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Abstract: Accurately estimating building heights is crucial for various applications, including urban
planning, climate studies, population estimation, and environmental assessment. However, this
remains a challenging task, particularly for large areas. Satellite-based Light Detection and Ranging
(LiDAR) has shown promise, but it often faces difficulties in distinguishing building photons from
other ground objects. To address this challenge, we propose a novel method that incorporates
building footprints, relative positions of building and ground photons, and a self-adaptive buffer
for building photon selection. We employ the Ice, Cloud, and Land Elevation Satellite 2 (ICESat-
2) photon-counting LiDAR, specifically the ICESat-2/ATL03 data, along with building footprints
obtained from the New York City (NYC) Open Data platform. The proposed approach was applied
to estimate the heights of 17,399 buildings in NYC, and the results showed strong consistency
with the reference building heights. The root mean square error (RMSE) was 8.1 m, and for 71%
of the buildings, the mean absolute error (MAE) was less than 3 m. Furthermore, we conducted
an extensive evaluation of the proposed approach and thoroughly investigated the influence of
terrain, region, building height, building density, and parameter selection. We also verified the
effectiveness of our approach in an experimental area in Beijing and compared it with other existing
methods. By leveraging ICESat-2 LiDAR data, building footprints, and advanced selection techniques,
the proposed approach demonstrates the potential to accurately estimate building heights over
broad areas.

Keywords: building height estimation; ICESat-2; LiDAR; building footprint; building photon selection

1. Introduction

Buildings account for 39% of global energy-related carbon emissions, according to
reports by the United Nations (UN) and the International Energy Agency (IEA) [1]. With
the world’s population projected to approach 10 billion by mid-century, the demand for
buildings is expected to double to 415 billion square meters, posing a significant challenge to
reduce carbon emissions and meet the Paris Agreement’s goal of limiting global warming to
below 2 ◦C [2]. Building height serves as a critical proxy for understanding vertical structure
and morphology, which are essential components when assessing building energy use [3,4].
Additionally, building height has important applications in urban planning [5], disaster
management [6,7], environmental surveillance research [8,9], population estimation [10–12],
and urban climate [13,14].
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Nowadays, there are various methods to obtain building height information. Be-
sides obtaining it from cadastral data [15] or three-dimensional (3D) models provided
by open-data platforms like 3D CityGML (three-dimensional City Geography Markup
Language) model [16] and OpenStreetMap [17]; some researchers also infer height predic-
tors based on factors such as population and local laws and regulations [18]. In addition,
building height information can be obtained through mapping technologies such as GPS
(Global Positioning System) and total stations [19,20], Light Detection and Ranging (Li-
DAR) measurement [21,22], synthetic-aperture radar (SAR) measurement [23–25], optical
remote-sensing measurement [26–28], digital surface model (DSM) [29,30], and multi-
source data fusion [21,24]. Among these methods, LiDAR is a relatively new technology in
the field of earth observation and is known for its high precision of measurement, good
orientation, and narrow beam. LiDAR can be carried on different platforms, including
ground, backpack, vehicle, unmanned aerial vehicle (UAV) or aircraft, and spaceborne,
among others [31]. Spaceborne LiDAR is particularly useful for acquiring building height
information from discrete measuring points over a large range and with high accuracy.
Currently, several laser data sources are commonly used in space, including Ice, Cloud,
and Land Elevation Satellite 1 Geoscience Laser Altimeter System (ICESat-1/GLAS) [32,33];
Ice, Cloud, and Land Elevation Satellite 2 Advanced Topographic Laser Altimeter System
(ICESat-2/ATLAS) [21,34–36]; Global Ecosystem Dynamics Investigation (GEDI) [37,38];
and Gaofen-7 [39], among which ICESat-2/ATLAS uses photon counting for more precise
and effective height data. ICESat-2/ATLAS uses photon counting to determine the measure-
ment position characteristics, including longitude, latitude, and elevation, by measuring
the round-trip time of photons and the laser position and attitude angle [34].

Despite its potential for extracting building heights, ICESat-2/ATLAS utilization
remains limited. Previous studies have primarily focused on estimating the heights of
different numbers of buildings, ranging from 10 to 1000, in various locations [21,35,40,41].
These locations encompass Beijing, China [35]; Hyderabad, India; Paris, France; Vancouver,
Canada [41]; Rajasthan, India [40]; and Shanghai, China [21]. However, it is important to
note that these studies have notable limitations as they fail to sufficiently account for the
spatial characteristics of buildings, ground, and other objects. Estimating building heights
in areas surrounded by green belts, vehicles, and viaducts poses a significant challenge.
Additionally, accurately determining building height is also hindered by issues related to
the building’s structure, density, and terrain factors [21,35,40,41].

New York City, known as NYC, offers an ideal environment for evaluating the accu-
racy and reliability of building height extraction methods. With its intricate network of
diverse building types and complex street layouts, the city poses a formidable challenge for
estimating building heights. NYC is located in the northeast of the United States and is one
of the most important ports and megacities in the world. The city has a variety of structures,
ranging from classic to modern and low-rise buildings to skyscrapers. In addition, street
widths in NYC vary by borough, with some streets being very wide and others very narrow.
Manhattan’s roads are mostly laid out in a grid pattern, with generally narrow streets.
In contrast, Brooklyn and Queens have relatively wider roads and smoother traffic flow.
Moreover, NYC has detailed building footprint data for model training and verification. By
using ICESat-2/ATLAS data to extract building heights in NYC, the accuracy and reliability
of the technology can be verified, and the method could then easily be applied to other
cities worldwide.

