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Abstract: With the continuous improvement of urbanization levels in the Lhasa area, the urban heat
island effect (UHI) has seriously affected the ecological environment of the region. However, the
satellite-based thermal infrared land surface temperature (LST), commonly used for UHI research,
is affected by cloudy weather, resulting in a lack of continuous spatial and temporal information.
In this study, focusing on the Lhasa region, we combine simulated LST data obtained by the Weather
Research and Forecasting (WRF) model with remote sensing-based LST data to reconstruct the
all-weather LST for March, June, September, and December of 2020 at a resolution of 0.01◦ while
using the Moderate-Resolution Imaging Spectroradiometer (MODIS) LST as a reference (in terms of
accuracy). Subsequently, based on the reconstructed LST, an analysis of the UHI was conducted to
obtain the spatiotemporal distribution of UHI in the Lhasa region under all-weather LST conditions.
The results demonstrate that the reconstructed LST effectively captures the expected spatial distribu-
tion characteristics with high accuracy, with an average root mean square error of 2.20 K, an average
mean absolute error of 1.51 K, and a correlation coefficient consistently higher than 0.9. Additionally,
the heat island effect in the Lhasa region is primarily observed during the spring and winter seasons,
with the heat island intensity remaining relatively stable in winter. The results of this study provide
a new reference method for the reconstruction of all-weather LST, thereby improving the research
accuracy of urban thermal environment from the perspective of foundational data. Additionally, it
offers a theoretical basis for the governance of UHI in the Lhasa region.

Keywords: LST; Lhasa; remote sensing; all weather; WRF

1. Introduction

Land surface temperature (LST) is an important parameter for studying surface energy
balance and land processes [1], and it serves as a fundamental dataset for exploring the
surface urban heat island effect (UHI, the following UHI refers to the surface UHI) [2,3].
With the increasing level of urbanization in recent years, UHI has become a significant
environmental governance issue, and obtaining high-precision LST is a prerequisite for
accurately exploring UHI [4].

The conventional method to obtain the LST involves meteorological station and re-
mote sensing (RS) observation data. However, the meteorological station distribution is
relatively sparse, and the LST can exhibit significant variations within short distances [5].
Obtaining the LST through RS observation techniques offers high spatial coverage and easy
accessibility, demonstrating a tremendous potential [6]. With the maturation of satellite
thermal infrared technology, accessing LST data has become increasingly easier, and the
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accuracy of LST retrieval has gradually improved [7]. In particular, Moderate-Resolution
Imaging Spectroradiometer (MODIS) product data, which have a short revisit period and
global coverage, are commonly used in various research fields [8,9]. MODIS LST products
have been widely applied in various research fields, including urban thermal environment
analyses, agricultural drought assessments, and hydrological model simulations [10,11].
Nevertheless, the presence of clouds and rainfall can affect satellite TIR measurements,
resulting in a lack of spatiotemporal continuity in LST imagery. Therefore, this incomplete-
ness diminishes its value as foundational research data, or renders it entirely unusable.

Currently, there are four commonly used methods for LST reconstruction: spatiotem-
poral information-based methods, passive microwave methods, physical model-based
methods and machine learning-based methods. Spatiotemporal information-based meth-
ods, including time interpolation algorithms, spatial interpolation algorithms, and inter-
polation algorithms that utilize both time and spatial information, involve the use of the
geographical principle of similarity and proximity to interpolate clear-sky LST pixels that
are temporally and spatially adjacent, thus obtaining pixels with clouds [12,13]. Common
interpolation methods include inverse distance weighting [14], spline function [15], and
kriging interpolation methods [16]. The accuracy of interpolation methods decreases with
increasing range of missing pixels, so they are only applicable for reconstructing images
with few cloud pixels. The passive microwave method can be used to directly retrieve
all-weather LST data by penetrating cloud layers and obtaining surface information [17].
However, the spatial resolution of the LST data obtained by this method is relatively
low, and the microwave signal significantly varies with surface characteristics; hence, the
data are generally applied as supplementary data for LST generation [7,18]. The physical
model method aims to construct mathematical equations based on physical principles and
has become an important method for obtaining remote sensing data products [19]. The
widely used physical model methods include the surface energy balance method and its
derivatives [20,21], which can provide data that are as close to the true values as possible.
However, there is often high uncertainty due to the difficulty in determining certain param-
eters. In recent years, artificial intelligence technology has continuously advanced and has
been extensively applied in various fields, including research on LST reconstruction [22–24].
This method aims to establish relationships between internal features based on the initial
data or observations to discover predictive patterns. LST reconstruction based on this
method is also currently a commonly used approach, as it offers an efficient modeling
approach that does not require the consideration of specific relationships between vari-
ables. Moreover, it has achieved remarkable achievements in terms of accuracy [24–26].
The method employed in this study for LST reconstruction involves the utilization of the
Random Forest (RF) model, which is a flexible and stable machine learning model and is
commonly used for generating various remote sensing products [27,28].

