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Abstract: Excessive nitrogen (N) fertilization poses environmental risks at regional and global
levels. Satellite remote sensing provides a novel approach for large-scale N monitoring. In this
study, we evaluated the performance of different types of spectral bands and indices (SIs) coupled
with ensemble learning models (ELMs) at retrieving the plant N concentration (PNC) and plant
aboveground biomass (AGB) of potato from Sentinel-2 images. Cloud-free Sentinel-2 imagery was
acquired during the tuber-formation to starch-accumulation stages from 2020 to 2021. Fourteen
optimal SIs were selected using the successive projections algorithm (SPA) and principal component
analysis (PCA). The PNC and AGB estimation models were then built using an ELMs. The results
showed that the SIs based on chlorophyll absorption bands were strongly related to potato PNC
and AGB. Also, the N-correlated bands were mainly concentrated in the red-edge (705 nm) and
short-wave infrared (1610 and 2190 nm) regions. The ELMs successfully predicted PNC and AGB
(R2

PNC = 0.74; R2
AGB = 0.82). Compared with the other five base models (k-nearest neighbor (KNN),

partial least squares regression (PLSR), support vector regression (SVR), random forest (RF), and
Gaussian process regression (GPR)), the ELMs provided higher PNC and AGB estimation accuracy
and effectively reduced overfitting to training data. This study demonstrated that the promising
solution of using SPA-PCA coupled with an ensemble learning model improves the estimation
accuracy of potato PNC and AGB based on Sentinel-2 imagery data.

Keywords: ensemble learning model; feature selection; plant nitrogen concentration; spectral indices;
potato; Sentinel-2 imagery

1. Introduction

Nitrogen (N) is essential for higher levels of photosynthetic and plant productivity.
Large amounts of N fertilizer are applied to fields to maintain high yields [1–3]. However,
soil with excessive nitrogen can lead to significant environmental problems such as nitrogen
gasification, leaching, and runoff [4,5]. Plant N concentration (PNC) and aboveground
biomass (AGB) information play crucial roles in determining the N nutrition index (NNI)
and guiding N fertilization management [6,7]. In addition, PNC and AGB reflect the
growing condition of crops and can effectively reflect the final yield. Therefore, the accurate
and rapid acquisition of PNC and AGB is essential for optimal management and yield
forecasting at regional and global scales [8].

Satellite remote sensing is a highly effective approach for predicting PNC and AGB
at both field and regional scales. The predominant technique involves utilizing spectral
indices (SIs) to retrieve crucial crop variables [9–11]. However, broad-band SIs can lose their
sensitivity as a result of proportionally extensive soil backgrounds or large biomass [12,13].
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Therefore, several SIs have been suggested for estimating crop parameters using satel-
lite data, such as the Optimized Soil-Adjusted Vegetation Index (OSAVI) and the Trans-
formed Chlorophyll Absorption Reflectance Index (TCARI) [13,14]. Moreover, Sentinel-2
imagery comprises three red-edge bands, enabling the effective prediction of crop PNC
and AGB [15,16]. Some studies have demonstrated that SIs including the red-edge region
improved the estimation accuracy of plant parameters [17,18]. Gitelson [19] developed the
red-edge chlorophyll index (CIrededge), which effectively predicted the chlorophyll content
of corn and soybeans. However, despite 13 bands of Sentinel-2 imagery, few studies analyze
which types of SIs and which combination of bands better predict potato PNC and AGB.

Unlike SIs, machine learning algorithms (MLAs) estimate crop parameters through
explicit regression functions and can effectively explore optical data [4,20]. Therefore,
many studies have combined SIs with MLAs to enhance the accuracy of crop PNC and
AGB estimation [21,22]. However, the potential multicollinearity among SIs still impacts
the estimation performance of MLAs [23]. To solve this problem, many dimensionality
reduction methods have been proposed [24,25]. One is the feature extraction method,
which transforms the original features into spaces, enabling the resulting low-dimensional
features to encompass most information, as exemplified by techniques such as principal
component analysis (PCA) [25]. However, the data from all principal components (PCs)
are less clear than the original information. Another method involves feature selection,
where a subset of features is chosen to retain the essential information from the original
features, such as the successive projections algorithm (SPA) [26]. Therefore, in this study,
we conjecture that combining two dimensionality reduction methods can further reduce
the effect of multicollinearity.