To address the current challenge, this study aims to establish an automated estimation
method that incorporates building footprints, relative positions of building and ground
photons, and a self-adaptive buffer for building photon selection. Emphasis is placed on
maximizing the retention of precise building photons and ground photons, while effectively
mitigating the influence of vegetation, vehicles, and other objects. The study is conducted
in New York City using ICESat-2/ATLAS data, along with building footprints obtained
from the NYC Open Data platform. An extensive evaluation of the effectiveness of the
proposed approach is conducted by investigating the influencing factors, testing in Beijing,
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and comparison with other existing methods. The resulting methodologies and datasets
hold significant potential for application in diverse urban environments.

2. Materials and Methods
2.1. Study Area

New York City is one of the largest and most important cities in the world, located
on the east coast of the United States. With a population exceeding 8,335,897 people in
2022, it is the most populous city in the US [42]. It had a gross regional product of USD
1514 billion in 2021, ranking first in the world [43]. The city covers an area of 300.45 square
miles and comprises five boroughs: Manhattan, Brooklyn, Queens, the Bronx, and Staten
Island [42]. Each borough has its unique character, architecture, and urban landscape.
From the bustling streets and towering skyscrapers of Manhattan to the tree-lined avenues
and brownstones of Brooklyn, the city’s diversity is reflected in its boroughs. As of 2018,
there were over 1.07 million buildings in New York City, covering approximately 65% of
the total area. This was calculated from building footprint data available at https://data.
cityofnewyork.us/Housing-Development/Building-Footprints/nqwf-w8eh (accessed on 1
November 2023). Given that the accuracy of building height estimation is influenced by
factors such as the environment, pattern, and height of a building, it becomes necessary to
consider a greater number of factors in complex environments. New York City, with its
rich architectural types, patterns, and heights, serves as an ideal location for experimental
study. The intricate and diverse environment of the city ensures that the used methods are
tested under realistic and challenging conditions, ultimately enhancing their reliability and
generalizability. Figure 1 shows the satellite image of the study area overlaid with multiple
beams of the ICESat-2 ground tracks. By establishing a high-precision building height
estimation approach in NYC, the compatible model can be applied to various environments
and has potential applications for other cities worldwide.

2.2. Data
2.2.1. ICESat-2/ATLAS

The ICESat-2 (Ice, Cloud, and Land Elevation Satellite 2) is a satellite mission launched
by NASA (National Aeronautics and Space Administration) in September 2018 [44], equipped
with the Advanced Terrain Laser Altimeter System (ATLAS) as its primary instrument.
ATLAS uses laser pulses to measure the height of ice caps, glaciers, sea ice, and vegetation
canopies on Earth’s surface with unprecedented precision. The ICESat-2 mission data are
available to researchers and the public through the National Snow and Ice Data Center
(NSIDC, https://nsidc.org/data/icesat (accessed on 1 October 2023)), which currently
offers 21 products in 3 levels, including ATL01-21, stored in HDF5 (Hierarchical Data
Format version 5) file format. For this study, we are using ATL03 production (Release 005,
ATL03 V005), which contains global geo-located photon data comprising time, latitude,
longitude, and elevation information for each photon event. This dataset allows us to
extract and analyze the height of buildings in New York City.

2.2.2. Building Footprints NYC

Building Footprints NYC is a joint project between the New York City Department of
Information Technology and Telecommunications (DoITT), the Department of Buildings
(DOB), and the Department of City Planning (DCP). Its goal is to create a detailed map of
New York City’s architectural footprint. The project provides information on the location,
size, floors, height, number of stories, year of construction, and purpose of buildings
in New York City in 2018. The data are available for download on NYC Open Data
platform (https://data.cityofnewyork.us/Housing-Development/Building-Footprints/
nqwf-w8eh (accessed on 1 November 2023)). We use this data to classify photons into
candidate ground photons and building photons. The building extraction results are also
verified by this dataset.

https://data.cityofnewyork.us/Housing-Development/Building-Footprints/nqwf-w8eh
https://data.cityofnewyork.us/Housing-Development/Building-Footprints/nqwf-w8eh
https://nsidc.org/data/icesat
https://data.cityofnewyork.us/Housing-Development/Building-Footprints/nqwf-w8eh
https://data.cityofnewyork.us/Housing-Development/Building-Footprints/nqwf-w8eh
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Figure 1. Map of New York City showing a portion of the ICESat-2 ground tracks. The yel-
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2.2.3. Landcover Raster Data (2010)

The high-resolution landcover raster data (2010) for New York City provides a detailed
and accurate landcover dataset with 96% overall accuracy and 3-foot spatial resolution. It was
created by the University of Vermont (UVM) spatial analysis laboratory using object-based
image analysis (OBIA) technology and various remotely sensed and vector geographic infor-
mation system (GIS) datasets. This data can be obtained from https://data.cityofnewyork.us/
Environment/Landcover-Raster-Data-2010-3ft-Resolution/9auy-76zt (accessed on 4 Novem-
ber 2023). The landcover dataset includes seven categories: canopy, grass/shrub, bare earth,
water, buildings, roads, and other paved surfaces. We utilize the canopy, grass, and other
paved surfaces categories from this dataset for filtering ground points.

2.2.4. World Settlements Footprint (2019)

The World Settlements Footprint (WSF, 2019, https://geoservice.dlr.de/web/maps/
eoc:wsf2019 (accessed on 10 November 2023)) is a dataset that provides a global repre-
sentation of human settlements. It is derived from multi-temporal images captured by
the Sentinel-1 and Sentinel-2 satellites in 2019. The images have a resolution of 10 m
and an accuracy range of 83–89%. The WSF dataset specifically captures the distribu-
tion of buildings. In our analysis, we utilize the WSF data to calculate the density of
buildings within a 100 m buffer zone surrounding the building profiles. This allows us
to better understand the distribution and concentration of buildings in relation to the
analyzed areas.

https://data.cityofnewyork.us/Environment/Landcover-Raster-Data-2010-3ft-Resolution/9auy-76zt
https://data.cityofnewyork.us/Environment/Landcover-Raster-Data-2010-3ft-Resolution/9auy-76zt
https://geoservice.dlr.de/web/maps/eoc:wsf2019
https://geoservice.dlr.de/web/maps/eoc:wsf2019


Remote Sens. 2024, 16, 263 5 of 24

2.2.5. Digital Elevation Model (DEM)

To assess the accuracy of building height estimation across diverse terrains, we utilized
the forest and buildings removed Copernicus DEM (FABDEM) dataset [45]. FABDEM
employs a machine-learning technique called the random-forest regression model. This
dataset is constructed by removing the height variations caused by buildings and trees
from the Copernicus 30 m global (GLO-30) digital elevation model (CopDEM30) dataset.