The new generation of the mesoscale WRF model can be used to simulate the surface
skin temperature (TSK) that is very close to the LST through real final reanalysis (FNL)
data. In fact, some researchers have even directly used the TSK as a substitute for the
LST [29,30] Although the TSK derived from WRF simulations lacks the spatial details and
accuracy of the satellite remote sensing-based LST (actual observations), it exhibits the
characteristic of all-weather availability. This is also the reason why the WRF-simulated
TSK (WRF LST) is used in this study. Furthermore, according to related studies, certain
multisource remote sensing observation data can affect the variation in the LST, such as the
digital elevation model (DEM) [31], normalized difference vegetation index (NDVI) [32],
and latitude (LAT) [33]. Based on the above ideas, this paper combines the WRF model
with the Random Forest mode, further combining multisource remote sensing observation
data to ultimately obtain all-weather LST.

Urbanization causes significant changes in land within urban areas and frequent
human activities, leading to the global issue of UHI, which results in the gradual deteriora-
tion of the thermal environment and severely affects urban ecological environment and
public health [34]. The UHI has become one of the most frequent and influential climate
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disasters, and studying the UHI accurately by providing all-weather LST has become a hot
topic [4]. Examples include the changes in UHI in Hangzhou City [35], the spatiotempo-
ral patterns of UHI in Beijing [36], and the prediction of nocturnal UHI variations in the
United Kingdom [37]. This study takes the Lhasa region in China as the study area, which
includes Chengguan District and seven counties: Dazi, Duilongdeqing, Qushui, Linzhou,
Mozhu-gongka, Nimu, and Dangxiong. Many scholars have also conducted research on
the thermal environment in this area and have reached several conclusions. For instance,
it is noted that Lhasa is one of the cities experiencing the most intense warming on the
Qinghai–Tibet Plateau [38]. Additionally, urban expansion has a significant impact on
the increase in average temperature in this region [39]. In recent years, changes in the
urban ecology and climate environment (Figure 1d) in Lhasa have attracted much attention.
According to related studies [40], the urban thermal environment issues in this area are
becoming increasingly serious, requiring urgent research on UHI effects. Based on these
remote sensing data and the WRF LST, we reconstruct the all-weather LST using the RF
model, with the MODIS LST serving as a reference in terms of accuracy. Additionally,
the reconstructed LST is used to analyze the UHI effect in the study area for the months
of March, June, September, and December 2020, which is important for exploring the
ecological and sustainable changes in the region.
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Figure 1. Location (a), land use types (b), and administrative boundaries (c) of the study area. D01,
D02, and D03 are the three nested domains in the WRF model. The land use and DEM in (b) and
(c) are sourced from the Resource and Environment Science Data Center. The climate data in (d) is
sourced from the China Weather Network.
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2. Study Area and Datasets
2.1. Study Area

Lhasa is located in the northern part of the middle reaches of the Yarlung Tsangpo
River and its tributary, the Lhasa River basin (Figure 1a). Its geographical coordinates
range from 29◦14′26′′–31◦03’45′′ N to 89◦45′9′′–92◦37′16′′ E (Figure 1c). The total area is
29,528.91 km2, including Chengguan District and seven counties: Dazi, Duilongdeqing,
Qushui, Linzhou, Mozhugongka, Nimu, and Dangxiong. The permanent resident popula-
tion is 860,000 people. According to the vegetation zoning of Tibet, Lhasa belongs to the
shrub zone of the southern Tibetan mountains, with relatively high vegetation coverage
(Figure 1b). With economic development and the background of western development,
Lhasa has undergone significant changes as the economic, social, and cultural center of
Tibet. In 2022, the gross domestic product of the region was 74.757 billion yuan, with the
value added of the primary industry at 2.674 billion yuan, the value added of the secondary
industry at 29.125 billion yuan, and the value added of the tertiary industry at 42.958 billion
yuan. The consumer price index for residents has been increasing year by year.

2.2. Datasets

This paper utilizes five types of data, which can be categorized into MODIS data, FNL
data, and other data. The data sources for each type are listed in Table 1.

Table 1. Information on data sources.