Currently, many SIs have been employed to predict crop parameters at large scales. In
addition, Sentinel-2 imagery, which involves three red-edge bands, has been widely used to
estimate plant parameters. However, only limited research work has explored the potential
of multiple types of SIs and different combinations of bands based on Sentinel-2 imagery
for potato PNC and AGB estimation. Therefore, the objectives of this study were as follows:
(1) to identify sensitive bands for predicting PNC and AGB and determining quantitative
relationships between PNC and AGB and different types of SIs; (2) to evaluate different
types of SIs for estimating potato PNC and AGB with different models (KNN, PLSR, SVR,
RF, GPR, and ELM) and explore the performance of different methods (SPA, PCA, and
SPA-PCA) at PNC and AGB estimation; and (3) map the spatial–temporal variability of
potato PNC and AGB at different growth stages and validate prediction map accuracy.

2. Materials and Methods
2.1. Experimental Design

The study was conducted in Zhuozi and Wuchuan counties in the central region of
Inner Mongolia, China, from June to September (Figure 1). The potato growing season
is mainly concentrated from June to September. The average annual precipitation is
approximately 350 mm, 90–95% of which occurs from April to October. Throughout potato
growth, average temperature ranges from 20 to 25 ◦C.

Two potato varieties, Yingniweite and 226, were used under different N fertilizer
treatments. Forty-four plots were planted with an area of 120 m2. Experiment 1 had five N
levels: three optimized N fertilization application algorithms proposed by Sripada [27,28],
Holland [29,30], and van Evert [31]; a N fertilizer optimization algorithm based on N
balance combined with spectral indices; and local farmers’ practices at 198, 204, 264,
313, and 373 kg N ha−1, respectively. Each treatment had four replicates. Experiment
2 had six N levels: (i) control (no N was applied); (ii) integrated management-based N
fertilizer application algorithm at 60 kg N ha−1; (iii) soil-test-based N fertilizer application
algorithm at 80 kg N ha−1; (iv) spectral-index-based N fertilizer optimization algorithm at
151 kg N ha−1; (v) N-balance-based N fertilizer optimization algorithm at 238 kg N ha−1;
and (vi) local farmers’ practice at 325 kg N ha−1. There were four replicates for each
treatment. Drip irrigation was applied in both experiments.
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2.2. Plant Nitrogen Concentration and Aboveground Biomass Measurements

Plant samplings were taken on 19 July 2020, 10 August 2020, 20 August 2020, 23 July
2021, 12 August 2021, and 29 August 2021, which corresponded to periods of potato tuber
formation (T1), tuber bulking (T2), and starch accumulation (T3), respectively. Potato
requires large amounts of N nutrients to meet the demand of tuber formation and bulking
during the tuber-formation and tuber-bulking stages [32,33]. In addition, precise moni-
toring of PNC and AGB during the starch-accumulation stages can ensure the rational
application of N fertilizer at the late reproductive growth stages. Therefore, the accurate
monitoring of PNC and AGB for the three critical growth stages is very important. The
aboveground plants of two 1 m consecutive rows of potato of each test plot were sampled.
The sample was chopped and mixed, and a 400–600 g sample was taken. The samples
were dried at 70 ◦C and subsequently weighed and chemically analyzed. The Kjeldahl-N
method was used to measure the potato PNC. AGB can be computed using the following
Equation (1). Samples obtained from each plot were used to represent the changes in potato
PNC and AGB for each test plot. PNC and AGB are summarized in Table 1.

AGB
(

t ha−1
)
=

FW
1 + M

/1.8 × 10000 (1)

where FW is the fresh weight of all the aboveground plants (kg) and M is the water content
of potato plants (%).

Table 1. Summary of PNC and AGB of potato.

Stages Number Min Max Mean SD

Plant nitrogen concentration (%)
Tuber formation (T1) 44 3.33 4.66 4.08 0.33
Tuber bulking (T2) 44 2.64 4.28 3.47 0.40

Starch accumulation (T3) 44 1.54 3.97 2.84 0.56
Calibration 92 1.54 4.66 3.51 0.67
Validation 40 1.80 4.64 3.36 0.65

Plant aboveground biomass (t ha−1)
Tuber formation (T1) 44 0.50 2.37 1.29 0.60
Tuber bulking (T2) 44 1.39 4.08 2.56 0.57

Starch accumulation (T3) 44 1.39 4.79 2.98 0.85
Calibration 92 0.50 4.79 2.23 1.00
Validation 40 0.60 3.93 2.39 0.98
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2.3. Sentinel-2 Images Acquisition

Sentinel-2A images of the potato crops acquired on 14 July 2020, 3 August 2020,
16 August 2020, 19 July 2021, 13 August 2021, and 31 August 2021 were utilized. Clouds
did not cover the Sentinel-2 images on these dates. The Sentinel-2A level product was
acquired from the ESA’s Copernicus. The center positions and spatial resolutions of all
bands from the Sentinel-2 images are summarized in Table 2. All bands were resampled
to 10 m spatial resolution using the resampling tool in the Sentinel Applications Platform
(SNAP) software 9.0 and the nearest method. This study utilized ten bands (490, 560, 665,
705, 740, 783, 842, 865, 1610, and 2190 nm) from the Sentinel-2 images. The other three
bands (443, 945, and 1375 nm) are used for image atmospheric correction, so they were not
used in this study. The coordinates of each test plot were imported from the Sentinel-2
images, and then the average reflectance of each test plot was extracted using the region of
interest (ROI) tool in ENVI 5.6 software for subsequent data analysis.