2.2.6. Test Data

In order to evaluate the applicability of the method, this study opted to perform
experiments in Beijing. The building footprint data utilized in the study were derived from
network data in 2018 (https://www.dilitanxianjia.com/ (accessed on 1 December 2023)),
with the number of floors serving as a means of verification. It was assumed that each floor
corresponded to a height of 3 m. The land use data employed in the study were generated
through a collaboration between the Environmental Systems Research Institute (ESRI),
Impact Observatory, and Microsoft, utilizing Sentinel-2 satellite data with a resolution of
10 m [46].

2.3. Methods

The method for extracting building height using ATL03 photons and building foot-
print data involves three main stages: preliminary noise removal, extraction of ground
and building photon, and accuracy assessment of height estimates. The methodological
framework is illustrated in Figure 2.

2.3.1. Preliminary Denoising

ATL03 V005 includes two parameters, photon quality (quality_ph) and photon signal
confidence (signal_conf_ph), to distinguish between noise and signal photons [47]. These
parameters indicate the quality and confidence level of each photon event selected as a sig-
nal per surface type (land, ocean, sea ice, land ice, and inland water). The “quality_ph” pa-
rameter has four possible values (0, 1, 2, and 3), representing nominal, possible_afterpulse,
possible_impulse_response_effect, and possible_tep, respectively. The “signal_conf_ph”
parameter has seven possible values (−1, −2, 0, 1, 2, 3, and 4), representing low to high
signal confidence, accordingly.

Typically, only photons with quality_ph = 0 and signal_conf_ph = 3 or 4 of a land
surface are retained as effective signal photons for further analysis. They are considered to
be high-quality signal photons with a high likelihood of being actual signals.

2.3.2. Extracting Building Photons and Ground Photons

Building photons and ground photons can be obtained initially by classifying signal
photons using building footprint data. However, accurately extracting building heights
from these photons is challenging due to several issues that need to be addressed:

i. The height of ground photons may not reflect the true base-level height (net ground
surface) of the building, leading to discrepancies in building height measurements
(Figure 3a). For instance, ground photons may fall on vegetation, depression, or other
artificial or natural objects, resulting in a building height that is either lower or higher
than the actual building height.

ii. Laser photons may not hit the highest point of the building, resulting in an inaccurate
measurement of the building height (Figure 3b).

iii. Building photons that fall on the edge of the building’s contour may not necessarily
be located on the building itself (Figure 3c).

https://www.dilitanxianjia.com/
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iv. Discrepancies in building height measurements can arise due to mismatches between
date of building construction, photon acquisition time, and building ground mea-
surement time (Figure 3d). For example, if a building is under construction during
field measurement but completed by the time the point cloud is acquired, the height
recorded in the point cloud may be greater than the height measured on-site.

v. Other issues include errors in manual data processing of building footprint data
(Figure 3e).
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To improve the accuracy of building height measurements, further processing of
ground and building points is necessary due to the issues mentioned above. This involves
three steps:

(1) Filtering ground photons

The obtained ground photons from building footprint data classification may not
accurately represent the reference heights of adjacent buildings due to inaccuracies as
described in problem i above. To solve this problem, we performed three operations:

a. Sifting ground photons using landcover raster data to remove points that fell on tree
canopy, grass/shrub, and other paved surfaces.

b. Applying a density-based radius filtering method with a range of 5 m and at least
3 supporting photons within this range to remove outliers while retaining useful
information.

c. Calculating the height difference between adjacent photons along the track direc-
tion to remove abnormal ground relief. If the absolute value of the height differ-
ence between photon t and its next photon was greater than h meters (Formula (1),
|∆Ht| > h), the position of the photon t was considered the starting point of terrain
relief. Along the track direction, when photon t + n encountered an absolute value of
height difference greater than h meters again (Formula (2), |∆Ht+n| > h), the position
of the photon t + n was considered as the end point of terrain relief. The distance (D,
Formula (4)) between photon t and photon t + n and the height difference between
photon t and photon t + n (∆H, Formula (3)) were calculated. If the absolute value of
the height difference was less than n meters and the distance was less than m meters
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(|∆H| < m, D < d), the terrain relief was considered abnormal, and all photons
between photon t and photon t + n were removed (Formula (5)).

∆Ht = Ht − Ht+1 (1)

∆Ht+n = Ht+n − Ht+n+1 (2)

∆H = Ht+n+1 − Ht (3)

D =

√
(Xt+n − Xt)

2 + (Yt+n − Yt)
2 (4)

(|∆Ht| > h) ∪ (|∆Ht+n| > h) ∪ (|∆H| < m) ∪ (D < d) (5)

The notation used in these formulas includes:

t: the index of the t-th photon along the track;
t + n: the index of the (t + n)-th photon along the track;
Ht: the height of the t-th photon;
∆Ht: the height difference between the t-th and (t − 1)-th photons along the track;
∆H: the height difference between the (t + n)-th and t-th photons along the track;
Xt: the abscissa of the t-th photon under the UTM projection;
Yt: the ordinate of the t-th photon under the UTM projection;
D: the Euclidean distance between the t-th and (t + n)-th photons along the track;
h, m, and d: constant variable.

