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Abstract: The passive microwave land surface emissivity (MLSE) plays a crucial role in retrieving
various land surface and atmospheric parameters and in Numerical Weather Prediction models. The
retrieval accuracy of MLSE depends on many factors, including the consistency of the input data
acquisition time. The FengYun-3D (FY-3D) polar-orbiting meteorological satellite, equipped with
passive microwave and infrared bands, offers time-consistent data crucial for MLSE retrieval. This
study proposes a physics-based MLSE retrieval algorithm using all the input data from the FY-3D
satellite. Based on the retrieved MLSE, the spatial distribution of the MLSE is closely correlated with
the land cover types and topography. Lower emissivities prevailed over barren or sparsely vegetated
regions, river basins, and coastal areas. Higher emissivities dominated densely vegetated regions and
mountainous areas. Moderate emissivities dominated grasslands and croplands. Lower-frequency
channels showed larger emissivity differences with different polarizations than those of higher-
frequency channels in barren or sparsely vegetated regions. The MLSE across densely vegetated land
areas, mountainous areas, and deserts showed small seasonal variations. However, woody savannas,
grasslands, croplands, and seasonal snow-covered areas showed noticeable seasonal variations. For
most land cover types, the differences between vertically and horizontally polarized emissivities
remained relatively constant across seasons. However, certain grasslands in eastern Inner Mongolia
and southern Mongolia showed clear seasonal variations. It is very difficult to verify the MLSE
on a large scale. Consequently, the possible error sources in the retrieved MLSE were analyzed,
including the brightness temperature errors (correlation coefficient ranging from 0.92 to 0.99) and the
retrieved land surface temperature errors (Root Mean Square Error was 3.34 K and relation coefficient
was 0.958).

Keywords: FY-3D; microwave land surface emissivity; brightness temperature; land surface
temperature; land cover types

1. Introduction

Accurate retrieval of passive microwave land surface emissivity (MLSE) data is es-
sential in many fields [1]. A realistic MLSE can potentially improve the initial fields of
Numerical Weather Prediction models, thereby enhancing 24 h forecasts of precipitation
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distribution and intensity [2]. A rapid change in emissivity can indicate precipitation
events in certain land cover types when it is not saturated [3–5]. Moreover, because MLSE
is sensitive to snow, it is often used to monitor snow cover and melting at high latitudes [6]
and to detect soil freeze–thaw states [7,8]. MLSE is also vital for retrieving atmospheric
parameters. For example, because land surface radiation has high spatial and temporal het-
erogeneities compared to those of the sea surface, it is difficult to retrieve the column water
vapor content (WVC) over land [9]. Zhou et al. [10] developed a physics-based model that
primarily uses MLSE to retrieve the column WVC over land. Greenwald et al. [11] proved
that the retrieval of the cloud liquid water content may be applicable if the MLSE at 85 GHz
is known in advance. Furthermore, MLSE is vital for quantitative retrieval of land surface
parameters. For example, as the land surface temperature (LST) is coupled with MLSE in
the radiative transfer model, some retrieval algorithms for the LST need to first calculate
the MLSE [12–14]. In general, an error of 0.01 in the MLSE retrieval at 36.5 GHz may lead to
a 3 K error in the LST [12]. Moreover, the relation between the MLSE in the L band and the
soil moisture content showed a negative correlation. Consequently, many retrieval models
for the soil moisture content have been developed using this relation [15–17].

MLSE is affected by many inherent land features, including the soil texture, soil
moisture content, land cover type, land surface roughness, vegetation optical depth, and
freeze–thaw transition [18–20]. In addition, it is influenced by radiation characteristics,
such as the frequency and polarization. Consequently, it is difficult to obtain the MLSE at
a passive microwave spatial resolution scale through a physical forward model because
it is difficult to obtain accurate descriptions of all the aforementioned parameters [21,22].
Compared with modeling activity, a simpler method to obtain the MLSE at a satellite
footprint scale involves using the inverse radiative transfer model. This method involves
removing atmospheric and LST contributions from the top of the atmospheric brightness
temperature data. Prigent et al. [23] measured global MLSE retrievals using Special Sensor
Microwave Imager data. Since then, many MLSE products have been obtained from other
passive microwave sensors, such as the Advanced Microwave Scanning Radiometer-Earth
Observing System [24,25], the Advanced Microwave Sounding Unit [26], the Tropical Rain-
fall Measuring Mission Microwave Imager [27], Windsat [28], the Advanced Microwave
Scanning Radiometer 2 (AMSR2) [29], the FY-3B Microwave Radiation Imager (MWRI) [30],
and the FY-3D MWRI [31]. These retrieval models have been proven to offer reliable
first-order MLSE measurements [32,33].

To remove the influences of the LST and atmospheric effects from microwave bright-
ness temperature data, the aforementioned algorithms require many input parameters. As
these input parameters have strong spatiotemporal heterogeneity, differences in the data
acquisition time may produce large errors in the retrieval of the MLSE. Consequently, a
physics-based MLSE retrieval algorithm using all the input data from the FY-3D satellite
was proposed in this study. The FY-3D, the successor to the FY-3B, has taken over prime
operational weather services from the FY-3B. The structure of this paper is as follows.
Section 2 details the study area and the data employed. Section 3 outlines the physics-based
MLSE retrieval method. Section 4 presents the results of the study. Section 5 presents the
discussion. Finally, Section 6 presents the conclusions.

2. Study Area and the Data
2.1. Study Area

Eastern Asia (73.0◦–135.1◦E, 17.6◦–54.2◦N), as shown Figure 1, was selected as the
study area. This region has complex terrain features, such as the Himalayan Mountains,
Qinghai–Tibet Plateau, plains, hills, and basins. As shown in Figure 1, the complex terrain
features and distinct climatic characteristics result in various land use and land cover types,
including forests, savannas, croplands, grasslands, shrublands, and barren lands. These
land cover types, which range from forests to deserts, can provide completely different
MLSE values due to differences in the soil moisture content, soil texture, surface roughness,
and vegetation optical depth.
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Figure 1. Land cover types map of the study area (data from MCD12C1 in 2019).