Table 2. Summary of Sentinel-2 image data.

Band Band Name Center
Wavelength Bandwidth (nm) Ground

Resolution (m)

B1 Coastal aerosol 443 20.00 60
B2 Blue 490 65.00 10
B3 Green 560 35.00 10
B4 Red 665 30.00 10
B5 RE1 705 15.00 20
B6 RE2 740 15.00 20
B7 RE3 783 20.00 20
B8 NIR1 842 115.00 10

B8a NIR2 865 20.00 20
B9 Water vapour 945 20.00 60

B10 SWIR-cirrus 1375 30.00 60
B11 SWIR1 1610 90.00 20
B12 SWIR2 2190 180.00 20

RE: Red-edge band; NIR: near infrared band; SWIR: short-wave infrared.

2.4. Spectral Indices Calculation

Spectral indices (SIs) have been widely used to estimate plants’ critical parameters. To
evaluate the performance of SIs in retrieving potato PNC and AGB, 14 SIs commonly used
in the literature to predict crop PNC and AGB were selected in this study (Table 3). SIs are
divided into several categories based on type of application, such as chlorophyll content,
nitrogen concentration, vegetation, and biomass. The bands of published spectral indices
(Table 3) may not apply to predicting potato crop PNC and AGB due to differences in crop
species and growth stages [34,35]. Therefore, in this study, we optimized the sensitive
bands based on the formulas of published spectral indices. According to the formulas in
Table 3, we combined all bands of Sentinel-2 for calculation, thus re-selecting the optimal
bands for each published spectral index.

Table 3. The spectral indices used in this work.

Abbreviation Formulas Algorithms Variable References

NDVI (NIR − Red)/(NIR + Red) (Rλ1 − Rλ2)/(Rλ1 + Rλ2) Biomass/Others [36]
RVI NIR/Red Rλ1/Rλ2 Vegetation [37]
DVI NIR − Red Rλ1 − Rλ2 Vegetation [38]

CIred edge (NIR/Green) − 1 (Rλ1/Rλ2) − 1 Chlorophyll/LAI [19]
OSAVI 1.16 × (NIR − Red)/(NIR + Red + 0.16) 1.16 × (Rλ1 − Rλ2)/(Rλ1 + Rλ2 + 0.16) Vegetation [39]
MTCI (Rededge2 − Rededge1)/(Rededge1 − Red) (Rλ1 − Rλ2)/(Rλ2 − Rλ3) Chlorophyll [40]

MCARI [(Rededge1 − Red) − 0.2 × (Rededge1 −
Green)] × (Rededge1/Red)

[(Rλ1 − Rλ2) − 0.2 × (Rλ1 − Rλ3)] ×
(Rλ1/Rλ2) Chlorophyll [12]

PSRI (Red − Green)/Rededge2 (Rλ1 − Rλ2)/Rλ3 Vegetation [41]
mSR705 (Rededge2 − Blue)/(Rededge1 − Blue) (Rλ1 − Rλ2)/(Rλ3 − Rλ2) Chlorophyll [42]
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Table 3. Cont.

Abbreviation Formulas Algorithms Variable References

mND705 (Rededge2 − Blue)/(Rededge2 + Rededge1
− 2 × Blue) (Rλ1 − Rλ2)/(Rλ1 + Rλ2 − 2 × Rλ3) Chlorophyll [42]

TCARI 3 × [(Rededge1 − Red) − 0.2 × (Rededge1 −
Green) × (Rededge1/Red)]

3 × [(Rλ1 − Rλ2) − 0.2 × (Rλ1 − Rλ3)
× (Rλ1/Rλ2)] Chlorophyll [13]

NPDI (CIrededge − CIrededge MIN)/(CIrededge MAX −
CIrededge MIN

(CIrededge −
CIrededge MIN)/(CIrededge MAX −

CIrededge MIN)
Nitrogen [43]

MCARI/OSAVI MCARI/OSAVI MCARI/OSAVI Chlorophyll [44]
TCARI/OSAVI TCARI/OSAVI TCARI/OSAVI Chlorophyll [13]

R: the abbreviation of reflectance; λ: the wavebands of spectral indices.