To determine the optimal values of h, m, and d, we conducted an experiment using a
control variable method, randomly selecting 50 tracks that passed through the urban area
of New York City (Figure A1). Firstly, we held the d constant and adjusted the values of
h and m (Table 1). We then selected the optimal values of h and m (hbest and mbest) by
comparing the resulting accuracy in estimated building height. Once the optimal values
of h and m were determined, we held them constant and adjusted the d (Table 2). We
selected the final value of d based on the resulting change in precision. This allowed us to
evaluate the impact of each parameter on building height accuracy while holding other
factors constant.

Table 1. Variable threshold (h, m) setting during filtering ground photons.

h (m)
(|∆Ht| and |∆Ht+n| > h)

m (m)
(|∆H| < m)

d (m)
(D < d)

2 5 1000
2 7 1000
2 10 1000
2 13 1000
2 16 1000
3 5 1000
3 7 1000
3 10 1000
3 11 1000
3 13 1000
3 16 1000
4 10 1000
5 7 1000
5 10 1000
5 13 1000
5 16 1000
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Table 2. Variable threshold (d) setting during filtering ground photons.

h (m)
(|∆Ht| and |∆Ht+n| > h)

m (m)
(|∆H| < m)

d (m)
(D < d)

hbest mbest 100
hbest mbest 300
hbest mbest 500
hbest mbest 700
hbest mbest 900
hbest mbest 1000
hbest mbest 1100
hbest mbest 1300

(2) Filtering building photons

Accurate placement of building photons is indeed crucial for successful building
height extraction and avoiding problems ii and iii. The presence of diverse building types
(Figure 4) and non-uniform photon distribution on the ground objects (Figure 3) can pose
challenges in this process. To address this, the following method is employed to ensure that
the identified building points correspond to actual buildings. Regardless of the shape of
the building, the distance between the building photons and the geometric midpoint of the
building footprint is calculated. Photons within a distance of less than a certain threshold
are retained, while those outside this range are removed (Figure 4).

Remote Sens. 2024, 16, 263  10  of  25 
 

 

improve the accuracy of building extraction and ensures the amount of extracted building 

heights. 

 

Figure  4.  Selection  of  building  photons.  In  (a),  represents  a  square  building,  (b)  represents  an 

irregular building, (c) portrays a building with an open space  in the center, and (d) showcases a 

multi-story building with varying sizes. 

(3)  Building height estimation 

The  building  height  estimation  process  involves  using  the  nearest-neighbor 

algorithm  to  predict  and  reconstruct  the  ground  surface  and  calculate  the  difference 

between  building  photons  and  the  ground  as  the  height  of  the  building. However, 

problems ii and iv persisted despite this method. To address these issues, two additional 

operations were implemented based on the actual situations. 

The highest point of the remaining building photons within each filtered building 

contour is assumed to represent the building’s height. This is on the assumption that the 

measured height of a building is generally the highest height, and all remaining building 

photons are valid and reliable after filtering. This is common especially when the top of a 

building is not flat. 

To avoid errors caused by ground photons being misclassified as building photons 

and  resulting  in a building height below 2.8 m, a condition  is set  that  the point cloud 

building  height must  be  greater  than  2.8 m.  This  threshold  is  based  on  the  fact  that 

typically the lowest roof height is around 2.8 m, ensuring that only valid building points 

are included in the calculation of building height. 

2.3.3. Accuracy Evaluation 

To ensure accuracy in the comparison of building heights, we took into account that 

the building footprint data included structures that were planned but not yet constructed. 

Consequently, these buildings were measured with a height of less than 2.8 m (Figure 3d). 

In order to mitigate the height error caused by the time difference, we removed the data 

corresponding  to  measured  buildings  with  a  height  below  2.8  m.  This  step  helped 

eliminate  the  potential  impact  of  incomplete  construction  on  the  height  comparison 

between the ATL03 building data and the measured building data. 

The accuracy of the ATL03 building height extraction was evaluated using several 

primary indices including determination coefficient (R2), root mean square error (RMSE), 

Figure 4. Selection of building photons. In (a), represents a square building, (b) represents an irregular
building, (c) portrays a building with an open space in the center, and (d) showcases a multi-story
building with varying sizes.

To optimize the accuracy of building extraction and select the most suitable approach,
different candidate thresholds are prepared and tested, ranging from 0 to 12/12 of the
minimum building footprint width. The optimal threshold is determined by balancing
the accuracy and number of buildings extracted. This iterative process helps improve the
accuracy of building extraction and ensures the amount of extracted building heights.

(3) Building height estimation

The building height estimation process involves using the nearest-neighbor algorithm
to predict and reconstruct the ground surface and calculate the difference between building
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photons and the ground as the height of the building. However, problems ii and iv persisted
despite this method. To address these issues, two additional operations were implemented
based on the actual situations.

The highest point of the remaining building photons within each filtered building
contour is assumed to represent the building’s height. This is on the assumption that the
measured height of a building is generally the highest height, and all remaining building
photons are valid and reliable after filtering. This is common especially when the top of a
building is not flat.

To avoid errors caused by ground photons being misclassified as building photons and
resulting in a building height below 2.8 m, a condition is set that the point cloud building
height must be greater than 2.8 m. This threshold is based on the fact that typically the
lowest roof height is around 2.8 m, ensuring that only valid building points are included in
the calculation of building height.

2.3.3. Accuracy Evaluation

To ensure accuracy in the comparison of building heights, we took into account that
the building footprint data included structures that were planned but not yet constructed.
Consequently, these buildings were measured with a height of less than 2.8 m (Figure 3d).
In order to mitigate the height error caused by the time difference, we removed the data
corresponding to measured buildings with a height below 2.8 m. This step helped eliminate
the potential impact of incomplete construction on the height comparison between the
ATL03 building data and the measured building data.

