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Abstract: In this research, E2YOLOX-VFL is proposed as a novel approach to address the challenges of
optical image multi-scale ship detection and recognition in complex maritime and land backgrounds.
Firstly, the typical anchor-free network YOLOX is utilized as the baseline network for ship detection.
Secondly, the Efficient Channel Attention module is incorporated into the YOLOX Backbone network
to enhance the model’s capability to extract information from objects of different scales, such as large,
medium, and small, thus improving ship detection performance in complex backgrounds. Thirdly,
we propose the Efficient Force-IoU (EFIoU) Loss function as a replacement for the Intersection over
Union (IoU) Loss, addressing the issue whereby IoU Loss only considers the intersection and union
between the ground truth boxes and the predicted boxes, without taking into account the size and
position of targets. This also considers the disadvantageous effects of low-quality samples, resulting in
inaccuracies in measuring target similarity, and improves the regression performance of the algorithm.
Fourthly, the confidence loss function is improved. Specifically, Varifocal Loss is employed instead
of CE Loss, effectively handling the positive and negative sample imbalance, challenging samples,
and class imbalance, enhancing the overall detection performance of the model. Then, we propose
Balanced Gaussian NMS (BG-NMS) to solve the problem of missed detection caused by the occlusion
of dense targets. Finally, the E2YOLOX-VFL algorithm is tested on the HRSC2016 dataset, achieving
a 9.28% improvement in mAP compared to the baseline YOLOX algorithm. Moreover, the detection
performance using BG-NMS is also analyzed, and the experimental results validate the effectiveness
of the E2YOLOX-VFL algorithm.

Keywords: ship; detection; classification; deep learning; YOLOX; optical remote sensing

1. Introduction

Remote sensing images are obtained by sensors carried by satellites, aircraft, and other
platforms, allowing for observation of the Earth’s surface. One notable characteristic is
their ability to capture large-scale data in a short period of time. Remote sensing images
typically include information about objects such as rivers, farmland, forests, roads, cars,
airplanes, and ships. Utilizing remote sensing images for object detection is an important
application area. Ships hold significant importance, as they are crucial targets at sea, and
automated ship detection and recognition play a vital role in gaining maritime control.
Therefore, in-depth research on ship detection and recognition is essential.

Currently, remote sensing images employed for ship detection include Synthetic
Aperture Radar (SAR) images, visual images, infrared images, and hyperspectral images.
Among these, SAR and visual images are the most widely employed. Although SAR has
the advantage of being able to see through clouds, SAR images lack visual intuitiveness and
cannot provide detailed information such as ship material attributes [1–3]. Visual images
obtained through optical remote-sensing technology offer a more realistic representation of
color information of targets and backgrounds. They exhibit prominent structural features,
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making them unmatched in the domain of ship detection and classification in maritime
regions compared to other image sources [4].

The detection and classification of ship targets in optical remote sensing images can be
categorized into conventional approaches and deep learning-based techniques.

1. Conventional detection approaches often involve multiple steps and have limited
accuracy. For instance, in [5], ship detection is achieved using image edge intensity,
which is effective in distinguishing between ships and nonships and obtains a 95% de-
tection accuracy. He et al. [6] utilized texture fractal dimension and gap features for
ship detection. This method effectively eliminates the impact of sea clutter on the
detection results, achieving good detection results under different signal-to-noise
ratios. Furthermore, it is not affected by occlusion and rotation of moving targets,
demonstrating better robustness compared to traditional methods based on target
shape and point-line structures. In [7], utilizing the differences in multi-scale fractal
features between ship targets and background images, the interference of sea and
sky backgrounds on ship detection has been effectively eliminated. The experimental
results demonstrate that this method can accurately and effectively detect targets, with
a 97.1% detection rate and a 9.5% false alarm rate. Li et al. [8] used an image-based
maritime ship detection method based on fuzzy theory, effectively eliminating false
targets and efficiently and accurately detecting ship targets in images. Its Figure
of Merit (FoM) is 25% higher than the CFAR algorithm. Zhao et al. [9] proposed a
ship detection method combining multi-scale visual saliency, capable of successfully
detecting ships of different sizes and orientations while overcoming interference from
complex backgrounds. This method achieved a detection rate of 93% and a false
alarm rate of 4%. Wang et al. [10] employed maximum symmetric surround saliency
detection for initial candidate region extraction and combined ship target geometric
features for candidate region pre-filtering, achieving ship detection even in complex
sea backgrounds. The detection accuracy is 97.2%, and the detection performance
is better than most ship detection algorithms. Though these methods make use of
the strong perception ability of the human visual system for nearby objects, they face
challenges in selecting salient features due to factors such as atmospheric conditions,
marine environments, and imaging performance.

2. In contrast, deep learning methods have gained considerable momentum due to their
advantage in extracting diverse deep features containing semantic information from
labeled data, thereby achieving higher accuracy compared to traditional methods.
Deep learning algorithms can generally be divided into two distinct categories [11].