2.2. FY-3D MWRI Data

The FY-3D, the fourth flight unit of the Chinese FY-3 series of satellites, was launched
on 15 November 2017. It carries the MWRI instrument for exploring the atmosphere, ocean,
and land surface environments. The MWRI operates at five frequencies: 10.65, 18.7, 23.8,
36.5, and 89.0 GHz, with two polarization modes for each frequency. The swath width is
approximately 1400 km, with an incidence angle of 53◦ and overpass times of approximately
02:00 am (descending)/02:00 pm (ascending) local solar time. Detailed characteristics are
listed in Table 1. The MWRI Level-1 brightness temperature data used in this study were
downloaded from the National Satellite Meteorological Center of the China Meteorological
Administration (http://satellite.nsmc.org.cn/PortalSite/Data/Satellite.aspx (accessed on
18 July 2022)). Compared to previous MWRI sensors, the bias of the FY-3D MWRI data
showed a node-independent difference from the background simulation of the Numerical
Weather Prediction [34,35]. In this study, Level-1 brightness temperature data with a spatial
resolution of 0.25◦ were used for the year 2020.

http://satellite.nsmc.org.cn/PortalSite/Data/Satellite.aspx
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Table 1. Detailed characteristics of the FY-3D/MWRI.

Central Frequency
(GHz)

Bandwidth
(MHz) Polarization NE∆T (K) Range

(K)

10.65 180

V, H

0.5

3–340
18.7 200 0.5
23.8 400 0.5
36.5 400 0.5
89 3000 0.8

2.3. FY-3D Medium Resolution Spectral Imager-2 (MERSI-2) Data

The MERSI-2 is another inherited instrument carried by the FY-3D. The MERSI-2 is
equipped with fifteen visible and near-infrared bands, four shortwave infrared bands, two
medium-wave infrared bands, one water vapor band, and three thermal infrared bands. In
this study, MERSI-2 Band 24 (10.3–11.3 µm) and Band 25 (11.5–12.5 µm) were chosen for
the retrieval of the LST using the split window (SW) algorithm (see Section 3 for details).
Additionally, the FY-3D MERSI-2 column WVC products, as produced by Wang et al. [36],
were used in this study:

First, it is assumed that the surface reflectance is linearly correlated with the wave-
length, and a three-channel ratio involving an absorption channel and two window chan-
nels can be used to estimate the transmittance of the absorption channel:

Twv = ρwv/(k1·ρws + k2·ρwl) (1)

where Twv is the transmittance of the absorption channel, meaning that three absorption
channels have three transmittances (T905, T936, and T940); ρwv, ρws, and ρwl are the apparent
reflectances of the absorption channel and two window channels (“ws” denotes the shorter
wavelength, and “wl” denotes the longer wavelength); and k1 + k2 = 1. The three-channel
ratio method was used when the land pixels were cloud-free. The proportionality constants
k1 and k2 are calculated as follows:

k1 = (λwl − λwv)/(λwl − λws) (2)

k2 = (λwv − λws)/(λwl − λws) (3)

where λwv is the wavelength of the absorption channel, λws is the wavelength of the
shorter-wavelength channel, and λwl is the wavelength of the longer-wavelength channel.

The Twv as a function of the slant total WVC∗ was precalculated using MODTRAN
under the six standard atmospheric models defined in MODTRAN4.3 [36]. The total slant
WVC∗ can be derived from the transmittance–water vapor lookup table. The slant total
WVC∗ is then converted into the vertical column WVC (mm) using the formula:

WVC = WVC∗/
[

1
cos θs

+
1

cos θv

]
(4)

where θs and θv are the solar and view zenith angles, respectively.
Based on the aforementioned WVC retrieval algorithm, three WVC datasets were

developed, which were calculated from the combination of 905 nm, 865 nm, and 1030 nm
(WVC905), the combination of 936 nm, 865 nm, and 1030 nm (WVC936), and the combi-
nation of 940 nm, 865 nm, and 1030 nm (WVC940). Generally, the derived WVC from the
three channels differed because the three channels had different absorption coefficients.
Consequently, the combined WVC was obtained using the following equation:

WVCc = P1·WVC905 + P2·WVC936 + P3·WVC940 (5)

where P1, P2 and P3 are the corresponding weighting functions, which can be calculated based
on the sensitivity of the transmittance in each channel to the WVC: ηi = |∆Twv,i/∆WVC|. The
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weighting functions, Pi, are defined as the normalized values of ηi: Pi = ηi/(η 1 + η2 + η3).
P1 + P2 + P3 = 1.

3. Methodology

Based on the radiative transfer model, the brightness temperature at i GHz can be
expressed as follows:

Tb,i = T↑
a,i + τi · εi · TS + (1 − εi)τi

(
T↓

a,i + Tsky

)
(6)

where the first term on the right side of the equation represents the upwelling effective
radiation of the atmosphere, the second term represents the surface-emitted radiation
attenuated by the atmosphere, and the third term represents the surface-reflected and
then the atmosphere-attenuated downwelling effective radiation of the atmosphere and
the cosmic background radiation. Tb,i is the brightness temperatures at i GHz K); τi is
the atmospheric transmittances; T↑

a,i and T↓
a,i are the upwelling and downwelling effective

radiating temperatures of the atmosphere (K); εi is MLSE; TS is LST (K); and Tsky is the
cosmic background radiation temperature (approximately 2.7 K). These equations implicitly
include the dependence of radiance on the sensor angle. Consequently, εi can be estimated
from the transformation of Equation (6):

εi =
Tb,i − T↑

a,i −
(

T↓
a,i + Tsky

)
τi

τi · TS −
(

T↓
a,i + Tsky

)
τi

(7)

where the unknown parameters are Ts, τi, T↑
a,i, and T↓

a,i. These atmospheric parameters
have been estimated from the WVC [37,38] and are described as follows [37]:

τi = e−(av×WVC+bo) (8)

T↑
a,i ≈ T↓

a,i ≈ (1 − τi)
(

aT ·WVC2 + bT ·WVC + cT

)
(9)

where τi is the exponential function of the WVC with base e, when ignoring the effect of
cloud liquid water. T↑

a,i is approximately equal to T↓
a,i and is expressed as a function of τi

and WVC. Han et al. [37] analyzed these relations using a monochromatic radiative transfer
model and found that av, bo, aT , bT , and cT depend on the frequency.