The accuracy of the ATL03 building height extraction was evaluated using several
primary indices including determination coefficient (R2), root mean square error (RMSE),
mean absolute error (MAE), and bias. The R2 was used to measure the goodness-of-fit
between the predicted and measured building heights. A higher R2 value indicates a better
fit between the predicted and measured values. RMSE is another index used to evaluate
the accuracy of the predicted building heights. RMSE measures the average deviation
between the predicted and measured values. A lower RMSE value indicates a higher
degree of accuracy. MAE is the absolute average difference between the predicted and
measured values. It provides an indication of the overall magnitude of the prediction
errors, regardless of their direction. A lower MAE value also indicates a higher degree of
accuracy. Bias represents the systematic difference between the predicted and measured
values. A positive bias indicates that the predicted values are consistently higher than the
measured values, while a negative bias indicates the opposite. Bias can be calculated as the
difference between the mean predicted and measured values.

R2 = 1 − ∑(HATL03 − HO)
2

∑ (HATL03 − HO)
2 (6)

RMSE =

√
∑(HATL03 − HO)

2

n
(7)

MAE =
∑|HATL03 − HO|

n
(8)

Bias =
∑ (HATL03 − HO)

n
(9)

The notation used in these formulas includes:

HATL03: estimated building heights based on ATL03 data;
HO: observed building height;
n: number of variables.

In summary, the evaluation of accuracy indices provides useful insights into the
performance of the proposed building height extraction method using ATL03 data. The
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results can help identify any limitations or issues related to the method, as well as suggest
possible improvements for future research.

2.4. Parameter Sensitivity Analysis

In this model, the accuracy of building height extraction can be influenced by the
parameter thresholds h, m, and d in the ground point filtration process, as well as the
parameter thresholds p in the building photon selection process. To assess the impact of
threshold changes on the results and evaluate its scalability, we conducted a single-factor
sensitivity analysis on the accuracy evaluation index RMSE of the research object.

In this analysis, we kept all other factors constant and only modified one single factor
by either 30% or 33% at each time. We then observed the change in the accuracy evaluation
index RMSE and calculated the sensitivity of each parameter threshold using Formula (10).
The sensitivity coefficient indicates the degree of sensitivity of the variable to the precision
evaluation index RMSE. A higher sensitivity coefficient implies a greater sensitivity of the
variable to the RMSE.

SVF =
∆RMSE

∆F
(10)

where SVF represents the sensitivity coefficient of the evaluation index to the uncertainty
factor F, ∆RMSE represents the percentage change in the evaluation index RMSE when
the uncertainty factor F changes by ∆F, and ∆F represents the rate of change (%) of the
uncertainty factor F that is being examined.

2.5. Analysis of the Influence of Building Number and Building Height Estimation Accuracy

To analyze the influence of the number of buildings on accuracy, we conducted an
analysis using a random sampling method with 100 iterations. Two sampling methods
were employed:

a. Analysis based on New York City’s boroughs: We analyzed the relation between
building number and estimation accuracy within each borough.

b. Mixed analysis of all New York City boroughs: In each iteration, a fixed number of
buildings were selected from each district for the purpose of spatially representative-
ness, and they were aggregated together to compute an overall accuracy.

3. Results and Discussion
3.1. Building Height Estimation

This study used ATL03 data to extract the heights of 17,399 buildings in New York City
and verified the results with the building heights in Building Footprints NYC. Figure 5a
shows a linear relationship between the estimated building height from ATL03 and the
measured building height from Building Footprints NYC, with an RMSE of 8.1 m and
MAE of 3 m. The majority of the buildings (71%) had an absolute difference of less than
3 m, while 93% had a difference of less than 10 m. Furthermore, 69% of the buildings
demonstrate a relative error of less than 30% (Figure 5b).

Moreover, this study delved into buildings displaying significant disparities between
the estimated and measured heights. This investigation revealed that such differences
primarily stem from two underlying issues (Figure 5c,d). The first issue relates to the fact
that the ATL03 signal photon does not always align with the highest point of the building
(Figure 5c). This is an inherent limitation of satellite-based laser data, which can only
provide the height of the photon along its orbital path. Efforts have been made to address
this by extracting the maximum height of the building from the available data. The second
issue arises from potential recording errors in building footprint during the manual data
collection process, which are challenging to completely eliminate (Figure 5d). Buildings in
some areas may have changed due to time, but they are probably not updated timely.
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Figure 5. Accuracy of building height estimation. In (a), a scatter plot compares the mea-
sured building height of BuildingFootprints NYC with the estimated building height from ATL03.
(b) displays the frequency distribution of the absolute difference and relative error between the
measured and estimated building heights. Additionally, (c,d) highlight the main instances of outliers
observed in (a). Within the figure, the red polygons depict building footprints, while the yellow dots
represent photons. The red numbers indicate the height of the building footprint markers, whereas
the blue numbers indicate the height of the photon markers, measured in meters.

Overall, the study demonstrates that the proposed method effectively extracts building
heights using ATL03 data.

3.2. The Instability of Model Parameters
3.2.1. Parameters of Ground Photon Screening

Variations in terrain can have a significant impact on the accuracy of building height
estimation, especially in regions with high relief. This is because the elevation of sur-
rounding ground photons can influence the accuracy of building height estimates. Terrain
fluctuation caused by vegetation or other nearby structures can also create more than 10-m
differences in ground height of the adjacent streets, resulting in building height estimation
errors (Figure 3a–c). To address this issue, we filter ground points to remove abnormal
terrain relief.

It has been observed that the selection of the threshold values has a significant impact
on the results obtained. Specifically, when the D < 1000 m, the best results were obtained
when |∆Ht| and |∆Ht+n| > 10 m, and |∆H| < 3 m, yielding an RMSE of 11.02 m
and an R2 of 0.63 (Figure 6a,b). By keeping the same threshold condition of |∆Ht| and
|∆Ht+n| > 10 m, and |∆H| < 3 m, and adjusting the value of d, the best result was achieved
with the D < 700 m, yielding an RMSE of 10.99 m and an R2 of 0.63 (Figure 6c).
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Figure 6. Accuracy under different parameter settings. Figure (a,b) demonstrate that the threshold d
remain unchanged, while the R2 and RMSE vary with the variable thresholds m and h. On the other
hand, Figure (c) illustrates that the thresholds m and h remain constant, and the precision RMSE
changes with the variable threshold d.