The first category includes two-stage algorithms, which separate the task of detection
into region proposal and candidate region classification stages. Though they achieve high
accuracy, these algorithms often sacrifice computational speed. One of the most well-
known methods among various candidate region extraction approaches is Region with
CNN feature (R-CNN) proposed by Girshick et al. [12]. Fast R-CNN [13] was introduced
to address the laborious training steps as well as time and memory consumption in R-
CNN, resulting in significant improvements in performance and computational efficiency.
Faster R-CNN [14] shares the convolutional layers between the candidate region generation
network and the R-CNN detector. It only requires one pass of a convolutional neural
network (CNN) to generate candidate regions and their corresponding features, enabling
the use of deeper networks for generating more accurate candidate regions. Yang et al. [15],
Zhang et al. [16], and Ma et al. [17] adopt ideas from R-CNN for ship target detection,
yet the proposal part of these methods lacks stability. Building upon Faster R-CNN,
which utilizes a pre-training mechanism to increase the robustness when the number
of annotated samples is limited, Han et al. [18] conduct detection and recognition of
10 classes of objects, including ships. Li et al. [19] propose a network based on deep
features that effectively detects offshore and nearshore ships with different scales, obtaining
81.15% meanaverage precision (mAP) on the NWPU-2 dataset. A fast and powerful deep
CNN-based ship detection framework is presented in [20], leveraging deep CNN features
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for feature extraction, distinguishing ship targets using Region Proposal Networks (RPN),
and performing bounding box regression, thereby achieving high precision and efficiency
in different complex backgrounds. Yang et al. [21] introduce a region-based deep forest
(RDF) detection algorithm composed of a basic region proposal network and a collection of
deep forests, allowing adaptive learning of features from remote sensing data and effective
differentiation between real ships and region proposals. R2CNN (Rotational R-CNN),
proposed by [22], has achieved outstanding results in text detection. These methods have
also been employed in ship target detection and demonstrated favorable results.

The second category includes one-stage algorithms, which do not require the region
proposal stage of the two-stage methods and can directly output the object classification and
bounding boxes. One representative one-stage object detection method is YOLO (You Only
Look Once) [23]. YOLO is widely applied in ship detection because of its fast detection
speed, almost achieving real-time performance. However, its localization accuracy is
slightly lower compared to two-stage algorithms. YOLOv2 [24] addresses the vanishing
gradient and exploding gradient problems in the backpropagation process by adding
batch normalization to all convolutional layers. It also adjusts the input size, leading
to a 7% improvement in recall rate. YOLOv3 [25] consists of the Darknet53 Backbone
network and the Feature Pyramid Network (FPN) for multi-scale feature extraction. It
improves both the detection speed and the accuracy of detecting small objects. Xu et al. [26]
propose an improved YOLOv3 model for arbitrary direction ship detection in SAR images.
This improved model meets the real-time requirements of ship target detection but is only
suitable for pure maritime backgrounds. The YOLO algorithm has been continuously
improved throughout its development [27–29], gradually moving towards more efficient
detection. Wang et al. [30] utilize an improved version of YOLO for ship detection in
remote sensing images, achieving improved detection performance, while still facing
challenges in the detection of small, blurry ship targets. Zhang et al. [31] propose an
improved YOLOv4 for ship key part detection. This algorithm introduces the SA model
and constructs a feature extraction module. The proposed method improves the mAP of
the baseline algorithm for critical ship parts by 12%, and the model calculation speed is
fast, which can meet the requirements of real-time performance. Li et al. [32] proposes
an improved YOLOv5 ship target detection algorithm, achieving improvements in both
speed and accuracy. Ge et al. [33] introduce YOLOX, an algorithm that enhances detection
performance through clever integration solutions such as data augmentation, anchor-free
detection, and label classification [34]. However, there is still limited research on multi-scale
ship target detection for optical remote sensing images in complex backgrounds.

Though previous research has shown promising results, previous algorithms for de-
tecting ship targets in optical remote sensing images face challenges such as complex
backgrounds and diverse target variations, which result in missed detections, false alarms,
and high computational costs. Building upon the prior research and experience in this field,
this paper adopts the anchor-free YOLOX as the baseline network and incorporates the
Efficient Channel Attention module (ECA-Net) [35] into the YOLOX Backbone network.
Additionally, improvements are made to the localization and confidence loss functions
in the YOLOX Head, resulting in the development of the E2YOLOX-VFL algorithm. The
E2YOLOX-VFL method aims to overcome the challenges of low detection accuracy and
limited robustness in ship target detection from optical remote sensing images with com-
plex backgrounds. The enhanced algorithm demonstrates a 9.28% improvement mAP on
the HRSC2016 dataset [36]. By harnessing these advancements, the proposed approach
enhances ship target detection performance, offering superior accuracy and robustness
while maintaining efficient processing speed.

The main contributions of this study are outlined as follows:

1. We propose the E2YOLOX-VFL algorithm for ship target detection, which combines
the anchor-free YOLOX network and ECA-Net to overcome the limitations of previous
methods.
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2. We propose Efficient Force-IoU (EFIoU) Loss to modify Intersection over Union (IoU)
Loss, which improves the regression performance of the algorithm by taking into
account geometric dimensions of the predicted bounding box (B) and the ground
truth box (G), suppressing the impact of low-quality samples.

3. The localization and confidence loss functions are improved in the YOLOX Head,
leading to enhanced detection accuracy and robustness in complex backgrounds.

4. We propose the Balanced Gaussian NMS (BG-NMS), which is used instead of non-
maximum suppression (NMS) to address the issue of missed detections caused by
dense arrangements and occlusions.

5. The proposed algorithm was experimentally validated using the HRSC2016 dataset,
demonstrating significant improvements in mAP and overall detection performance.

To provide a clear analysis, the paper is structured as follows. Section 2 presents
an introduction to the related work. Section 3 analyzes the construction methods of the
E2YOLOX-VFL. The HRSC2016 dataset and evaluation metrics are introduced, and the
experiments are discussed in detail in Section 4, followed by a comprehensive discussions
in Section 5. Finally, concluding remarks are presented in Section 6 to summarize the
findings of our research.

2. Related Work

In this section, we first review the development stages of optical remote sensing image
ship target detection and recognition. Second, we introduce the research progress in coarse-
and fine-grained ship classification. Third, we investigate the form of loss functions. Fourth,
we introduce the development of NMS.