Ts data can be retrieved from the FY-3D MERSI-2 under clear-sky conditions using
the SW algorithm. The SW algorithm, a classical algorithm for retrieving the LST, uses
the absorbing differences within the atmosphere between two adjacent thermal infrared
channels. This helps eliminate the influence of the atmosphere through a combination of
two thermal infrared channels. The general expression for the SW algorithm is as follows:

LST = A0 + A1TB1 − A2TB2 (10)

where A0, A1, A2 are parameters and TB1 and TB2 are two brightness temperatures in
adjacent thermal infrared channels. Scholars have improved the SW algorithm and obtained
numerous new expressions [39]. In this study, we used the improved SW algorithm
proposed by Wang et al. [40], whose expression of the SW algorithm is reduced as follows:

LST = [C25(B24 + D24)− C24(B25 + D25)]/(C25 A24 − C24 A25) (11)
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where



A24 = 0.1419ε24τ24
A25 = 0.1195ε25τ25

B24 = 0.1419TB24 + 32.764ε24τ24 − 32.764
B25 = 0.1195TB25 + 26.775ε25τ25 − 26.775
C24 = (1 − τ24) · [1 + (1 − ε24)τ24] · 0.1419
C25 = (1 − τ25) · [1 + (1 − ε25)τ25] · 0.1195
D24 = (1 − τ24) · [1 + (1 − ε24)τ24] · 32.764
D25 = (1 − τ25) · [1 + (1 − ε25)τ25] · 26.775


(12)

where εM is the land surface emissivity of channel M, τM is the atmospheric transmittance
of channel M, and TBM is the brightness temperature of channel M.

To obtain the LST, it is necessary to first obtain the other two parameters: atmospheric
transmittance: τ24 and τ25; and thermal infrared land surface emissivity ε24 and ε25.

Wang et al. [40] found that the thermal infrared atmospheric transmittance shows a
decreasing trend with an increase in the WVC based on simulations from MODTRAN. Con-
sequently, they built a cubic polynomial fitting to estimate the atmospheric transmittance
in the thermal infrared bands from the WVC [40]:

τ24 = 0.0016WVC3 − 0.0216WVC2 − 0.0243WVC + 0.9635 (13)

τ25 = 0.0023WVC3 − 0.0234WVC2 − 0.0623WVC + 0.9555 (14)

For the thermal infrared land surface emissivity, because the imaging times and
thermal infrared wavelength settings of the MERSI-2 were similar to those of the Moderate
Resolution Imaging Spectroradiometer (MODIS, MERSI-2 Band 24 vs. MODIS Band 31 and
MERSI-2 Band 25 vs. MODIS Band 32) [24], the values of the Band 24 and 25 emissivities
were directly used from the MODIS/Aqua Land Surface Temperature/Emissivity Daily L3
Global 1 km SIN Grid (MYD11A1) products.

Since the thermal infrared land surface emissivity ελ and atmospheric transmittance
τλ were now known, the LST was calculated based on Equation (11). To match the spa-
tial resolution of the MWRI data, the LST was aggregated to 0.25◦ using a cubic spline
interpolation method.

Due to the greater penetration of lower-frequency radiation in arid regions, brightness
temperature data at low frequencies are emitted from the subsurface rather than from the
skin surface. Consequently, the passive microwave brightness temperature and infrared-
based LST are not from the same physical quantity [30], which may produce inconsistent
MLSE values between the day and night when the MLSE is estimated using Equation (7).
To minimize this error and obtain more accurate MLSE estimates, a correction factor for the
LST was computed based on the monthly mean brightness temperature for daytime and
nighttime [29]:

Tc
s = Ts ±

Tb,day − Tb,night

2
(15)

where Tb,day and Tb,night are the mean composite brightness temperatures for all the day-
times and night-times for a specific month (K); “+” is used for the daytime and the “−” is
used for the nighttime; Tc

s is the corrected effective temperature consistent with passive
microwave radiation (K), which was used in this study in arid regions; and Ts is the original
LST in arid regions (K). Figure 2 shows a flowchart of the MLSE retrieval algorithm.
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Figure 2. Flowchart of the MLSE retrieval algorithm. MLSE, microwave land surface emissivity;
WVC, water vapor content; SW, split window; MERSI, Medium Resolution Spectral Imager; TIR,
thermal infrared; LST, land surface temperature; MWRI, Microwave Radiation Imager.

4. Results

Figure 3a,b show the spatial distribution of the MLSE with horizontal and vertical
polarization at all the frequencies in April 2020 separately (10, 18, 23, 36, and 89 H or V in
the figure for short, as shown subsequently). As seen in Figure 3a, a noticeable increase
in the MLSE is found with an increasing frequency. However, this pattern is not found
in Figure 3b. On the contrary, the MLSE with vertical polarization in the Qinghai–Tibet
Plateau decreases with an increasing frequency. In the 10H submap of Figure 3, some
unusually high values appeared in the southern Jiangsu Province (marked by a black circle).
We checked three kinds of input products and found that the abnormal values appeared in
the brightness temperature data at 10.65 GHz. We believe that these brightness temperature
data in this region are affected by radio-frequency interference.
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5. Discussions

Due to the absence of thermal infrared LST under cloudy conditions, the passive
microwave MLSE retrievals in this study were limited to clear-sky conditions. Consequently,
the analysis of the spatial and seasonal distributions of the MLSE was based on monthly
mean retrievals.

Because of the effect of the radio-frequency interference, the MLSE at 10.65 GHz was
excluded from the following discussions. Additionally, as the differences in the MLSE
between 18.7 and 23.8 GHz are small, the discussions also exclude 18.7 GHz.