Name Source Time period

MODIS LST MODIS data website
(https://ladsweb.modaps.eosdis.nasa.gov/, accessed on 8 June 2023)

March, June, September, and
December of 2020

FNL National Centers for Environmental Prediction
(https://rda.ucar.edu/, accessed on 8 June 2023)

DEM Resource and Environment Science Data Center
(https://www.resdc.cn/, accessed on 8 June 2023)

LAT Based on DEM data

NDVI MODIS data website
(https://ladsweb.modaps.eosdis.nasa.gov/, accessed on 8 June 2023)

2.2.1. Modis Data

This paper utilizes two types of MODIS data. The first type of data are the LST data
from MOD11A1 (daytime product), with a spatial resolution of 1 km and a temporal
resolution of 1 day. It is used to provide clear-sky pixels. Temperature data are obtained
from the scanning product of MOD11_L2. Relevant research indicates that the data exhibit
a high level of accuracy, with an error of 2 K relative to the observed data [41]. Due to
its high temporal resolution, it is commonly used in various studies related to thermal
environments. The second type of data are MODIS NDVI, which is a ground-standard data
product derived from MOD13Q1 data product released by the NASA Data Center in the
United States. The spatial resolution of the data is 250 m, and the temporal resolution is
16 days.

2.2.2. FNL Data

FNL data are a global meteorological analysis dataset. Due to its integration from
multiple data sources and quality control, it exhibits high accuracy and is widely applied
in meteorological research and climate analysis [42]. In this article, we utilized the FNL
ds083.2 dataset. Although the spatial resolution of the data is coarse at 1◦, the data can be
dynamically downscaled using the WRF model and have been commonly used as driving
data for the WRF model. Additionally, the dataset exhibits a relatively high temporal
resolution of 6 h, allowing for the simulation of variable values at specific time points using
the WRF model based on these data.

https://ladsweb.modaps.eosdis.nasa.gov/
https://rda.ucar.edu/
https://www.resdc.cn/
https://ladsweb.modaps.eosdis.nasa.gov/
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2.2.3. Other Data

The other data in this study include DEM and LAT data. The DEM data are de-
rived from resampled Shuttle Radar Topography Mission data based on the U.S. Space
Shuttle [43]. The spatial resolution of these data is 250 m.

3. Methodology

The study in this paper focuses on reconstructing the all-weather LST for March,
June, September, and December 2020 in the Lhasa region and exploring UHI effects in
the area using the reconstructed data. Because the daily MODIS LST data in these four
months were consistently contaminated by clouds, they are suitable for validating the
LST reconstruction method proposed in this paper. Additionally, these four months can
individually represent the four seasons, making them applicable for conducting seasonal
analysis of UHI in the study area. Therefore, these four months have been selected as the
research period. The content consists of three parts (Figure 2). The first part involves using
the WRF model to simulate the WRF LST source data for LST reconstruction. To ensure
spatial consistency between the simulated WRF LST and MODIS LST, the coordinate system
is transformed to WGS84 with a resolution of 0.01◦. The second part focuses on generating
the all-weather LST. Firstly, based on the physical model WRF, WRF LST is simulated. Then,
by combining multisource remote sensing observation data such as NDVI, DEM, and LAT,
all-weather LST is reconstructed through a Random Forest model. The final part focuses
on examining the UHI effect in the study area based on the reconstructed all-weather
LST. The urban heat island intensity (UHII) is analyzed to investigate the spatiotemporal
distribution characteristics of the UHI. To ensure alignment with the MODIS LST data,
the aforementioned five types of data underwent resampling and reprojection operations,
resulting in a final spatial resolution of 0.01◦, the coordinate system of WGS84 and the
temporal resolution is 1 day. These operations were performed in PIE-Basic 6.0 software,
which is widely used for preprocessing various sensor images and is a popular professional
software option for remote sensing image processing. The LAT data are obtained by
extracting latitude information of each pixel from the elevation data. The spatial and
temporal resolutions of these data are the same as those of the DEM data.

3.1. All-Weather LST Reconstruction
3.1.1. WRF Configuration

The simulation results of the WRF model exhibit a downscaled spatial resolution
through the use of nested configurations. In this study, a three-level nested domain
configuration (Figure 1b) was selected. The domains of each level are 127 × 105, 220 × 202,
and 334 × 334. They are named D01, D02, and D03, with the spatial resolution of the
final level reaching 1 km. The chosen projection type is the Lambert projection, with the
center of projection located at the center of Lhasa (30.126◦ N, 91.016◦ E). The latitudes of
the intersection points where the projection cone and sphere are tangent are 60◦ and 30◦,
respectively. The selection of the WRF scheme can affect the accuracy of the simulation
results. Based on relevant research conducted in the region [44], the following WRF physics
schemes (Table 2) were selected in this study.

Table 2. Parameter configuration for the WRF physics schemes.