2.1. Development Stages of Optical Remote Sensing Image Ship Target Detection and Recognition

SAR has been used for ship detection for a long time. A paper was published on SAR
image ship target detection in 1999 [37]. In 2004, a paper on ship target detection in optical
remote sensing images was published [38]. With improvements to the quantity and quality
of acquired images, ship target detection research expanded from pure sea surfaces to
complex environments, and the research methodology shifted from traditional methods to
deep learning-based approaches. If we summarize the development of ship target detection
methods in optical remote sensing images from the point of view of dimensions such as
the time period, image resolution, detection scenarios, and processing workflows, it can be
divided into the following three stages.

1. Around 2010, the data sources for ship target detection in optical remote sensing
images were mainly 5 m resolution optical images. Object analysis based on low-level
features was utilized for ship target detection. Statistical and discriminatory analysis
was carried out using the grayscale, texture, and shape characteristics to distinguish
ship targets from the water surface. This achieved ship target detection in medium- to
high-resolution and simple scenarios.

2. Around 2013, the data sources for ship target detection in optical remote sensing
images were mainly 2 m resolution images. The images contained a large number
of medium- and small-sized ship targets, which were abundant and easy to identify.
Visual attention mechanisms and mid-level feature encoding theory were widely
used for ship target localization and modeling in complex backgrounds with diverse
intra-class variations. This enabled ship detection in more complex regions of high-
resolution images.

3. Around 2016, a large number of high-resolution optical remote sensing images facili-
tated ship target detection based on deep learning. Convolutional neural networks
(CNNs) were widely applied, mainly in two detection frameworks—classification-
based and regression-based approaches—corresponding to step-by-step detection
and integrated localization detection, respectively.
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2.2. Ship Target Classification

Deep learning methods can achieve both coarse-grained and fine-grained ship recog-
nition. Coarse-grained ship recognition involves distinguishing between different types
of ships such as civilian ships, naval vessels, and aircraft carriers. Fine-grained ship
recognition aims to identify specific categories of ships, such as cruisers, frigates, and so on.

2.2.1. Coarse-Grained Ship Recognition

Bentes et al. [39] discussed the application of convolutional neural networks in high-
resolution remote sensing image classification and employed them for the discrimination
of ocean targets. The networks accurately classified cargo ships, tanker ships, oil platforms,
and wind-park structures [40]. In [41], a CNN model was used to identify five classes of
maritime targets with an average classification accuracy of over 93%. Liu et al. [42] proposed
an FCN-based detection method, and experimental results showed that it outperformed
traditional methods based on morphological and semantic information, with a classification
precision of 90.5% [43]. In the general detection and recognition process, ship detection
and angle prediction are usually treated separately. Due to the significant aspect ratio
of ship targets, omitting angle information would result in including a large amount of
background information in the detection box and the inability to predict the orientation of
ships, leading to poor performance in densely distributed ship detection and hampering
ship recognition. Yang et al. [44] presented a rotation angle prediction method based on a
multi-layer pyramid network, which allowed the ship detection and recognition process to
be completed end-to-end and achieved angle prediction. This algorithm designs a rotation
anchor strategy to predict the minimum circumscribed rectangle of the object so as to
reduce the redundant detection region and improve the precision by 2.2%. Polat et al. [45]
applied rotation R-CNN to ship target detection, enabling accurate feature extraction and
localization of ships. The method outperforms baselines in mAP by 2.2%. Liu et al. [46]
proposed a detection framework for ships in arbitrary directions, accurately locating ship
areas by incorporating angle information into bounding box regression and improving the
recognition performance of small ship targets. The method outperforms baselines in mAP
by 1.7% and has advantages in dealing with small ships. Nie et al. [47] presented a method
based on Mask R-CNN for ship segmentation and orientation estimation by outputting
the positions of the ship’s bow and stern key points, achieving ship target recognition and
orientation determination. The precision of the ship direction estimation is 80.4% on the
KASDC2018 dataset.

2.2.2. Fine-Grained Ship Recognition

The purpose of fine-grained image recognition is to identify different subclasses within
the same major category. Due to the characteristics of ship targets and optical remote sens-
ing imaging, ship targets exhibit both inter-class similarity and intra-class variability, which
pose challenges for fine-grained ship recognition tasks. Due to limitations in optical remote
sensing image quality and datasets, the task of fine-grained ship recognition is still in the
exploratory stage. Feng et al. [48] proposed a two-stage framework for ship detection and
classification. In the detection stage, a sequential local context module was introduced
based on the Faster R-CNN framework to improve ship detection performance. After
obtaining the detection results, a classification network was used to perform fine-grained
classification on ship sub-images. The average classification accuracy for 19 types of targets
is 81.5%. Sun et al. [49] and others proposed an end-to-end detection and classification
framework based on Cascade R-CNN [50], which converted horizontal bounding boxes to
rotated bounding boxes, effectively addressing the issue of imprecise localization of hori-
zontal ship bounding boxes, but only recognizing five specific ship classes. Wang et al. [51]
presented a two-stage fine-grained ship recognition method using generative adversarial
networks, achieving an average precision rate improvement of 2% in recognizing 25 dif-
ferent ship classes. Li et al. [52] proposed a dual-channel ship target recognition method
that combines global and local features, enhancing the complementarity between different
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features and improving feature robustness, leading to fine-grained ship classification. Based
on the FGSC-23 dataset, the accuracy of this model is 86.36%, which is better than classical
models such as R-CNN. Zhou et al. [53] constructed an end-to-end framework for ship
detection and fine-grained classification in marine environments, employing the ResNeSt
model as the backbone of the detector to enhance the algorithm’s fine-grained classification
capability. The mAP of this model on the FGSC dataset is 86%.

2.3. Loss Functions

IoU measures the ratio of the intersection to the union of B and G. Equation (1)
presents the formula for IoU, which is widely employed as a metric in the field of object
detection [54].