5.1. Spatial Distribution of the Monthly MLSE

Figure 4 presents the monthly mean retrievals of the MLSE at 23.8, 36.5, and 89.0 GHz
with horizontal polarization in July 2020. The spatial distribution of the MLSE in the study
area is highly related to the land cover types and topography. Lower emissivities are mainly
located over barren or sparsely vegetated regions (such as the Taklimakan Desert, Kumtag
Desert, and Badain Jaran Desert) due to the low surface roughness. They are also located
over river basins (such as the lower reaches of the Yangtze River and Ganges) and coastal
areas owing to the large attenuation coefficient of water. In contrast, higher emissivities are
mainly located over densely vegetated regions (such as southwest China) and mountainous
areas (such as the Himalayan Mountains, Qinling–Taihang Mountains, and Great Khingan)
due to the large surface roughness. Moderate emissivities are mainly located over grassland
and cropland areas, such as the North China Plain.
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Figure 4 also shows that lower-frequency channels are more sensitive to water than
higher-frequency channels. For example, in the lower reaches of the Yangtze River, Ganges
River basin, and coastal areas, the number of pixels of low emissivities at 23.8 GHz are
noticeably more than those at 89.0 GHz. Consequently, low-frequency channels are useful
for retrieving the soil moisture and vegetation water content. Moreover, low-frequency
emissivities have the potential to monitor precipitation during land and soil droughts.

It is known that the MLSE with vertical and horizontal polarizations show different
characteristics because of the differences in their dielectric constant responses. Figure 5
shows the differences between the vertically and horizontally polarized emissivities from
23.8 GHz to 89.0 GHz in July 2020. It is observed that lower-frequency channels show larger
differences in emissivities due to polarization than those of higher-frequency channels
in barren or sparsely vegetated regions. The Taklimakan and Ala Shan Deserts showed
the largest polarization differences, while evergreen rainforests and mountainous areas
exhibited the smallest differences. This distinction is useful for identifying land cover and
terrain based on polarized emissivity differences.
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5.2. Seasonal Distribution of the MLSE

Figure 6 shows the seasonal variation in the emissivities at 36.5 GHz with horizontal
polarization in January, April, July, and October 2020, representing winter, spring, summer,
and autumn, respectively. It is observed that the MLSEs located over densely vegetated land
areas, such as evergreen broadleaf forests in Southeast Asia, deserts, such as the Taklimakan
Desert, and river basins, such as the lower reaches of the Yangtze River, exhibit minimum
seasonal variations. This is because the surface cover types in evergreen forests and deserts
do not change seasonally. However, other areas, such as woody savannas, grasslands,
croplands, and seasonal snow cover areas, showed noticeable seasonal variations related to
seasonal changes in the vegetation density, snow cover, and melting. Figure 6 also shows
that many missing emissivity values existed at low latitudes in July. Because these areas
are always covered by clouds, thermal infrared data cannot be used to measure the LST.
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To date, no high-precision MWRI emissivity product from the FY-3D satellite is avail-

able for verifying our algorithm. Our MLSE retrievals were compared to those of Mon-
cet_MLSE [24] and Hu_MLSE [41] at all five frequencies in China. Similar spatial and sea-
sonal distributions of the MLSE were observed in the three retrievals. However, some dif-
ferences were also found, which may have been caused by differences in the sensors, al-
gorithms, and data acquisition times. In addition, possible errors in our proposed algo-
rithm might originate from three sources. 
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Figure 7 shows the seasonal variation in the MLSE differences at 36.5 GHz between
vertical and horizontal polarization in 2020. Across most land cover types, the differences
between the vertically and horizontally polarized emissivities do not change significantly
throughout the seasons. Barren or sparsely vegetated regions (such as Taklimakan Desert,
Badain Jaran Desert, Tengger Desert, Uulan Buh Desert, Kubuqi Desert, and Hunshandak
Sandy Land), river basins (such as the lower reaches of the Yangtze River), and coastal
areas show large polarization differences, while evergreen rainforests and mountainous
areas exhibit the smallest polarization differences. However, certain grasslands in eastern
Inner Mongolia and southern Mongolia show clear seasonal variations. This was mainly
caused by seasonal changes in the rainfall and vegetation density.
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5.3. Possible Error Sources of the Retrieved MLSE

To date, no high-precision MWRI emissivity product from the FY-3D satellite is avail-
able for verifying our algorithm. Our MLSE retrievals were compared to those of Mon-
cet_MLSE [24] and Hu_MLSE [41] at all five frequencies in China. Similar spatial and
seasonal distributions of the MLSE were observed in the three retrievals. However, some
differences were also found, which may have been caused by differences in the sensors, al-
gorithms, and data acquisition times. In addition, possible errors in our proposed algorithm
might originate from three sources.

5.3.1. Errors from the FY-3D MWRI Brightness Temperature Measurements

To assess the accuracy of the MWRI brightness temperature data, AMSR2 L3 brightness
temperature data with a spatial resolution of 0.25◦, which was the same as that of the MWRI
data, were used. The original spatial resolutions of the five bands of both the MWRI and
AMSR2 are listed in Table 2. As shown in Table 2, the original spatial resolutions of all the
AMSR2 frequencies were much higher than those of the MWRI.

Table 2. Differences in the original resolution of the MWRI and AMSR2.

Central Frequency (GHz) MWRI (km) AMSR2 (km)

10.65 51 × 85 24 × 42
18.7 30 × 50 14 × 22
23.8 27 × 45 15 × 26
36.5 18 × 30 7 × 12
89 9 × 15 3 × 5

MWRI, Microwave Radiation Imager; AMSR2, Advanced Microwave Scanning Radiometer 2.

Figure 8 shows the brightness temperature distribution map at 89 GHz with horizontal
polarizations of the MWRI and AMSR2 on 1 April 2020. As shown in Figure 8, the brightness
temperature distribution trends from both passive microwave radiometers were consistent.
The gaps in the MWRI map are larger than those in the AMSR2 map because the swath
width of the MWRI is 1400 km, whereas that of the AMSR2 is 1450 km. Two error metrics,
the correlation coefficient (R) and bias, were used to evaluate the accuracy of the MWRI
brightness temperature across five frequencies and two polarizations, and the results are
listed in Table 3. The table shows high correlation coefficients (>0.92), indicating high
consistency between the MWRI and AMSR2 across all channels. However, the correlation
coefficients decrease (from 0.99 to 0.92) with an increase in the frequency (from 10.65 GHz
to 89 GHz) and the decreasing trend have no connection with polarization. The bias of
−5.1 to 0.25 K suggests that the MWRI brightness temperature is lower than that of the
AMSR2. These differences may be due to variations in the overpass time, incidence angles,
bandwidth, and original spatial resolutions between the two sensors, aligning with findings
from previous studies [40].
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Figure 8. Brightness temperature distribution map at 89 GHz with horizontal polarization of the
MWRI and AMSR2 on 1 April 2020. MWRI, Microwave Radiation Imager; AMSR2, Advanced
Microwave Scanning Radiometer 2.