Removing abnormal terrain fluctuations improved the results, increasing the R2 by
0.03, decreasing the RMSE by 0.68 m, and increasing the number of estimated buildings
by 90 (Figure 7). However, some abnormal points remained due to inconsistencies in
data between ATL03 photon height and measured data (Figures 7 and A2). Extraction of
buildings on complex terrain is challenging and has practical limitations.
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3.2.2. Parameters of Building Photon Screening

Measurement tools and computational limitations methods can cause building silhou-
ettes to not fully overlap with the actual building, leading to errors in classification and
height extraction (Figure 3d,e). To reduce these errors, we used statistical techniques to
filter the data by calculating the distance between ICESat-2/ATL03 building photons and
the building footprint’s geometric center. We reserved appropriate building photons using
various distance thresholds and determined the building extraction accuracy (Figure 8).
Lowering the distance threshold and only keeping the central photons increased extraction
accuracy but reduced the number of extracted buildings significantly. When the distance
threshold reduced from 1 to 0, the RMSE of building extraction accuracy increased by
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7.4 m, and R2 decreased by 0.15. However, the number of extracted building heights
reduced dramatically by 98.6% (from 5456 to 75). It should be noted that when there is a
building with a ring structure, choosing a smaller threshold value may cause the retained
building photons not to fall on the actual building, resulting in incorrect extracted building
height. Therefore, it is crucial to choose a reasonable distance threshold to balance the
accuracy and number of remaining buildings. A threshold of 5/12 of the minimum build-
ing footprint width was finally chosen for a balance between accuracy and the number
of extracted buildings, resulting in an RMSE of 10.1 m, an R2 of 0.62, and an N of 3877
(Figure 8). It is important to note that the results also have the issues of data consistency
raised in question v.
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Figure 8. Accuracy and number of the estimated building height under different distance thresholds.
The distance is represented by the portion of the minimum width of the building footprint between
the photons and the geometric center of the building.

3.2.3. Variable Sensitivity Analysis

Based on the single-factor sensitivity analysis, it was found that the accuracy eval-
uation index RMSE is most sensitive to the threshold value p, moderately sensitive to
threshold h and d, and least sensitive to the m value (Table 3). This implies that the error
between the true value and the estimated value is primarily influenced by the value of p.
Lowering the threshold value p results in a decrease in the RMSE, as the error is reduced.
However, this also leads to a decrease in the number of retained building photons and the
number of extracted building heights (Figure 8). Additionally, when complex building
structures appear, selecting a smaller threshold value p may cause the building photons
in the selected area to not align accurately with the actual building. Consequently, the
true building height cannot be obtained in such cases. On the other hand, increasing the
threshold value p leads to the selection of more building photons, which may improve the
RMSE. However, if the threshold value p becomes too large, problem iii arises (Figure 3c).
In this case, the filtered building photons may fall on the contour edge of the building, such
as vegetation, rather than on the actual building. As a result, there are more significant
differences between the estimated building height and the true value, leading to a decrease
in the coefficient of determination (R2) and an increase in the RMSE (Figure 8). It is evident
that the threshold value p significantly affects both the quantity and quality of the screened
building photons. Therefore, careful consideration should be given to selecting an appro-
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priate threshold value p. Balancing the trade-off between reducing the RMSE and ensuring
accurate building height estimation is crucial.

Table 3. Sensitivity coefficient of RMSE to parameters. m, h, d, and p are the parameter thresholds in
the model that affect RMSE. ∆F represents the rate of change of the parameter threshold. ∆RMSE
represents the rate of change of RMSE when F changes ∆F. SAF is the sensitivity coefficient.

Variables m h d p

∆F 33% −33% 30% −30% 30% −30% 33% −33%
∆RMSE 2.20% 0.80% 1.40% 2.20% 1.00% 2.40% −0.60% −3.50%
SAF 0.07 −0.02 0.05 −0.07 0.03 0.08 −0.02 0.11

Threshold values for h, d, and m play a crucial role in the filtration of ground points.
These thresholds are essential in identifying and filtering out ground points that may be
located in depressions, vegetation, or viaducts. The presence of these points can distort the
surface of the terrain, resulting in inaccurate extraction of building height. Among these
thresholds, the threshold value “d” determines the degree to which abnormal relief in the
terrain is considered. If the threshold value “d” is set too low, it may fail to identify similar
points located on vegetation or other objects as abnormal. Conversely, if the threshold
value “d” is set too high, it may mistakenly flag actual topographic relief as abnormal,
leading to erroneous building height extraction and a higher RMSE. The threshold value
“h” determines the minimum height difference between adjacent ground points that is
recognized as an anomaly. Similarly, the threshold value “m” determines the threshold for
the termination of a complete anomalous topographic relief. Setting excessively large or
small values for h and m can introduce errors in ground surface fitting and increase the
RMSE of extracted building height.

3.3. The Expansibility Analysis of the Model

In order to analyze the scalability of the method in different regions, we added a test
in Beijing. A typical core urban area within the second ring road in Beijing was chosen
as our testing area (Figure A3), and a total of eight buildings were randomly selected for
estimation using the data from two tracks of ATL03. The verification data used were the
number of building floors from the land register, and it was assumed that each building
had a height of 3 m (Table 4). The results showed that for both high-rise and low-rise
buildings, the absolute error was less than 2.1 m, and the relative error was less than 37%.

Table 4. Accuracy of height estimation of eight buildings in Beijing.