IoU =
|G ∩ B|
|G ∪ B| (1)

Hence, the formula for calculating the loss using IoU is represented by Equation (2):

IoU Loss = −ln(IoU) (2)

The IoU Loss ranges from 0 to 1, where a smaller value indicates a closer distance
between B and G. A value of 0 indicates a perfect overlap, and a value of 1 indicates no
overlap. By minimizing the IoU Loss, B gradually approaches G.

To use IoU as a measure of distance, it must first satisfy the mathematical distance
axioms: non-negativity, symmetry, and the triangle inequality. Additionally, IoU possesses
the advantageous property of scale invariance, meaning it is insensitive to changes in
object size. This scale invariance makes IoU suitable for calculating localization losses for
predicted bounding boxes. However, using IoU to calculate losses also has some drawbacks:

1. Lack of distance information: When B and G do not have any intersection, the IoU
calculation results in 0, which fails to reflect the true distance between the two boxes.
Additionally, since the loss value is 0, the gradient cannot be backpropagated, pre-
venting the network from updating its parameters.

2. Insufficient differentiation between regression outcomes: In cases where multiple
regression outcomes yield the same IoU value, the quality of regression differs among
these outcomes. In such cases, IoU fails to reflect the regression performance.

These limitations highlight the shortcomings of using IoU for loss calculation. Alterna-
tive methods, such as incorporating additional metrics and penalties, have been developed
to overcome these challenges and provide more comprehensive measures of distance.

To address the issues with IoU calculation, Generalized-IoU (GIoU) Loss was pro-
posed. It aims to resolve the problem of obtaining a loss value of 0 when B and G do not
intersect [55]. GIoU takes into account the completeness of the bounding boxes, even when
they do not intersect. By incorporating the smallest convex polygon, GIoU provides a more
reliable distance measure between B and G, preventing the loss from being 0 when there is
no intersection.

The GIoU Loss function measures the dissimilarity between B and G, and minimizing
this loss function during training aims to make B and G as close as possible.

However, GIoU Loss also has its limitations. When B completely encompasses G
or is completely contained within it, the GIoU Loss becomes a constant value as long as
the areas of B and G remain the same. Regardless of the position of B or G, GIoU Loss
remains unchanged. In such cases, GIoU Loss fails to reflect the regression performance.
In these scenarios, GIoU Loss essentially degrades to IoU, and the issues associated with
IoU resurface.

To address the limitations of GIoU, an improved version called Distance-IoU (DIoU)
is proposed [56]. However, DIoU Loss also has limitations: it does not consider the aspect
ratio of B and G. This would result in the same loss calculation for the three scenarios when
the positions of the center points in B are the same. This fails to reflect the actual situation.
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To address the limitations of DIoU, the concept of considering the aspect ratio is
incorporated, resulting in Complete-IoU (CIoU) [57]. The CIoU considers the aspect ratio
of the boxes, which helps address the issues of DIoU. However, for predicted boxes with
the same aspect ratio, the model cannot reflect the actual situation.

To address the limitations of CIoU, the Efficient-IoU (EIoU) Loss is proposed. EIoU in-
troduces a term that separately penalizes the differences in width and height between B
and G. The EIoU Loss comprises three main components: overlap loss, center distance
loss, and aspect ratio loss. The overlap loss and center distance loss are derived from
the CIoU method, and the aspect ratio loss directly reduces the disparity between the
width and length of B and G, thereby facilitating quicker convergence [57]. Dividing the
aspect ratio loss into the disparities between the predicted dimensions and the dimen-
sions of the minimal enclosing box accelerates the convergence speed and enhances the
regression accuracy.

2.4. NMS Strategy

Target detection algorithms based on convolutional neural networks often generate a
large number of candidate boxes with different positions and sizes during the prediction
stage. These candidate boxes are mostly concentrated in regions that potentially contain
the target of interest. It is necessary to perform retention and suppression operations on
these candidate boxes. These candidate boxes only contain coordinate information and
class confidence scores. The coordinates alone cannot determine the optimal bounding
box, and the class confidence score represents the probability of the presence of a specific
object in the candidate box. A higher class confidence score indicates a higher likelihood
of the candidate box containing a specific object. The selection of the optimal bounding
box affects subsequent candidate box suppression operations. If the candidate box with
the highest class confidence score is not selected as the optimal bounding box, and other
candidate boxes are chosen instead, this may lead to the removal of the candidate box with
the highest class confidence score during the candidate box suppression stage. Repeating
this operation results in lower localization accuracy for the majority of retained optimal
bounding boxes and a decrease in detection accuracy. Therefore, traditional non-maximum
suppression algorithms typically use class confidence scores as the evaluation criterion for
the optimal bounding box. The candidate boxes are sorted in descending order based on
class confidence scores, and the candidate box with the highest class confidence score is
selected as the optimal bounding box. Then, the optimal bounding box is retained, and
candidate boxes with an IoU greater than a certain threshold are suppressed using this
box. If there are multiple objects among these candidate boxes, the candidate box with the
highest class confidence score in the remaining candidate boxes is selected as the optimal
bounding box for the next object, and the suppression process is repeated until all candidate
boxes are removed.

Traditional NMS algorithms consider candidate boxes with a higher overlap with
the optimal bounding box as redundant boxes. Therefore, a threshold is set to determine
whether a candidate box is redundant. Liu et al. [58] discovered that setting different
thresholds in different object detection scenarios can improve recall rate and proposed
the Adaptive-NMS algorithm. The Adaptive-NMS algorithm adds a density prediction
module in the network to learn the density of the boxes and determines the threshold based
on the sparsity of object distribution in the image, thereby achieving a higher recall rate.
The Soft-NMS algorithm [59] improves the recall rate, to some extent, by reducing instead
of eliminating the class confidence scores of highly overlapping bounding boxes through
decay. However, these algorithms do not address the issue of low localization accuracy of
the selected optimal bounding boxes.