2.5. SPA and PCA

The multicollinearity among the input variables significantly affected the accuracy
of the crop parameter prediction model. In this study, the SPA and PCA were used
to reduce the dimensionality of input variables. The SPA is a mathematical technique
used for dimensionality reduction and feature extraction that operates by projecting high-
dimensional data onto a lower-dimensional space while preserving specific properties or
structures of the original data. PCA is a statistical technique employed for dimensionality
reduction and data transformation. It identifies the principal components or axes along
which the data varies the most. These principal components are orthogonal, and the
transformation results in a new set of uncorrelated variables called main components. PCA
is widely used in various fields to simplify data while retaining essential information,
making it a powerful tool for exploratory data analysis and feature extraction. The SPA
combined with PCA was also employed in this study to reduce the dimensionality of the
input variables. For a detailed description of the SPA and PCA according to Fan [45] and
Howley [46] see their respective studies.

2.6. Machine Learning Model Construction

The three main types of ensemble learning include bagging, boosting, and stacking.
Both bagging and boosting, such as random forest (RF) and extreme gradient boosting
(XGBoost), are homogeneous learners. Unlike RF and XGBoost, stacking integrates different
learners. The stacking ensemble learning that is widely used in regression prediction
research generally includes two levels. The essential learners consist of multiple machine
learning models that generate meta-feature datasets by learning the original datasets, and
the meta-learner produces the final result by learning the meta-feature datasets [47]. This
is because 5-fold cross-validation is commonly applied at two levels to ensure a fair and
comprehensive comparison of different models and their input variables. In this study,
therefore, the essential learners included the k-nearest neighbor (KNN) [48], partial least
squares regression (PLSR) [49] to support vector regression (SVR) [50], random forest
(RF) [34], and Gaussian process regression (GPR) [51]. At the same time, the new model
used multiple linear regression (MLR). The ensemble learning model was performed using
the “StackingRegressor” library in Python 10.3. The procedures are shown in Figure 2. In
addition, this study compared the prediction effects of the three ensemble strategies (RF,
XGBoost, and stacking model) for potato PNC and AGB [52].
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2.7. Model Performance Evaluation

The workflow of the present study is shown in Figure 3. Three accuracy assessment
metrics—coefficient of determination (R2), root mean square error (RMSE), and the ra-
tio of performance to deviation (RPD)—were employed to evaluate the performance of
all models.

R2 = ∑(yi − y)2/∑(yi − ŷi)
2 (2)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (3)

RPD =
SD

RMSE
(4)

where ŷi, yi, and y are the measured, predicted, and mean values of PNC and AGB, respec-
tively, n is the number of samples, and SD is the standard deviation of the reference values.
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Lin’s concordance correlation coefficient (LCCC) quantifies the deviation of the pre-
dicted values from a unity line (1:1), representing the extent to which the predictions align
with a concordance line of slope 1.0 through the origin. It serves as a measure of the
agreement between the predicted and observed outcomes [53]. The LCCC was calculated
as per the following equation:

LCCC =
2paxay

a2
x+a2

y +
(
bx − by

)2 (5)

where bx and by are the measured and predicted PNC means, respectively; a2
x and a2

y are
the variances of measured and predicted PNC and AGB; and p is the Pearson correlation
coefficient between measured and predicted PNC and AGB.

3. Results
3.1. Correlation Analysis of SIs and PNC and AGB

According to Table 3, all possible band combinations were used to analyze the Sentinel-
2 bands using the training dataset. The best-performing bands per formulation are listed
in Table 4. The optimal sensitive bands were different between PNC and AGB. For PNC,
sensitive bands were obtained in the RE (705 nm), NIR (865 nm), and SWIR (1610 and
2190 nm) regions. For AGB, sensitive bands were obtained in the visible light regions (490
and 560 nm), and NIR (842 nm), and SWIR regions (1610 and 2190 nm) (Table 4).

Table 4. Optimal bands for estimating PNC and AGB of potato.

Spectral Indices
PNC AGB

Rλ1 Rλ2 Rλ3 R2 Rλ1 Rλ2 Rλ3 R2

NDVI 705 2190 0.53 490 842 0.39
RVI 705 2190 0.49 490 842 0.33
DVI 705 1610 0.65 560 1610 0.56

CIred edge 705 2190 0.49 490 842 0.33
OSAVI 490 2190 0.56 560 1610 0.40
MTCI 705 865 1610 0.62 842 1610 2190 0.40

MCARI 705 705 1610 0.65 560 560 1610 0.57
PSRI 865 1610 2190 0.57 842 1610 2190 0.40

mSR705 705 865 1610 0.62 842 1610 2190 0.40
mND705 490 560 2190 0.60 490 842 1610 0.47
TCARI 705 705 1610 0.65 560 705 1610 0.59
NPDI 705 1610 2190 0.62 490 783 842 0.40

MCARI/OSAVI 705 865 1610 0.65 560 705 1610 0.59
TCARI/OSAVI 705 865 1610 0.65 560 705 1610 0.59

R: the abbreviations of reflectance; λ: the wavebands of spectral indices; R2: the coefficient of determination.