Table 3. Accuracy of the Microwave Radiation Imager brightness temperature across five frequencies
and two polarizations.

Polarization Frequency (GHz) R Bias (K)

H

10.65 0.99 −2.77
18.7 0.98 0.25
23.8 0.97 −3.14
36.5 0.96 −4.49
89 0.92 −0.98

V

10.65 0.99 −5.1
18.7 0.98 −2.88
23.8 0.97 −4.47
36.5 0.96 −5.05
89 0.92 −2.19

5.3.2. Errors from the FY-3D LST

The MODIS is one of the most reliable global remotely sensed LST products [42–44].
Validated via in situ measurements, the MODIS LST in some homogeneous land sur-
faces showed accuracy within 1 K [45,46]. The MERSI-2 operates with thermal infrared
wavelength settings similar to those of the MODIS data, albeit with an imaging time of
approximately half an hour later than that of the MODIS. Wang et al. [40] showed a good
agreement between the LST from the MODIS and MERSI-2 in the Bohai Sea area of China.
Aveni and Blackett [47] evaluated the MODIS and MERSI-2 LST of Mount Etna (Italy)
during the active volcanic phase in 2019 and obtained an R2 of 0.92.

In this study, the corresponding MODIS LST (MYD11A1) and calculated MERSI-2
LST on 1 April 2020, were compared at the 1 km pixel level. The error frequency map
of LST differences is shown in Figure 9, revealing an RMSE of 3.34 K and a correlation
coefficient of 0.958. The bias of 0.82 K means that the MODIS LSTs are higher than the
MERSI-2 LSTs. The higher RMSE, compared to that reported by Wang et al. [40], mainly
comes from the more complicated validation data involving many land cover types, land
surface elevations, and climatic zones. The half an hour time gap between the MODIS and
MERSI-2 acquisitions may be the main cause of this temperature discrepancy.



Remote Sens. 2024, 16, 352 12 of 15

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 14 
 

 

89 0.92 −2.19 

5.3.2. Errors from the FY-3D LST 
The MODIS is one of the most reliable global remotely sensed LST products [42–44]. 

Validated via in situ measurements, the MODIS LST in some homogeneous land surfaces 
showed accuracy within 1 K [45,46]. The MERSI-2 operates with thermal infrared wave-
length settings similar to those of the MODIS data, albeit with an imaging time of approx-
imately half an hour later than that of the MODIS. Wang et al. [40] showed a good agree-
ment between the LST from the MODIS and MERSI-2 in the Bohai Sea area of China. Aveni 
and Blackett [47] evaluated the MODIS and MERSI-2 LST of Mount Etna (Italy) during the 
active volcanic phase in 2019 and obtained an R2 of 0.92. 

In this study, the corresponding MODIS LST (MYD11A1) and calculated MERSI-2 
LST on 1 April 2020, were compared at the 1 km pixel level. The error frequency map of 
LST differences is shown in Figure 9, revealing an RMSE of 3.34 K and a correlation coef-
ficient of 0.958. The bias of 0.82 K means that the MODIS LSTs are higher than the MERSI-
2 LSTs. The higher RMSE, compared to that reported by Wang et al. [40], mainly comes 
from the more complicated validation data involving many land cover types, land surface 
elevations, and climatic zones. The half an hour time gap between the MODIS and MERSI-
2 acquisitions may be the main cause of this temperature discrepancy. 

 
Figure 9. Error frequency map of the LST differences between the MODIS and MERSI-2 on 1 April 
2020. LST, land surface temperature; MERSI-2, Medium Resolution Spectral Imager-2. 

5.3.3. Errors from the FY-3D WVC 
The Aerosol Robotic Network, a global ground-based aerosol observation network 

equipped with many sun photometers, has been widely used and validated worldwide. 
Xie et al. [48] used ground-based WVC data from 369 Aerosol Robotic Network sites to 
validate the MERSI-2 WVC products. The results showed that all four MERSI-2 WVC da-
tasets (𝑊𝑉𝐶 , 𝑊𝑉𝐶 , 𝑊𝑉𝐶 , and 𝑊𝑉𝐶 ) were better than the MODIS WVC dataset 
due to the serious overestimation found in the MODIS WVC data. 

6. Conclusions 
In this study, a physics-based algorithm was developed to retrieve MLSE data using 

passive microwave brightness temperature measurements obtained from the FY-3D 
MWRI. The algorithm utilized input data, including the brightness temperature, LST, and 

Figure 9. Error frequency map of the LST differences between the MODIS and MERSI-2 on 1 April
2020. LST, land surface temperature; MERSI-2, Medium Resolution Spectral Imager-2.

5.3.3. Errors from the FY-3D WVC

The Aerosol Robotic Network, a global ground-based aerosol observation network
equipped with many sun photometers, has been widely used and validated worldwide.
Xie et al. [48] used ground-based WVC data from 369 Aerosol Robotic Network sites to
validate the MERSI-2 WVC products. The results showed that all four MERSI-2 WVC
datasets (WVCc, WVC905, WVC936, and WVC940) were better than the MODIS WVC
dataset due to the serious overestimation found in the MODIS WVC data.

6. Conclusions

In this study, a physics-based algorithm was developed to retrieve MLSE data using
passive microwave brightness temperature measurements obtained from the FY-3D MWRI.
The algorithm utilized input data, including the brightness temperature, LST, and WVC,
obtained exclusively from the FY-3D satellite, ensuring consistency in the data acquisition
times. This feature significantly reduced the MLSE retrieval errors caused by inconsistencies
in the data acquisition time.

