 1.2425 0.7477 0.9951 0.6051

DnCNN-15 0.6335 0.6242 0.4998 0.5947 0.4312 0.5720
DnCNN-25 0.9070 0.9363 0.9314 0.9552 0.9356 0.9610
DnCNN-B 0.9350 0.8631 0.8218 0.8875 0.7700 0.8672

5. Conclusions

In this paper, we have proposed a sensing and deep CNN-assisted semi-blind detec-
tion refinement scheme for uplink hybrid massive MU-MIMO systems. The main idea
is to extract the geometric structure corresponding to the communication channels via
radar sensing, based on which both the transmitted pilot and payload data are contributed
to yield the refined estimates. We have treated the signal recovery problem as acquir-
ing factorization solutions to a low-rank matrix completion, for which an iterative algo-
rithm modified from ASD is presented without any prior knowledge of noise statistics.
Specifically, a pre-trained DnCNN has been adopted for signal denoising to alleviate the noise
enhancement along with the LS-based estimation process, especially in low SNR regions.
The overall approach has been carried out in three progressive stages, i.e., target parameter
sensing, communication signal denoising and semi-blind detection refinement. Consequently,
simulation results have been provided to validate the superior performance of our proposed
scheme. It is seen that the utilization of co-designed multi-functional transmission frame and
the refined semi-blind receiver could achieve better estimation accuracy with reduced training
overhead, which facilitates the availability of sensing-assisted communications.

Despite the advancements introduced by the proposed architecture, focusing on
leveraging radar sensing capabilities to enhance communication gains, there still remain
several limitations requiring further investigation. Instead of relying on the coexistence
and information sharing between different modules, future work could develop more
powerful signal processing techniques to integrate radar and communication modules
into a unified hardware platform and decongest the RF environment by using the same
signal for both functionalities. In such a case, devising sophisticated signal models that
harmoniously incorporate the distinctions between LoS and multi-path channels might
unveil new dimensions of system performance.

Another crucial aspect that needs to be considered in future work involves the time-
varying property of propagation paths under user mobility scenarios, including time-delay
parameters and Doppler shift effects. This aspect necessitates the BS to pre-compensate
for these effects before demodulating the received signals for most robust detection perfor-
mance. Toward this end, we plan to explore the time-varying channel tracking algorithms
and compensation methods to mitigate the adverse effects of temporal fluctuations and
phase deviations on estimation errors, which should be of great importance to cater to
real-time applications.
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