To determine the relationship between PNC and AGB and spectral indices, these two
variables were correlated with SIs (Table 4). Most SIs were positively related to PNC and
AGB. Compared to other types of SIs, SIs based on chlorophyll content were strongly
correlated to the PNC and AGB of potato. The coefficient of determination (R2) between
PNC, AGB and the SIs was more significant than 0.6 and 0.5, respectively (Table 4).

3.2. Estimation of Potato PNC and AGB Using Different Machine Learning Models

Figure 4 shows the PNC and AGB prediction results of different models without
implementing data dimensionality reduction. The ELM could effectively improve the
estimating accuracy of PNC and AGB (Figure 4f,l). However, the performance of the
models was probably affected by the multicollinearity within input variables.
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Figure 4. The performance of the estimation of six models for PNC (a–f) and AGB (g–l) without
dimensionality reduction. Six models are as follows: K-nearest neighbor (a,g), partial least squares
regression (b,h), support vector regression (c,i), random forest (d,j), Gaussian process regression (e,k),
ensemble learning model (f,l).

3.3. Optimization of Input Variables of Machine Learning Models
3.3.1. SPA and PCA-Based Data Dimensionality Reduction

Figure 5 shows the selected features based on the SPA with PNC and AGB. The input
variables were chosen according to the RMSE. Figure 6 shows the accuracy of the PNC and
AGB estimation models for all models based on the desired features. When SPA-based
SIs were used as input variables, most prediction models were not significantly different
from the original input variables (14 SIs as input variables), indicating that the SPA method
could effectively reduce the number of SIs. The ELM had the best performance for PNC
(Figure 6f) and AGB (Figure 6l) prediction compared to the other models.
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Figure 5. Input variables selection based on SPA algorithm. The red arrows represent the number of
variables with the smallest RMSE (%). PNC: NDVI, RVI, MCARI, PSRI, NPDI, MCARI/OSAVI (a);
AGB: OSAVI, MTCI, MCARI, PSRI, TCARI, MCARI/OSAVI (b).
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Figure 6. The performance of six SPA-based models: PNC (a–f); AGB (g–l). K-nearest neighbor (a,g),
partial least squares regression (b,h), support vector regression (c,i), random forest (d,j), Gaussian
process regression (e,k), ensemble learning model (f,l).
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Figure 7 shows the processing of the PCA. The cumulative contribution of the first
three PCs was more significant than 95% and can be used for model training. Similar to the
SPA method, the performance of the models with the PCA-based SIs as input variables was
not significantly different compared to the original input variables (Figure 8). The ELM
performed best for potato PNC (Figure 8f) and AGB (Figure 8l) estimation.

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 19 
 

 

Figure 7 shows the processing of the PCA. The cumulative contribution of the first 
three PCs was more significant than 95% and can be used for model training. Similar to 
the SPA method, the performance of the models with the PCA-based SIs as input variables 
was not significantly different compared to the original input variables (Figure 8). The 
ELM performed best for potato PNC (Figure 8f) and AGB (Figure 8l) estimation. 

 
Figure 7. Input variables selection based on PCA algorithm. PNC (a), AGB (b). 

 
Figure 8. The performance of six PCA-based models: PNC (a–f), AGB (g–l). K-nearest neighbor (a,g), 
partial least squares regression (b,h), support vector regression (c,i), random forest (d,j), Gaussian 
process regression (e,k), ensemble learning model (f,l). 

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

20

40

60

80

100

 Contribution rate
 Cumulative contribution rate

Principal component variable

Co
nt

rib
ut

io
n 

ra
te

Principal component variable

 Contribution rate
 Cumulative contribution rate

(a) (b)

92

93

94

95

96

97

98

99

100

101

 C
um

ul
at

iv
e 

co
nt

rib
ut

io
n 

ra
te

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

20

40

60

80

Co
nt

rib
ut

io
n 

ra
te

76
78
80
82
84
86
88
90
92
94
96
98
100
102

Cu
m

ul
at

iv
e 

co
nt

rib
ut

io
n 

ra
te

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

KNN
 Cal
 Val
 1:1 line

Pr
ed

ic
te

d 
PN

C
 (%

)

Measured PNC (%)