Based on the MLSE retrieved by our algorithm, it was found that the spatial distri-
bution of the MLSE was highly relevant to the land cover types and topography. Lower
emissivities were mainly located over barren or sparsely vegetated regions, which have
low surface roughness. Similarly, they were also located over river basins and coastal areas,
which have large attenuation coefficients. In contrast, higher emissivities were mainly
located over densely vegetated regions and mountainous areas, distinguished by their
rough surfaces. Moderate emissivities were mainly observed across grasslands and crop-
lands within plains. Moreover, lower-frequency channels were more sensitive to water
than higher-frequency channels, which is more evident in the lower reaches of the Yangtze
River, Ganges River basin, and coastal areas. Lower-frequency channels showed larger
emissivity differences with different polarizations than those of higher-frequency channels
in barren or sparsely vegetated regions. The MLSE over densely vegetated land areas and
deserts showed small seasonal variations because the surface cover types in these areas
do not change seasonally. However, areas with woody savannas, grasslands, croplands,
and seasonal snow cover showed noticeable seasonal variations associated with seasonal
changes in the vegetation density, snow cover, and melting dynamics. For most land cover
types, the differences between the vertically and horizontally polarized emissivities do not
change significantly across seasons. However, some grasslands in eastern Inner Mongolia
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and southern Mongolia show clear seasonal variations. This was mainly caused by seasonal
changes in the rainfall and vegetation density.

It is very difficult to verify the MLSE on a large scale. Therefore, this study mainly fo-
cused on the derivation of the physics-based MLSE retrieval method and the analysis of the
results. Similar spatial and temporal distributions were observed when our MLSE retrievals
were compared to those of other MLSE products. Some differences in the MLSE may arise
from differences in sensors, algorithms, data acquisition times, and input data measurement
errors. In this study, we validated the accuracy of the FY-3D MWRI brightness temperature
and MERSI-2 LST measurements. It was found that the correlation coefficients between the
MWRI and AMSR2 brightness temperatures ranged from 0.92 to 0.99. Additionally, the
accuracy of the retrieved MERSI-2 LST measurements showed an RMSE of 3.34 K and a
correlation coefficient of 0.958, compared with those of the MODIS LST measurements.

Author Contributions: Conceptualization, F.Z. and X.H.; methodology, F.Z., X.H. and S.T.; software,
F.Z.; validation, G.C. and X.S.; investigation, B.W.; data curation, F.Z.; writing—original draft prepa-
ration, F.Z.; writing—review and editing, F.Z., X.H., G.C. and X.S.; visualization, F.Z.; supervision,
X.H. and S.T.; funding acquisition, F.Z. and X.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
number 42001309, U2242211, and U2142212) and the Fengyun Application Pioneering Project (FY
APP-2022.0308).

Data Availability Statement: Data are contained within the article.

Acknowledgments: We thank the reviewers for providing valuable comments that improved the
quality of this paper. Significant appreciation is also given to all the data centers, which provided
essential help in obtaining the datasets.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ulaby, F.T.; Moore, R.K.; Fung, A.K. Radiometry. In Microwave Remote Sensing: Active and Passive, 3rd ed.; Addison-Wesley: Boston,

MA, USA, 1981; pp. 186–255.
2. Chen, K.; Fan, J.; Xian, Z. Assimilation of MWHS-2/FY-3C 183 GHz Channels Using a Dynamic Emissivity Retrieval and Its

Impacts on Precipitation Forecasts: A Southwest Vortex Case. Adv. Meteorol. 2021, 5, 6427620. [CrossRef]
3. Ferraro, R.R.; Peters-Lidard, C.D.; Hernandez, C.; Turk, F.J.; Aires, F.; Prigent, C.; Lin, X.; Boukabara, S.A.; Furuzawa, F.A.;

Gopalan, K.; et al. An evaluation of microwave land surface emissivities over the continental United States to benefit GPM-era
precipitation algorithms. IEEE Trans. Geosci. Remote Sens. 2013, 51, 378–398. [CrossRef]

4. Li, L.; Gaiser, P. WindSat soil moisture algorithm and validation. In Proceedings of the International Geoscience and Remote
Sensing Symposium, IGARSS 2007, Barcelona, Spain, July 23–27 2007.

5. Brocca, L.; Ciabatta, L.; Massari, C.; Moramarco, T.; Hahn, S.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil as
a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. 2014, 119, 5128–5141. [CrossRef]

6. Shahroudi, N.; Rossow, W. Using land surface microwave emissivities to isolate the signature of snow on different surface types.
Remote Sens. Environ. 2014, 152, 638–653. [CrossRef]

7. Prakash, S.; Norouzi, H.; Azarderakhsh, M.; Blake, R.; Khanbilvardi, R. Potential of satellite-based land emissivity estimates for
the detection of high-latitude freeze and thaw states. Geophys. Res. Lett. 2017, 44, 2336–2342. [CrossRef]

8. Shati, F.; Prakash, S.; Norouzi, H.; Blake, R. Assessment of differences between near-surface air and soil temperatures for reliable
detection of high-latitude freeze and thaw states. Cold Reg. Sci. Technol. 2017, 145, 86–92. [CrossRef]

9. Zabolotskikh, E.V.; Khvorostovsky, K.S.; Chapron, B. An Advanced Algorithm to Retrieve Total Atmospheric Water Vapor
Content from the Advanced Microwave Scanning Radiometer Data Over Sea Ice and Sea Water Surfaces in the Arctic. IEEE Trans.
Geosci. Remote Sens. 2019, 58, 3123–3135. [CrossRef]

10. Zhou, F.-C.; Song, X.; Leng, P.; Wu, H.; Tang, B.-H. An algorithm for retrieving precipitable water vapor over land based on
passive microwave satellite data. Adv. Meteorol. 2016, 2016, 4126393. [CrossRef]

11. Greenwald, T.J.; Combs, C.L.; Jones, A.S.; Randel, D.L.; Vonder, T.H. Further developments in estimating cloud liquid water over
land using microwave and infrared satellite measurements. J. Appl. Meteorol. Clim. 1997, 36, 389–405. [CrossRef]

12. Pulliainen, J.T.; Grandell, J.; Hallikainen, M.T. Retrieval of surface temperature in boreal forest zone from SSM/I data. IEEE Trans.
Geosci. Remote Sens. 1997, 35, 1188–1200. [CrossRef]