3. Methodology

In this section, we construct the E2YOLOX-VFL network by improving on the baseline
YOLOX, which is an anchor-free detection algorithm. The E2YOLOX-VFL consists of three
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components: an improved Backbone, a Neck, and an improved Head. The details of the
improvements in each component are described below. Please refer to Figure 1 for the
network architecture diagram.
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3.1. Adding ECA Attention Mechanism to Backbone

In optical remote sensing images, the variable backgrounds, complex scenes, and small
target proportions pose challenges for effectively transmitting relevant feature information
to the deep network. This often results in missed or false detections due to the inability to
accurately locate the targets. To enhance the detection accuracy of these targets, attention
mechanisms were incorporated into the Backbone to preserve more detailed information.

Through the integration of the ECA attention mechanism into the network, E2YOLOX-
VFL improves the preservation of detailed feature information from optical remote sensing
images, thereby enhancing the overall detection accuracy of targets.

ECA-Net provides a novel approach to channel interaction by directly assigning
attention weights to corresponding channels through group convolution. By adjusting the
feature information based on the magnitude of attention weights, ECA-Net enhances the
model’s utilization of relevant information.

ECA-Net applies global average pooling to the feature maps and conducts local cross-
channel interactions using convolution with a specific kernel size, effectively leveraging
channel information. The sigmoid activation function is employed to obtain the weight for
each channel, and the original feature map is then recalibrated. This recalibration process
can either weaken or strengthen specific region features, which proves beneficial for the
detection of smaller targets, as shown in the upper right corner of Figure 1.
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Given the aggregated features without channel reduction y ∈ RC, channel attention
can be learned through Equation (3):

ω = σ(Wy) (3)

Here, W is a C × C parameter matrix.
ECA-Net explores an alternative method for capturing cross-channel interactions

within a field, aiming to ensure efficiency and effectiveness. Specifically, it uses a band
matrix Wk to learn channel attention. The banded convolution for cross-channel interaction
within channel neurons Wk is as follows.

w1,1 · · · w1,k 0 0 · · · · · · 0
0 w2,2 · · · w2,k+1 0 · · · · · · 0
...

...
...

...
. . .

...
...

...
0 · · · 0 0 · · · wC,C−k+1 · · · wC,C

(4)

Wk involves k × C learnable parameters. The convolutional kernel, denoted by k, and
the number of channels, represented as C, are crucial components within the network. The
convolutional kernel and channel number mapping function is as follows.

k = φ(C) =
∣∣∣∣ log2(C)

r
+

b
r

∣∣∣∣
odd

(5)

Among them, γ = 2, b = 1, and k takes the nearest odd result.
The strip convolution operation involves shifting each row of elements by one bit

compared to the previous row in order to achieve channel interaction while also reducing
the number of parameters. This process simplifies the convolution calculation, as illustrated
in Figure 2. Different colors represent the upper and lower rows of elements.
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rows of elements.

Overall, the ECA module uses non-reduced Global Average Pooling (GAP) to ag-
gregate convolutional features, adaptively determines the kernel size k, performs one-
dimensional convolution, and then learns channel attention using the sigmoid function.

In our network structure, ECA is added after three feature output layers, which
correspond to target features of different scales. (80, 80) corresponds to large-scale targets,
(40, 40) corresponds to mesoscale targets, and (20, 20) corresponds to small-scale targets.
By incorporating attention mechanisms into the Backbone at three positions, the network
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becomes capable of capturing large-, small-, and medium-sized target information more
accurately.

3.2. Proposing EFIoU Loss as the Localization Loss Function

The localization loss function, also known as the regression loss function, calculates the
distance deviation between the final B and G. It computes the loss value as the discrepancy
between the two through a specific function and then adjusts the weight parameters using
error backpropagation to iteratively minimize the difference, bringing B closer to G. The
YOLOX algorithm utilizes the IoU Loss as the localization loss function, but it does not
consider overlap loss, center distance loss, aspect ratio loss, or loss distortion caused by
low-quality samples.

To address these issues, we propose EFIoU_Loss. EFIoU evolves from EIoU, which is
expressed as follows:

EFIoU_Loss = 1 − IoU + (1 − IoU)γ

(
ρ2(b, bgt)

(cw)
2 + (ch)

2 +
ρ2(w, wgt)

(cw)
2 +

ρ2(h, hgt)
(ch)

2

)
(6)

where (1 − IoU)γ is the modulation factor used to focus high-quality samples and suppress
low-quality samples. γ is a modulation parameter, and when γ is 0, it is EIoU_Loss.
In object detection, the predicted boxes obtained from anchor points with a small IoU
compared to the ground truth are considered to be low-quality samples. The function
of (1 − IoU)γ is such that when the IoU is small, indicating a considerable deviation of
the predicted box from the ground truth, signifying a low-quality sample, it becomes
larger, thereby inhibiting EFIoU_Loss increase. However, when the IoU is large, signifying
proximity between the predicted box and the ground truth, the sample is likely a high-
quality sample, and the value of (1 − IoU)γ basically remains unchanged. This highlights
how EFIoU can inhibit the loss of low-quality samples to ensure the network focuses more
on high-quality samples. Compared to other IoUs, EFIoU can more accurately describe the
difference between the real box and the predicted box. From Section 4.4, it can improve the
optimization efficiency and accuracy of target detection networks. Therefore, the original
IoU Loss function in the YOLOX algorithm can be improved by replacing it with the
EFIoU Loss.