Cal
R2 = 0.80 
RMSE = 0.29
RPD = 2.24
Val
R2 = 0.67
RMSE = 0.41
RPD = 1.71

Cal
R2 = 0.67  
RMSE = 0.37
RPD = 1.77
Val
R2 = 0.69
RMSE = 0.39
RPD = 1.81

Cal
R2 = 0.81  
RMSE = 0.28
RPD = 2.31
Val
R2 = 0.70
RMSE = 0.40
RPD = 1.74

Cal
R2 = 0.96
RMSE = 0.13
RPD = 4.99
Val
R2 = 0.68
RMSE = 0.41
RPD = 1.71

PLSR
 Cal
 Val
 1:1 line

SVR
 Cal
 Val
 1:1 line

RF
 Cal
 Val
 1:1 line

GPR
 Cal
 Val
 1:1 line

ELM
 Cal
 Val
 1:1 line

KNN
 Cal
 Val
 1:1 line

PLSR
 Cal
 Val
 1:1 line

SVR
 Cal
 Val
 1:1 line

RF
 Cal
 Val
 1:1 line

GPR
 Cal
 Val
 1:1 line

ELM
 Cal
 Val
 1:1 line

(a)

Pr
ed

ic
te

d 
PN

C
 (%

)

Measured PNC (%)

(b) (c)

Pr
ed

ic
te

d 
PN

C
 (%

)

Measured PNC (%)

Pr
ed

ic
te

d 
PN

C
 (%

)

Measured PNC (%)

(d) (e)

Pr
ed

ic
te

d 
PN

C
 (%

)

Measured PNC (%)

Cal
R2 = 0.74 
RMSE = 0.33
RPD = 1.97
Val
R2 = 0.69
RMSE = 0.39
RPD = 1.81

Pr
ed

ic
te

d 
PN

C
 (%

)

Measured PNC (%)

Cal
R2 = 0.92 
RMSE = 0.19
RPD = 3.40
Val
R2 = 0.71
RMSE = 0.38
RPD = 1.82

(f)

Pr
ed

ic
te

d 
A

G
B

 (t
 h

a-1
)

Measured AGB (t ha-1)

Cal
R2 = 0.87
RMSE = 0.35
RPD = 2.80
Val
R2 = 0.66
RMSE = 0.65
RPD = 1.49

Cal
R2 = 0.67 
RMSE = 0.56
RPD = 1.76
Val
R2 = 0.75
RMSE = 0.52
RPD = 1.85

Cal
R2 = 0.83
RMSE = 0.40 
RPD = 2.44
Val
R2 = 0.76
RMSE = 0.56
RPD = 1.74

(g) (h) (i)

Pr
ed

ic
te

d 
A

G
B 

(t 
ha

-1
)

Measured AGB (t ha-1)

Pr
ed

ic
te

d 
A

G
B 

(t 
ha

-1
)

Measured AGB (t ha-1)

Pr
ed

ic
te

d 
A

G
B 

(t 
ha

-1
)

Measured AGB (t ha-1)

Cal
R2 = 0.96 
RMSE = 0.18
RPD = 5.54
Val
R2 = 0.76
RMSE = 0.50
RPD = 1.96

Cal
R2 = 0.83 
RMSE = 0.40
RPD = 2.47
Val
R2 = 0.79
RMSE = 0.51
RPD = 1.90

Cal
R2 = 0.91 
RMSE = 0.29
RPD = 3.42
Val
R2 = 0.79
RMSE = 0.46
RPD = 2.10

(j) (k) (l)

Pr
ed

ic
te

d 
A

G
B 

(t 
ha

-1
)

Measured AGB (t ha-1)

Pr
ed

ic
te

d 
A

G
B 

(t 
ha

-1
)

Measured AGB (t ha-1)

Figure 7. Input variables selection based on PCA algorithm. PNC (a), AGB (b).
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Figure 8. The performance of six PCA-based models: PNC (a–f), AGB (g–l). K-nearest neighbor (a,g),
partial least squares regression (b,h), support vector regression (c,i), random forest (d,j), Gaussian
process regression (e,k), ensemble learning model (f,l).
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3.3.2. SPA-PCA-Based Data Dimensionality Reduction

Figure 9 shows the accuracy of the PNC and AGB prediction models established with
six models and four input datasets. The results showed that SPA-PCA slightly improved
with the PNC and AGB estimation models for most of the basic models for SIs. Compared
with other models, the ELM that combined SPA-PCA-based SIs greatly improved the
prediction accuracy of PNC (Figure 9a–c) and AGB (Figure 9d–f).
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Figure 9. R2, RMSE, and RPD of six models for potato PNC (a–c) and AGB (d–f) estimation. Original:
14 SIs as input variables; SPA: SPA-based input variables; PCA: PCA-based input variables; SPA-PCA:
input variables based on SPA-PCA; K-nearest neighbor (KNN); partial least squares regression (PLSR);
support vector regression (SVR); random forest (RF); Gaussian process regression (GPR); ensemble
learning model (ELM).