13. Prigent, C.; Rossow, W.R. Retrieval of surface and atmospheric parameters over land from SSM/I: Potential and limitations. Q. J.
R. Meteorol. Soc. 1999, 125, 2379–2400. [CrossRef]

https://doi.org/10.1155/2021/6427620
https://doi.org/10.1109/TGRS.2012.2199121
https://doi.org/10.1002/2014JD021489
https://doi.org/10.1016/j.rse.2014.07.008
https://doi.org/10.1002/2017GL072560
https://doi.org/10.1016/j.coldregions.2017.10.007
https://doi.org/10.1109/TGRS.2019.2948289
https://doi.org/10.1155/2016/4126393
https://doi.org/10.1175/1520-0450(1997)036%3C0389:FDIECL%3E2.0.CO;2
https://doi.org/10.1109/36.628786
https://doi.org/10.1002/qj.49712555903


Remote Sens. 2024, 16, 352 14 of 15

14. Mao, K.B.; Shi, J.C.; Li, Z.L.; Qin, Z.; Li, M.; Xu, B. A physics-based statistical algorithm for retrieving land surface temperature
from AMSR-E passive microwave data. Sci. China Ser. D Earth Sci. 2007, 7, 1115–1120. [CrossRef]

15. Wigneron, J.P.; Calvet, J.C.; Pellarin, T.; Van de Griend, A.A.; Berger, M.; Ferrazzoli, P. Retrieving near-surface soil moisture from
microwave radiometric observations: Current status and future plans. Remote Sens. Environ. 2003, 85, 489–506. [CrossRef]

16. Njoku, E.G.; Jackson, T.J.; Lakshmi, V.; Chan, T.K.; Nghiem, S.V. Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote
Sens. 2003, 41, 215–229. [CrossRef]

17. Mao, K.; Tang, H.J.; Zhang, L.X.; Li, M.C.; Guo, Y.; Zhao, D.Z. A method for retrieving soil moisture in Tibet region by utilizing
microwave index from TRMM/TMI data. Int. J. Remote Sens. 2008, 29, 2905–2925. [CrossRef]

18. Prigent, C.; Liang, P.; Tian, Y.; Aires, F.; Moncet, J.L.; Boukabara, S.A. Evaluation of modeled microwave land surface emissivities
with satellite-based estimates. J. Geophys. Res. 2015, 120, 2706–2718. [CrossRef]

19. Weng, F.; Liu, Q. Satellite data assimilation in numerical weather prediction models. Part I: Forward radiative transfer and
Jacobian modeling in cloudy atmospheres. J. Atmos. Sci. 2003, 60, 2633–2646. [CrossRef]

20. Karbou, F.; Gérard, É.; Rabier, F. Microwave land emissivity and skin temperature for AMSU-A and -B assimilation over land.
Q. J. Roy. Meteor. Soc. 2006, 132, 2333–2355. [CrossRef]

21. Prigent, C.; Jaumouille, E.; Chevallier, F.; Aires, F. A Parameterization of the Microwave Land Surface Emissivity Between 19 and
100 GHz, Anchored to Satellite-Derived Estimates. IEEE Trans. Geosci. Remote Sens. 2008, 46, 344–352. [CrossRef]

22. Weng, F.; Yan, B.; Grody, N.C. A microwave land emissivity model. J. Geophys. Res. 2001, 106, 20115–20123. [CrossRef]
23. Prigent, C.; Rossow, W.B.; Matthews, E. Microwave land surface emissivities estimated from SSM/I observations. J. Geophys. Res.

1997, 102, 21867–21890. [CrossRef]
24. Moncet, J.L.; Liang, P.; Galantowicz, J.F.; Lipton, A.E.; Uymin, G.; Prigent, C.; Grassotti, C. Land surface microwave emissivities

derived from AMSR-E and MODIS measurements with advanced quality control. J. Geophys. Res. Atmos. 2011, 116, 971–978.
[CrossRef]

25. Norouzi, H.; Temimi, M.; Rossow, W.B.; Pearl, C.; Azarderakhsh, M.; Khanbilvardi, R. The sensitivity of land emissivity estimates
from AMSR-E at C and X bands to surface properties. Hydrol. Earth Syst. Sci. 2011, 15, 5667–5699. [CrossRef]

26. Karbou, F.; Prigent, C.; Eymard, L.; Pardo, J.R. Microwave land emissivity calculations using AMSU measurements. IEEE Trans.
Geosci. Remote Sens. 2005, 43, 948–959. [CrossRef]

27. Furuzawa, F.A.; Masunaga, H.; Nakamura, K. Development of a land surface emissivity algorithm for use by microwave rain
retrieval algorithms. In SPIE Asia-Pacific Remote Sensing; SPIE: Kyoto, Japan, 2012; Volume 8523, pp. 269–280.

28. Turk, F.J.; Li, L.; Haddad, Z.S. A Physically Based Soil Moisture and Microwave Emissivity Data Set for Global Precipitation
Measurement (GPM) Applications. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7637–7650. [CrossRef]

29. Prakash, S.; Norouzi, H.; Azarderakhsh, M.; Blake, R.; Tesfagiorgis, K. Global land surface emissivity estimation from AMSR2
observations. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1270–1274. [CrossRef]

30. Wu, Y.; Qian, B.; Bao, Y.; Petropoulos, G.P.; Liu, X.; Li, L. Microwave Land Emissivity Calculations over the Qinghai-Tibetan
Plateau Using FY-3B/MWRI Measurements. Remote Sens. 2019, 11, 2206. [CrossRef]

31. Xu, R.; Pan, Z.; Han, Y.; Zheng, W.; Wu, S. Surface Properties of Global Land Surface Microwave Emissivity Derived from
FY-3D/MWRI Measurements. Sensors 2023, 23, 5534. [CrossRef]

32. Karbou, F.; Rabier, F.; Prigent, C. The Assimilation of Observations from the Advanced Microwave Sounding Unit over Sea Ice in
the French Global Numerical Weather Prediction System. Mon. Weather. Rev. 2014, 142, 125–140. [CrossRef]

33. Norouzi, H.; Temimi, M.; Prigent, C.; Turk, J.; Khanbilvardi, R.; Masunaga, H. Assessment of the consistency among global
microwave land surface emissivity products. Atmos. Meas. Tech. 2015, 8, 1197–1205. [CrossRef]