3.3. Adopting Varifocal Loss as the Confidence Loss Function

The confidence value is pivotal in determining whether an object within the bounding
box is a positive or negative sample. If the confidence value exceeds the set threshold, it is
classified as a positive sample, whereas a value below the threshold indicates a negative
sample or background. The confidence loss function employed in YOLOX originally
utilized the Cross-Entropy (CE) loss function [60]. However, CE loss suffers from the
problem of imbalanced positive and negative samples. This imbalance can substantially
impact the accuracy of first-order algorithms when compared to second-order algorithms.
To address this issue, our study proposes an improvement to the confidence loss function in
YOLOX by replacing the CE function with Varifocal Loss [61]. Varifocal Loss helps balance
positive and negative samples and classes, as well as challenging and easy samples.

Standard Cross-Entropy (SCE) Loss is used to assess the discrepancy between target
values and predicted values. But its limitation is that all samples are assigned equal weights.
When there is an imbalance between positive and negative samples in the dataset, the
impact of simple negative samples becomes dominant. In cases with a small number
of samples, difficult samples and positive samples cannot significantly contribute to the
detection accuracy, leading to poor performance.

Varifocal Loss is a novel loss function designed to train a dense object detector in
predicting the IoU-aware Classification Score (IACS), drawing inspiration from Focal Loss.
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In contrast to Focal Loss, which treats positives and negatives equally, Varifocal Loss applies
an asymmetrical treatment to them [61].

VFL(p, q) =
{

−q(q log(p) + (1 − q) log(1 − p)), i f (q > 0)
−αpγ log(1 − p), i f (q = 0)

(7)

where p is the predicted IACS, and q is the target IoU score.
For positive training examples, q is determined as the IoU between the generated

bounding box and the corresponding ground truth box (gt_IoU). Conversely, for negative
training examples, the training target q for all classes is set to 0.

As illustrated in Equation (7), the Varifocal Loss reduces the impact of negative
examples (q = 0) by incorporating the pγ factor. However, it does not diminish the weight
of positive examples (q > 0) in the same manner. This is because positive samples are
relatively infrequent compared to negatives, and preserving their learning information
is crucial.

Moreover, positive samples are weighted based on the training target q. If a positive
sample has a higher gt_IoU, it contributes more to the loss. This places emphasis on positive
examples during training, as they are more crucial for achieving higher average precision
(AP) compared to low-quality examples.

3.4. Proposing BG-NMS to Replace NMS

Another improvement introduced in the YOLOX algorithm is the replacement of the
traditional NMS [62] by our proposed BG-NMS. BG-NMS provides a more flexible and
adaptive way to handle overlapping bounding boxes during the post-processing stage
of object detection. Instead of suppressing all overlapping boxes with a fixed threshold,
BG-NMS assigns reduced confidence scores to the overlapping boxes based on their IoU
values. This allows for better localization of objects and helps prevent the suppression
of nearby objects, which are potentially valid detections. BG-NMS improves the overall
detection performance by providing smoother and more accurate bounding box predictions.
The results are shown in and Sections 4.4 and 5.

The NMS can be expressed as Equation (8).

Si =

{
Si, iou(M, bi) < Nt
0, iou(M, bi) ≥ Nt

(8)

When using NMS, consider M as the bounding box with the highest confidence score,
and bi represents other candidate bounding boxes. The IoU denotes the IoU between M
and bi. If the IoU between M and bi is above a certain threshold, NMS directly sets the
confidence score of bi to zero. This means that NMS considers bi as a redundant bounding
box and removes it from the candidate boxes.

When multiple objects are densely packed together, traditional NMS can aggressively
remove a significant number of tightly arranged bounding boxes, which may lead to missed
detections. To overcome this challenge, a Balance Gaussian-weighted BG-NMS algorithm
is introduced. The BG-NMS can be expressed as Equation (9).

Si =

{
Si, iou(M, bi) < Nt

Siαe
iou(M,bi)

2

σ , iou(M, bi) ≥ Nt
(9)

BG-NMS applies a Balanced Gaussian-weighted function to the confidence scores,
which resembles the density function of a normal distribution with a penalty term. α is the
balance factor, with a range of 0–1. The bounding box M serves as the center point of this
distribution. As the IoU between M and bi decreases, indicating a higher proximity of bi to
the center point, the function’s value for the weighting on bi increases. α plays a role in
balancing the speed of weighted value increase. This Balanced Gaussian weighting brings
flexibility and allows BG-NMS to retain more information from closely arranged bounding
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boxes. This improves the detection performance for densely arranged ship targets by
preserving the bounding box information in dense object arrangements.

4. Results
4.1. HRSC2016 Dataset

The HRSC2016 dataset is one of the few high-resolution optical remote sensing ship
datasets that subdivides ship categories, with three levels of category labeling. The first
level (L1) is classified as ships, the second level (L2) is roughly classified as aircraft carriers,
warships, merchant ships, and submarines, and the third level (L3) is a detailed classifi-
cation of each model. We are conducting ship detection for L3. The dataset consists of
1061 images, including 2976 samples. All images are from six famous ports on Google
Earth, with a size of 300 × 300–1500 × 900 pixels, with a spatial resolution of 0.4–2 m [36].

The dataset is divided into three files: Train, Test, and ImageSets. The Train and Test
directories are divided into AllImages that only contain ship images and Annotations that
only contain annotation information. The images are named in port order and stored in
BMP format. The annotation information of the images is stored in an XML file. In addition,
the Segmentations file under the Test file also contains ship segmentation images, i.e.,
semantically segmented labels, stored in PNG format [36]. The distribution of various
samples in the training, validation, and testing sets is as in Figure 3.
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Given the characteristics of the dataset and the requirements of the model, this paper
preprocesses and manipulates the data to make them suitable for analysis and modeling.
Three data cleaning strategies are employed:

1. Removing unannotated data from the dataset to exclude it from training.
2. Converting BMP format images in the dataset to JPG format to align with the model

used in this research.
3. Enhancing low-contrast images to highlight ship targets.