3.4. Mapping PNC and AGB Using Sentinel-2 Imagery

The mapping results based on the ensemble learning model from the SPA-PCA are
shown in Figure 10. The potato PNC was highest during tuber formation. With potato
growth developed, the PNC of the potato was affected by the dilution effect [54] with a
gradual decrease in PNC. In contrast to PNC, the AGB values were minimal during tuber
formation. With potato growth developed, AGB gradually increased. In addition, Figure 11
demonstrates the correlation of PNC and AGB with yield at different potato growth stages.
The results showed that biomass at the tuber-formation stage (T1) was highly correlated
with potato yield (Figure 11b). Therefore, it is important to accurately monitor PNC and
AGB during the critical growth stages of potato.

All measured PNC and AGB samples acquired synchronously with Sentinel-2 im-
agery were used for validation. Figure 12 shows the relationships between measured and
predicted PNC and AGB. The accuracy of the prediction map is consistent with that of
the spectral data prediction (PNC: R2 = 0.72; RMSE = 0.46%; RPD = 1.46—AGB: R2 = 0.85;
RMSE = 0.37%; RPD = 2.64). This result also illustrates the accuracy of the prediction map.
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Figure 10. Spatial distribution of the estimation of PNC (a) and AGB (b) based on ELM method
at different growth stages (T1: tuber-formation stage; T2: tuber-bulking stage; and T3: starch-
accumulation stage).
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Figure 11. Correlation analysis of potato yield (t ha−1) with PNC (a) and AGB (b) during different
growth stages (T1: tuber-formation stage; T2: tuber-bulking stage; and T3: starch-accumulation stage).
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Figure 12. Relationship between measured and estimated PNC and AGB. PNC and AGB values
estimated using the ensemble learning model with the optimal input variables.
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4. Discussion
4.1. Comparison of PNC and AGB Sensitive Bands

Identifying and extracting critical bands from Sentinel-2 imagery is crucial for enhanc-
ing the accuracy of estimating crop PNC and AGB [55,56]. Among the tested SIs, the RE
region and the SWIR were the most influential for estimating PNC and AGB (Table 4).
Similar to the results of most studies, the RE is an effective band for monitoring crop
parameters [57,58]. The RE is a region with sharp changes in reflectance, and is considered
a sensitive region for monitoring the chlorophyll content of plants. The RE region changes
depending on the strength of chlorophyll absorption [54]. However, the results in this study
also indicate that SWIR can effectively improve the prediction accuracy of PNC and AGB
(Table 4). Similarly, Perich [59] suggested that the SWIR was the best region for plant N
status. This may be because protein and amino acid molecules in plants contain N. Proteins
typically absorb short-wave infrared light. When using the SWIR to monitor plant growth,
light in this band is absorbed by proteins in the plant, resulting in absorption peaks in the
spectrum. Therefore, combining the SWIR band and RE can effectively monitor the potato
PNC. The SWIR is also more sensitive to AGB. One possible explanation is that the highest
aboveground biomass was achieved in the potato post-flowering (T2 + T3 stages) when the
dilution effect diminishes [60]. The selected sensitive bands were weakly related to potato
AGB during the post-flowering stages (Table 5). Thus, PNC has a more significant influence
on choosing AGB sensitive bands. The results reported by Li [54] for winter wheat further
confirm the more robust relationship between SIs and PNC when the biomass reaches
constant values. Therefore, this study demonstrated the importance of the SWIR for potato
PNC and AGB. At the same time, future research should also optimize the sensitive bands
of PNC and AGB during different growth stages.

Table 5. Correlation coefficient between SIs and PNC and between SIs and AGB across different
growth stages *.

Spectral Indices
PNC AGB

T1 T2 + T3 T1 T2 + T3

NDVI −0.31 0.56 0.26 0.02
RVI −0.31 0.52 0.22 0.03
DVI 0.49 0.65 −0.77 −0.39

CIred edge −0.31 0.52 0.22 0.03
OSAVI −0.10 0.58 0.42 −0.41
MTCI 0.27 −0.71 0.69 −0.33

MCARI 0.49 0.65 0.90 0.39
PSRI 0.22 −0.59 0.46 −0.42

mSR705 −0.27 0.71 −0.69 0.33
mND705 0.29 −0.65 −0.59 0.02
TCARI 0.50 0.67 −0.88 −0.43
NPDI −0.29 0.66 −0.31 0.03

MCARI/OSAVI 0.35 0.72 −0.83 −0.43
TCARI/OSAVI 0.35 0.72 −0.83 −0.43

* T1: tuber-formation stage; T2: tuber-bulking stage; and T3: starch-accumulation stage.