34. Xiao, H.; Han, W.; Wang, H.; Wang, J.; Xu, C. Impact of FY-3D MWRI radiance assimilation in GRAPES 4DVar on forecasts of
Typhoon Shanshan. J. Meteorol. Res. 2020, 34, 836–850. [CrossRef]

35. Xie, X.; Wu, S.; Xu, H.; Yu, W.; He, J.; Gu, S. Ascending-Descending Bias Correction of Microwave Radiation Imager on Board
FengYun-3C. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3126–3134. [CrossRef]

36. Wang, L.; Hu, X.; Xu, N.; Chen, L. Water Vapor Retrievals from Near-Infrared Channels of the Advanced Medium Resolution
Spectral Imager Instrument Onboard the Fengyun-3D satellite. Adv. Atmos. Sci. 2021, 38, 1351–1366. [CrossRef]

37. Han, X.J.; Duan, S.B.; Li, Z.-L. Atmospheric correction for retrieving ground brightness temperature at commonly-used passive
microwave frequencies. Opt. Express 2017, 25, A36. [CrossRef]

38. Zhou, F.-C.; Li, Z.-L.; Wu, H.; Tang, B.-H.; Tang, R.; Song, X.; Yan, G. Retrieving K-band instantaneous microwave land surface
emissivity based on passive microwave brightness temperature and atmospheric precipitable water vapor data. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2017, 12, 1–10. [CrossRef]

39. Mao, K.B.; Qin, Z.; Shi, J.; Gong, P. A practical split-window algorithm for retrieving land surface temperature from MODIS data.
Int. J. Remote Sens. 2005, 26, 3181–3204. [CrossRef]

40. Wang, H.; Mao, K.; Mu, F.; Shi, J.; Qin, Z. A split window algorithm for retrieving land surface temperature from FY-3D MERSI-2
data. Remote Sens. 2019, 11, 2083. [CrossRef]

41. Hu, J.; Fu, Y.; Zhang, P.; Min, Q.; Gao, Z.; Wu, S.; Li, R. Satellite retrieval of microwave land surface emissivity under clear and
cloudy skies in China using observations from AMSR-E and MODIS. Remote Sens. 2021, 13, 3980. [CrossRef]

42. Li, Z.-L.; Becker, F. Feasibility of land surface temperature and emissivity determination from AVHRR data. Remote Sens. Environ.
1993, 43, 67–85. [CrossRef]

https://doi.org/10.1007/s11430-007-2053-x
https://doi.org/10.1016/S0034-4257(03)00051-8
https://doi.org/10.1109/TGRS.2002.808243
https://doi.org/10.1080/01431160701442104
https://doi.org/10.1002/2014JD021817
https://doi.org/10.1175/1520-0469(2003)060%3C2633:SDAINW%3E2.0.CO;2
https://doi.org/10.1256/qj.05.216
https://doi.org/10.1109/TGRS.2007.908881
https://doi.org/10.1029/2001JD900019
https://doi.org/10.1029/97JD01360
https://doi.org/10.1029/2010JD015429
https://doi.org/10.5194/hess-15-3577-2011
https://doi.org/10.1109/TGRS.2004.837503
https://doi.org/10.1109/TGRS.2014.2315809
https://doi.org/10.1109/LGRS.2016.2581140
https://doi.org/10.3390/rs11192206
https://doi.org/10.3390/s23125534
https://doi.org/10.1175/MWR-D-13-00025.1
https://doi.org/10.5194/amt-8-1197-2015
https://doi.org/10.1007/s13351-020-9122-x
https://doi.org/10.1109/TGRS.2018.2881094
https://doi.org/10.1007/s00376-020-0174-8
https://doi.org/10.1364/OE.25.000A36
https://doi.org/10.1109/JSTARS.2017.2763167
https://doi.org/10.1080/01431160500044713
https://doi.org/10.3390/rs11182083
https://doi.org/10.3390/rs13193980
https://doi.org/10.1016/0034-4257(93)90065-6


Remote Sens. 2024, 16, 352 15 of 15

43. Li, Z.-L.; Zhang, R.; Sun, X.; Su, H.; Tang, X.; Zhu, Z.; Sobrino, J.A. Experimental system for the study of the directional thermal
emission of natural surfaces. Int. J. Remote Sens. 2004, 25, 195–204. [CrossRef]

44. Sobrino, J.A.; Jiménez-Muñoz, J.C. Land surface temperature retrieval from thermal infrared data: An assessment in the context
of the Surface Processes and Ecosystem Changes through Response Analysis (SPECTRA) mission. J. Geophys. Res. Atmos. 2005,
110, D16. [CrossRef]

45. Wan, Z.; Zhang, Y.; Zhang, Q.; Li, Z.-L. Quality assessment and validation of the MODIS global land surface temperature. Int. J.
Remote Sens. 2004, 25, 261–274. [CrossRef]

46. Wan, Z.; Li, Z.-L. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data.
IEEE Trans. Geosci. Remote Sens. 1997, 35, 980–996.

47. Aveni, S.; Blackett, M. The first evaluation of the FY-3D/MERSI-2 sensor’s thermal infrared capabilities for deriving land surface
temperature in volcanic regions: A case study of Mount Etna. Int. J. Remote Sens. 2022, 43, 2777–2792. [CrossRef]

48. Xie, Y.; Li, Z.; Hou, W.; Ma, Y.; Wnag, Y.; Wang, S.; Yang, D. Validation of FY-3D MERSI-2 Precipitable Water Vapor (PWV) datasets
using ground-based PWV data from AERONET. Remote Sens. 2021, 13, 3246. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/0143116031000116453
https://doi.org/10.1029/2004JD005588
https://doi.org/10.1080/0143116031000116417
https://doi.org/10.1080/01431161.2022.2068360
https://doi.org/10.3390/rs13163246

	Introduction 
	Study Area and the Data 
	Study Area 
	FY-3D MWRI Data 
	FY-3D Medium Resolution Spectral Imager-2 (MERSI-2) Data 

	Methodology 
	Results 
	Discussions 
	Spatial Distribution of the Monthly MLSE 
	Seasonal Distribution of the MLSE 
	Possible Error Sources of the Retrieved MLSE 
	Errors from the FY-3D MWRI Brightness Temperature Measurements 
	Errors from the FY-3D LST 
	Errors from the FY-3D WVC 


	Conclusions 
	References