4.2. Evaluation Metrics

The evaluation metrics employed in this research encompass Precision, Recall, F1 score,
AP, and mAP as selected performance measures [63]. In evaluating the algorithm, ships
are considered positive examples, and non-ships are treated as negative examples. In this
context, True Positive (TP) signifies the count of accurately identified ships, False Positive
(FP) represents the count of non-ships inaccurately labeled as ships, and False Negative
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(FN) corresponds to the count of ships that went undetected. The definitions for Precision,
Recall, F1, and AP are outlined below.

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1 =
2 × Precision × Recall

Precision + Recall
(12)

AP =
∫ 1

0
precision smooth(recall)d(recall) (13)

mAP =
1
N

N

∑
i=1

APi (14)

Precision represents the proportion of correctly located ships out of all the location
results. Recall, on the other hand, represents the proportion of correctly located ships
out of all the ships included in the test set. The Precision rate reflects the false alarm
rate (false alarm rate = 1 − Precision rate), and the Recall rate reflects the miss rate
(miss rate = 1 − Recall rate). Only when both Precision and Recall are maintained at high
levels can the effectiveness of the method be demonstrated. AP, on the other hand, refers to
the Precision–Recall curve, with the area under the curve indicating the average accuracy
of the test results. mAP is the mean of multiple categories of APs, representing the overall
performance of the algorithm on the dataset. It is a commonly used performance metric.

4.3. Experimental Conditions

The hardware configuration was as follows: Windows 10, AMD Ryzen 7 4800 H,
16.0 GB RAM, GPU 4 GHz.

The software platform included Python 3.8, Torch 1.10.0, CUDA 11.0.3, and cuDNN 8.0.5.
Parameter settings: On top of the determined neural network structure, training the

neural network requires the determination of several important parameters that greatly
impact the experimental results. Some parameters need to be tested repeatedly to find
the optimal values. For this experiment, 90% of the training set is allocated for training
purposes, and the remaining 10% is reserved for validation. The batch size is configured as
8, a common practice to align with the capabilities of the graphics card and the number of
images processed per training iteration. The term “epoch” denotes the number of complete
passes through the entire training set by the neural network. In this particular study, the
epoch count is set at 100. The Adam gradient descent optimizer is utilized, initialized with
a learning rate of 0.01, and a cosine annealing schedule is employed to gradually decrease
the learning rate. The momentum value is established as 0.937.

As the number of epochs increases, the loss gradually decreases until it stabilizes.
The optimal epoch value is determined when the rate of change becomes slow. Generally, a
slightly larger initial value is chosen, and training can be manually stopped when the loss
reaches stability. Figure 4 depicts the change in loss values during the training. It shows a
decreasing trend in loss until it stabilizes after approximately 85 epochs.
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4.4. Ablation Experiments

To assess the efficacy of the proposed enhancements, ablation experiments are per-
formed. These experiments aim to validate the impact and effectiveness of the introduced
improvements in enhancing the ship detection performance. The compared models are
listed in Table 1.

1. YOLOX: The original YOLOX model.
2. YOLOX-BGNMS: Change NMS to BG-NMS.
3. YOLOX-ECA: An improved model in which ECA-Net is added to the Backbone

network of YOLOX.
4. YOLOX-VFL: An improved model in which the confidence loss function of YOLOX is

replaced with Varifocal Loss.
5. YOLOX-EFIoU: An improved model in which the localization loss function of YOLOX

is replaced with EFIoU Loss.
6. E2YOLOX: An improved model in which ECA-Net is added to the Backbone network

of YOLOX, and the localization loss function is replaced with EFIoU Loss.
7. E2YOLOX-VFL: An improved model in which modifications are made to the Backbone

network, confidence loss function, and localization loss function of YOLOX.

Table 1. Networks used for training.

Networks Illustrate

YOLOX Original network
YOLOX-BGNMS Change NMS to BGNMS

YOLOX-ECA Add ECA module to YOLOX Backbone
YOLOX-VFL Change the confidence loss of YOLOX from CE to Varifocal Loss

YOLOX-EFIoU Change the confidence loss of YOLOX from IoU Loss to EFIoU Loss

E2YOLOX Add ECA module to YOLOX Backbone, and change the location loss
from IoU Loss to EFIoU Loss

E2YOLOX-VFL
Add ECA module to YOLOX Backbone, change NMS to BG-NMS,

change the confidence loss from CE to Varifocal Loss, and change the
location loss from IoU Loss to EFIoU Loss

These models are evaluated through ablative experiments on the HRSC2016 dataset.
The findings obtained from the conducted experiments are consolidated and presented in
Table 2 for reference and analysis purposes.
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Table 2. Results of ablation experiments.

Model
Module YOLOX BG-NMS ECA Varifocal Loss EFIoU mAP/%

YOLOX 1 √
× × × × 64.54

YOLOX 2 √
× × × × 64.82

YOLOX-BGNMS
√ √

× × × 66.96
YOLOX-ECA

√
×

√
× × 68.87

YOLOX-VFL
√

× ×
√

× 69.28
YOLOX-EFIoU

√
× × ×

√
70.27

E2YOLOX
√

×
√

×
√

70.64
E2YOLOX-VFL

√ √ √ √ √
73.82

Footnote: YOLOX 2 is the result of image enhancement, and YOLOX 1 represents the result without image
enhancement.

To illustrate the advantage of the ECA module in more accurately extracting large-,
small-, and medium-sized targets, we sequentially add ECA after the three feature layers
(80, 80), (40, 40), and (20, 20). The experimental results are shown in Table 3, which evaluates
the ECA detection performance.

Table 3. The results of adding ECA after the three feature layers.

Model
Module

ECA ECA ECA mAP/%

YOLOX × × × 64.54

(80, 80)
√

× × 66.36

(40, 40)
√ √

× 67.13

(20, 20)
√ √ √

68.87

We conducted a comparative experiment between EIoU and EFIoU to illustrate the
advantages of the modulation factor. The experimental results are shown in Table 4. EFIoU
has increased by 2.7% in mAP compared to EIoU. This shows the effectiveness of EFIoU.