Building No. Measured Building
Height (m)

Estimated Building
Height (m) Absolute Error (m) Relative Error (%)

1 3 2.96 0.04 1
2 3 3.25 −0.25 8
3 6 6.28 −0.28 5
4 18 18.75 −0.75 4
5 3 3.27 −0.27 9
6 3 4.12 −1.12 37
7 3 4.11 −1.11 37
8 66 68.13 −2.13 3

Additionally, we calculated the accuracy distribution of building height estimates
in New York City based on factors such as slope, region, building density, and height
(Figure 9). The analysis revealed several interesting findings. Firstly, it was observed
that the majority of buildings (10,172) were situated on terrain characterized by a slope
of less than 1 degree, accounting for 58% of the total number. These buildings had the
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highest accuracy, with an RMSE of 4.7 m (Figure 9a). As the slope increased, the number of
buildings decreased along with the accuracy.
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Furthermore, the study evaluated the building height estimation accuracy in the five
administrative regions of New York individually (Figure 9b). The Queens area exhibited
the highest accuracy, with an RMSE of 4.9 m. Notably, the buildings in the Queens area
accounted for approximately 33% of the total number of buildings in New York. On the
other hand, the Manhattan area had the lowest accuracy, with an RMSE of 22.7 m and
comprised 7% of the total number of buildings. The low accuracy in this area can be
attributed to the presence of numerous tall buildings. Accurate height estimation relies
on the ATL03 signal photon accurately hitting the highest point of a building, which is
challenging to guarantee in such cases.

In addition, the study examined the height estimation accuracy of buildings with
different heights and densities (Figure 9c,d). It was found that the accuracy decreased with
increasing building heights. Buildings below 20 m had higher accuracy, with an RMSE
of less than 6 m, and accounted for 91% of the total number. Among these, buildings
between 7 and 10 m had the highest accuracy, reaching 3.9 m. The extraction accuracy
of different building densities also varied significantly. Moreover, the accuracy of height
extraction varied significantly based on building density. Interestingly, the highest density
corresponded to the best accuracy, with buildings having a density greater than 0.7 within
100 m2 accounting for 42% of the total number and an RMSE below 7 m.

Upon analyzing the complexity of buildings and the accuracy of building height
estimation, we have discovered that the accuracy of height estimation is not necessarily
dependent on the building structure. Both complex and simple buildings exhibit a mix of
accurate and inaccurate height estimations (Figure 10). However, it is important to note
that the estimation error may be more pronounced for high-rise buildings with complex
structures. This is primarily due to the difficulty in ensuring that the photon accurately
falls on the highest point of such intricate buildings.
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Figure 10. The complexity of buildings and the accuracy of building height estimation. Figure
(a–d) depict the comparison between the estimated and measured building heights for different
levels of complexity in building structures. Within the figure, the red polygons depict building
footprints, while the yellow dots represent photons. The red numbers indicate the height of the
building footprint markers, whereas the black numbers indicate the height of the photon markers,
measured in meters.

It is worth noting that the number of buildings does impact the estimation of building
height (Figure A4). When the number of buildings is small, the estimated accuracy may
exhibit large instability, but the average accuracy tends to be high. However, as the number
of buildings increases sufficiently, the estimated accuracy of buildings becomes more stable,
albeit with a lower average accuracy.

As a result, our method demonstrates excellent scalability in regions characterized by
gradual changes in gradient, dense buildings, and low building heights. However, chal-
lenges may arise in areas with complex and tall building structures. This is predominantly
attributed to the positioning of ATL03 photons, which are utilized for extracting building
height. To mitigate these challenges, it is crucial to employ multiple tracks that sweep
through the area, thereby maximizing the photon coverage and enhancing the accuracy of
height estimation.

3.4. Comparing to Existing Method of Building Height Based on ICESat-2 Data

To further evaluate the performance of our method, we compared it with existing
building height estimation methods based on ICESat-2 data [21,35,40,41,48] (Table A1).
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Dandabathula’s and Goud and Bhardwaj’s studies relied on visual interpretation and were
not suitable for large-scale building height extraction [40,41]. Lao’s research employs a
combination of KD-Tree, random sample consensus (RANSAC) linear fitting, and statistical
techniques to differentiate ground photons from building photons, but this approach is
challenging to reproduce [35]. On the other hand, Wu and Zhao’s study [21] utilizes
the cloth simulation filter (CSF) method in conjunction with building footprint data to
effectively separate ATL03 photons from ground and building photons, making it a more
easily replicable experiment. To highlight the specific differences between our method
and others, we conducted a comparative analysis between our study and Wu and Zhao’s
study [21].

For this evaluation, we selected a typical core urban area within the second ring road
in Beijing as our testing area (Figure A3). We randomly extracted 18 buildings and used the
number of building floors from cadastral data as a verification metric, assuming a uniform
height of 3 m for each building. We then compared the accuracy and computational
efficiency of our method with that of Wu and Zhao’s study [21]. The results demonstrate
that our method exhibits a significant improvement in computational efficiency, reducing
the processing time by 209 s. Additionally, the RMSE decreased by 0.8 m compared to Wu
and Zhao’s study (Table 5).

Table 5. Compare the method of this study with that of Wu and Zhao’s study [21].

Comparing Aspects This Study Wu and Zhao’s Study [21]

Data requirement Building footprint data,
land use data Building footprint data

Accuracy (RMSE) 5.1 m 5.9 m
Time cost (seconds) 503.7 712.7

Moreover, compared to other methods, our approach fundamentally considers the
spatial characteristics of ground objects and data, making it more aligned with real-world
scenarios. As a result, our method has broader applicability across different environments.