4.2. Comparison of Different Types of SIs

Although a variety of SIs have been successfully used to monitor crop PNC and
AGB [61–63], limited research has evaluated the effectiveness of different types of SIs,
such as chlorophyll-based, nitrogen-based, and biomass-based SIs, for the estimation of
PNC and AGB of potato. In this study, four types of SIs were selected, including biomass,
vegetation, chlorophyll/LAI, and nitrogen. The results showed chlorophyll-based SIs
strongly correlate with potato PNC and AGB (Table 4). This is because chlorophyll, the
green pigment in plants, contains N. Plants synthesize chlorophyll by absorbing N from the
soil. Therefore, the SIs based on chlorophyll content are closely correlated with PNC [21].
In addition, chlorophyll content often represents plant growth conditions, and plants with
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high chlorophyll content usually have high biomass. Therefore, SIs based on chlorophyll
content and AGB often correlate strongly. Another reason may be the different levels of
N fertilizer treatments set up in this study. The different nitrogen supply greatly affected
the plant chlorophyll content and, thus, this is reflected in the PNC and AGB of the potato
crops. However, unlike the correlation analysis, the SIs selected based on the SPA method
included other SIs with weaker correlations (e.g., NDVI and RVI) (Figure 5). The SPA
method includes an iterative selection of input variables and picks different numbers of
SIs. Weaker SIs may highlight stronger ones and improve the predictive performance of
the model.

4.3. Differences in Model Performance

Various research studies have employed individual machine learning models and SIs
to assess crop PNC and AGB [20,62,64]. However, using a single machine learning model
to estimate PNC and AGB still has limitations [22]. This is due to the inconsistent effect of
different single models on limited datasets. This study constructed an ELM that combined
different models (KNN, PLSR, SVR, RF, and GPR) for PNC and AGB estimation. The ELM
produced a better potato PNC and AGB estimate performance than traditional machine
learning models for multiple growth stages (Figure 9). In addition, predicted and measured
values based on the ELM were closer to the 1:1 line and had higher LCCC values than
the five base models (Figure 13), significantly reducing the overfitting phenomenon. Like
Yang [22], the stacking ensemble algorithm yielded the highest estimation accuracy and
lowest overfitting for crop parameters. This may be because each base model produces
high estimation accuracy (Figure 9), and combining the advantages of various models
could improve the estimation accuracy of PNC and AGB under different growth conditions.
Moreover, this study compared three ensemble learning strategies (bagging, boosting, and
stacking). The results demonstrated the advantages of the stacking model for predicting
potato PNC and AGB (Figure 14). Therefore, future studies should determine which base
models maximize the effectiveness of ensemble learning models and explore the potential
of varying ensemble learning strategies, such as bagging or boosting technology, in different
crop parameter estimations.

In this study, Sentinel-2 images were used to combine ensemble learning models for
the accurate estimation of potato PNC and AGB. This provides effective help with the use
of remote sensing to guide N fertilizer application. Currently, many studies have used
crop PNC or AGB prediction based on spectral techniques to guide N fertilizer application.
For example, Peng [32] predicted potato PNC using spectral indices and random forest
regression models and calculated nitrogen nutrient indices (NNIs) in combination with
potato dilution curves. The predicted NNIs provided help with potato nitrogen fertilizer
guidance. Therefore, in future studies, we will construct local potato dilution curves to
calculate NNIs in combination with potato PNC and AGB prediction models constructed
by Sentinel-2 and ensemble learning to achieve large-scale, rapid, and non-destructive
potato N fertilizer management.
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Figure 13. Evaluation of the performance of six models based on SPA-PCA. Six models: PNC (a–f),
AGB (g–l). K-nearest neighbor (a,g), partial least squares regression (b,h), support vector regression
(c,i), random forest (d,j), Gaussian process regression (e,k), ensemble learning model (f,l).
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Figure 14. Evaluating the performance of RF (a,d), XGBoost (b,e), and ELM (c,f) based on SPA-PCA.
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5. Conclusions

In this study, we compared the effectiveness of different types of SIs and different
band combinations at predicting the PNC and AGB of potato. The SPA, PCA, and SPA-PCA
were employed to select the optimal features to reduce multicollinearity among 14 SIs.
The selected SIs were combined with six models (KNN, PLSR, SVR, RF, GPR, and ELM)
for potato PNC and AGB estimation. The SIs based on chlorophyll content were strongly
related to potato PNC and AGB. The sensitive bands were mainly concentrated in the
red-edge (705 nm) and short-wave infrared (1610 and 2190 nm) regions. ELMs combined
with SPA-PCA can effectively improve the prediction of PNC and AGB compared to other
base models. The prediction performance was verified using ground-measured PNC and
AGB data and the corresponding Sentinel-2 imagery. The resultant PNC and AGB maps
confirmed the feasibility of predicting PNC and AGB with high-spatial-resolution Sentinel-
2 imagery. This work highlights the potential value of Sentienl-2 data for the practical
application of monitoring nitrogen use efficiency in agroecosystems.
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