Table 4. The results of EIoU and EFIoU.

Model
Module

EIoU EFIoU mAP/%

YOLOX × × 64.54
YOLOX-EIoU ×

√
67.57

YOLOX-EFIoU ×
√

70.27

5. Discussion

From the data in Table 2, it can be seen that replacing NMS with BG-NMS improves
the mAP for ship detection by 2.42%. BG-NMS improves the accuracy of dense target
detection, which can refer to Figure 5.

From Table 2, it becomes apparent that an enhancement is achieved by adding the
ECA attention module to the Backbone network of the original model, which improves
the mAP for ship detection by 4.33%. This enhancement improves the network’s feature
extraction capability, allowing for better capture of target information and alleviating cases
of missing small targets.

Replacing the confidence loss function with Varifocal Loss results in a 4.74% improve-
ment in mAP for ship detection. This addresses the issues of imbalanced positive and
negative samples and class imbalance.

By replacing the localization loss function with EFIoU Loss, the mAP for ship detection
improves by 5.73%. This resolves the problem of regression failure when the two bounding
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boxes are not intersecting and the inability to reflect regression for targets of different sizes
with the same aspect ratio.
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When both the ECA attention module and EFIoU Loss are incorporated into the
original model, the mAP for ship detection improves by 6.10%. This indicates that the
joint improvement approach is effective. When all improvements are added to the original
model, the mAP for ship detection improves by 9.28%. The outcomes obtained clearly
illustrate the substantial influence of the proposed improvements.

Furthermore, the study compares the results of incorporating the ECA module into
the Backbone network versus incorporating it into the FPN network. Additionally, upon
reviewing Table 5, it is evident that the utilization of the ECA in this research, compared to
the CBAM, achieves a slightly lower mAP by 0.44%, but with a reduction in parameters
by 0.4MB. Incorporating the ECA module into the Backbone network demonstrates better
results, with higher mAP and lower parameter quantity compared to incorporating it into
the FPN network.

Additionally, the detection results in L3 of the E2YOLOX-VFL model were compared
with the results in L3 of the SRBBS-Fast-RCNN and SRBBS-Fast-RCNN-R models reported
in the literature proposing the HRSC20l6 [36] dataset and in Li et al. [64]. As observed from
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Table 6, the E2YOLOX-VFL model outperforms the results reported in [36], and it performs
just a little lower than SHDRP9 in terms of ship detection mAP.

Table 5. Improvement results when adding different modules and adding ECA in different positions.

Model mAP/% Parameter Quantity

Adding CBAM to the Backbone 69.31 34.7 MB
Adding ECA to the Backbone 68.87 34.3 MB

Adding ECA to the FPN 61.75 55.2 MB

Table 6. Detection results of different models in the HRSC2016 dataset (L3).

Model mAP/%

E2YOLOX-VFL 73.82
SRBBS-Fast-RCNN 60.77

SRBBS-Fast-RCNN-R 45.23
RC1 51.0

RC1 + Multi-NMS 43.7
Faster R-CNN 40.5

R-DFPN 43.5
R-DFPN + PSG97 71.0

SHDRP9 74.2

Figure 5 shows a comparison of the detection performance between the NMS ap-
proach and the BG-NMS approach. Figure 5a,c shows the detection results using the
NMS approach, and Figure 5b,d shows the detection results using the BG-NMS approach.
Despite some missed detections (in cases where prediction boxes of two targets overlap
completely), the BG-NMS approach reduces instances of missing densely packed targets to
some extent. Therefore, the BG-NMS algorithm exhibits better detection performance for
densely packed targets.

To gain a more visual understanding of the detection performance of the E2YOLOX-
VFL algorithm, the same image was subjected to detection using both the YOLOX and
E2YOLOX-VFL networks. The detection results are depicted in Figure 6, where Figure 6a
shows the detection result using YOLOX, and Figure 6b shows the detection result using
E2YOLOX-VFL. It can be observed that the E2YOLOX-VFL algorithm performs better in
detecting small targets and reduces instances of missing densely packed targets.
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To illustrate how the new algorithm can improve the missed detection of densely
packed targets, we compared the detection results of YOLOX and E2YOLOX-VFL in
Figure 7. Figure 7a,c shows the detection result using YOLOX, and Figure 7b,d shows the
detection result using E2YOLOX-VFL. It can be observed that the E2YOLOX-VFL algorithm
can reduce instances of missing densely packed targets.

Applying the E2YOLOX-VFL algorithm to the location of a typhoon center, the results
are shown in Figure 9. The mAP achieved using the E2YOLOX-VFL algorithm is 93.75%,
outperforming YOLOX by 1.99%, which demonstrates the applicability of our method to
other types of object detection and its overall effectiveness.
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Figure 8 shows the effect of image enhancement. It can be seen that the target becomes
clearer after image enhancement.
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6. Conclusions

In this research, we propose an improved algorithm based on the YOLOX model,
E2YOLOX-VFL, to address the challenges faced in ship detection in optical remote sensing
imagery, such as background interference, variations in target size and position, and class
imbalance. By incorporating the ECA module into the Backbone network, modifying
the localization and confidence loss functions in YOLO Head, and improving the non-
maximum suppression strategy, we enhance the model’s ability to detect occluded and
multi-scale targets, address the issue of imbalanced positive and negative samples, and
handle foreground–background imbalance. These improvements result in an enhanced
robustness of the model. Experimental results demonstrate that the proposed E2YOLOX-
VFL model achieves higher accuracy in ship detection compared to the original YOLOX
model, and it performs favorably against other algorithms evaluated in this research. The
model can be further applied to other types of object detection tasks.
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