3.5. Limitations and Further Work

While the automatic method of extracting building height from ICESat-2 assisted by
building footprint data is helpful and leads to the possibility of global building extraction,
there are limitations. Firstly, time-matching errors can occur during classifying the ATL03
photon cloud using building contour data, as they may be not obtained during the same
time period. Secondly, the position of building photons may affect the accuracy of building
height extraction. The irregular top structure of buildings means that photons may not
fall on the highest point of the building, resulting in a difference in height and potentially
leading to inaccuracies in building height extraction. Thirdly, quality in the dataset itself
can lead to errors in estimates of building height. Fourthly, the threshold in the model
plays a crucial role in determining the accuracy of extracting the height of the building. It is
important to set the threshold reasonably to ensure accurate results. Finally, the proposed
method can only obtain the height of buildings on the ICESat-2 track due to the cloud
point observation character. To address these limitations and obtain a large-scale (national
and global) full-coverage high-precision building height dataset, we propose the following
two solutions:

(1) Replacing the building footprint data with Microsoft Bing Maps, which offers global
building footprint data (excluding China) and can be accessed at https://github.com/
microsoft/GlobalMLBuildingFootprints (accessed on 1 December 2023).

(2) To construct comprehensive and detailed datasets, it is essential to integrate multiple
data sources. Consider the following points:

a. Integration of multi-spectral data: This involves incorporating data from vari-
ous sources such as Landsat, Sentinel, Moderate-Resolution Imaging Spectrora-

https://github.com/microsoft/GlobalMLBuildingFootprints
https://github.com/microsoft/GlobalMLBuildingFootprints


Remote Sens. 2024, 16, 263 19 of 24

diometer (MODIS), and others. By leveraging the spatial, spectral, or temporal
information present in multispectral images, it is possible to build more com-
prehensive and detailed datasets. Additionally, the fusion of multispectral or
hyperspectral image data with LiDAR data enables the creation of datasets that
capture changes in building height over time.

b. Utilization of advanced machine-learning or deep-learning techniques: The ap-
plication of techniques like convolutional neural networks (CNN) or recurrent
neural networks (RNN) can significantly enhance the classification accuracy
of the algorithms. These techniques excel in extracting features efficiently and
recognizing patterns. Employing them can greatly improve the effectiveness of
the dataset creation process.

4. Conclusions

In this study, we have introduced an automated method that utilizes ICESat-2 pho-
ton and building footprint data to extract building heights by selectively retaining high-
confidence building and ground photons. We draw several conclusions:

(1) Consideration of the spatial relationships between buildings and photons. By incor-
porating the spatial relationships between photons and buildings, ground, and other
objects, we enhance the classification accuracy of both ground photons and building
photons. The inclusion of spatial context and the use of a self-adaptive buffer for build-
ing photon selection improve the confidence of building photon identification. This
comprehensive approach leads to improved accuracy in building height estimation;

(2) Good performance in New York City. The proposed method was successfully applied
to estimate the heights of 17,399 buildings in New York City, achieving an RMSE of
8.1 m. Moreover, approximately 71% of the buildings exhibited an absolute difference
of less than 3 m, demonstrating the effectiveness of our approach in a complex
urban environment;

(3) Strong robustness in varied conditions. The method demonstrated suitability for
retrieving building heights under diverse conditions; its effectiveness can be extended
to various geographical contexts.

However, it is important to acknowledge the limitations inherent in the discrete
distribution of buildings obtained from ICESat-2 data. To overcome this limitation, future
research should focus on merging multi-source data, such as optical images, SAR images,
or digital surface model data, to obtain spatially continuous, large-scale, and high-precision
building height datasets.
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Remote Sens. 2024, 16, 263 21 of 25 
 

 

(accessed on 4 November 2023). World Settlements Footprint (2019) can be freely downloaded from 

https://geoservice.dlr.de/web/maps/eoc:wsf2019 (accessed on 10 November 2023). 

Conflicts of Interest: The authors declare that they have no known competing financial interests or 

personal relationships that could have appeared to influence the work reported in this paper. 

Appendix A 

 

Figure A1. Map of New York City showing 50 ICESat-2/ATL03 ground tracks. The yellow lines in-

dicate the satellite’s path and represent the photon-counting events collected by the ATLAS instru-

ment. The red line denotes the administrative boundaries of New York City. 

 
Figure A2. Examples of outliers that persist even after the removal of abnormal terrain fluctuations.
Figure (a,b) display two position relationships between signal photons and the building, respectively.
In the figure, the red polygons depict building footprints, while the yellow dots represent photons.
The red numbers indicate the height of the building footprint markers, whereas the blue numbers
indicate the height of the photon markers, measured in meters.
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Figure A4. The relationship between the number of buildings and the accuracy of building height
estimates. To generate reliable results, we randomly sampled 100 times for each number of buildings.
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Table A1. Comparison of building height extraction methods based on ICESat-2 data.

Study Study Area The Number of
Buildings Reference Sources Precision

This study New York, USA 17,399 BuildingFootprints NYC RMSE = 8.1 m, MAE = 3 m

Lao’s study [35] Haidian, Beijing, China 75
The field measurement used
Rigel VZ-1000 laser
scanning system

RMSE = 0.35–0.45 m

Dandabathula’s study [40] Jaipur city, India 10
The field measurement used
zero-elastic carpenter’s thread
(scientific grade)

MAE = 0.13 m

Goud and Bhardwaj’s
study [41]

Hyderabad, Paris
and Vancouver 30

Determined the number of
floors for each sample
building utilizing Google
Images and Google Earth Pro

RMSE = 2.04 m

Wu and Zhao’s study [48]
Wujiaochang in the
Yangpu District of
Shanghai, China

468

The Digital Surface Model
(DSM) data provided by
Shanghai Surveying and
Mapping Institute

RMSE = 6.75 m, MAE = 4.70 m

Wu and Zhao’s study [21] The city center of
Shanghai, China 1176

The Digital Surface Model
(DSM) data provided by
Shanghai Surveying and
Mapping Institute

RMSE = 3.23 m, MAE = 2.33 m
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