Option Name Parameterization ID

Cumulus Kain–Fritsch 3
Planetary Boundary layer Mellor–Yamada–Janjic 2

Longwave Radiation RRTMG 4
Shortwave Radiation RRTMG 4

Surface Layer Mellor–Yamada–Janjic 2
Microphysics New Thompson 8
Land Surface Noah-MP 4
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3.1.2. LST Reconstruction

The reconstruction method for the all-weather LST can be divided into two scenarios:
the MODIS data are completely cloud-covered data and partially cloud-covered data. The
reconstructed LST has a spatial resolution of 1 km and a temporal resolution of 1 day. Under
the scenarios of partial cloud coverage, the MODIS LST data can be used as the training
set for the RF model, with a training-to-testing pixel ratio of 7:3. Since both the testing set
and the cloud-covered pixels are not involved in the training process, the accuracy of the
test set pixels is assumed to be the same as that of the cloud pixels. Therefore, the accuracy
of the former matches that of the latter in this study. This is the validation method for
cloud-covered pixels accuracy in this paper. Under this scenario, the reconstructed LST can
be obtained as follows:

LSTREC = f (LSTWRF, DEM, NDVI, LAT) (1)

where LSTREC denotes the all-weather LST, LSTWRF, DEM, and NDVI are the driving data
for the RF model, and f denotes the RF model.

Under the scenarios with completely cloud-covered MODIS data, resulting in no
clear-sky MODIS LST pixels available as a training set for the RF model or too few clear-sky
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pixels leading to a low accuracy of LST reconstruction (the reconstructed LST ρ < 0.8; ρ
greater than 0.8 indicates a high correlation [2]), the reconstructed LST from temporally
adjacent images can be used to obtain the reconstructed LST of the current day. Temporal
adjacent images do not have to be chosen only one day apart. The selected date is the one
closest to the target date, and the LST can be reconstructed using Equation (1). Accuracy
verification in this situation is based on a small number of remaining pixels in the image.
If all pixels are covered by clouds, the LST for the target date is subjected to accuracy
verification. The weighted method based on temporal adjacent images can be expressed as:

LSTREC =
M

∑
i=1

ωi fi(LSTWRF, DEM, NDVI, LAT) + ρLSTcWRF (2)

ei = (
1

(1 − CORi)× Ti
)/(

M

∑
j=1

1
(1 − CORj)× Tj

) (3)

ωi = ei(1 − ρ) (4)

where LSTREC denotes the all-weather LST using the weighted method of temporal adjacent
images, f is the RF model using temporal adjacent images, COR is the correlation between
the MODIS LST and LSTREC for the corresponding date, and ρ is the correlation between
the MODIS LST and LSTcWRF for the corresponding date. When the number of clear-
sky pixels in the MODIS data is 0, ρ is considered as 1. Moreover, e denotes the weight
of temporal adjacent images excluding the current day, and ω denotes the weight of
temporal adjacent images including the current day. T and M are the number of days
between a certain adjacent day and the current day and the total number of days (4 in this
study) [45], respectively.

3.1.3. Accuracy Verification Metrics

The accuracy of the reconstructed LST includes the computation of accuracy for both
cloud-covered pixels and all pixels. The accuracy of cloud-covered pixels is the error
between test set pixels (not involved in model training) and corresponding MODIS LST
pixels, while the accuracy of all pixels is the error between reconstructed LST and all
clear-sky MODIS LST pixels. Three metrics, namely, the mean absolute error (MAE), the
root mean square error (RMSE), and the Pearson correlation coefficient (ρ), were utilized to
validate the accuracy of the reconstructed LST data. The MAE is a measure of the average
difference between the predicted values and actual observations, while the RMSE reflects
the overall deviation between the predicted values and actual observations. In contrast, ρ is
a measure of the linear relationship between the predicted values and actual observations.

MAE =
1
N ∑N

i=1|xi − yi| (5)

RMSE =

√
∑N

i=1 (xi − yi)
2

N
(6)

ρ =
∑N

i=1 (xi − x)(yi − y)√
∑N

i=1 (xi − x)
2
√

∑N
i=1 (yi − y)

2
(7)

where MAE, RMSE, and ρ are the accuracy verification metrics, N denotes the number of
pixels, and xi and yi denote the values of the i-th pixel in two images.

3.2. Analysis of the UHI Effect

To quantitatively analyze the UHI effect in the study area, the UHII is adopted to
represent the intensity of the UHI effect. To apply this method, it is necessary to first
determine the suburban and urban areas. According to relevant research on the boundary
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between urban and suburban areas in Lhasa [46], this paper uses the LST of Chengguan
District and Duilongdeqing as representative of urban LST, and the LST of Dazi, Linzhou,
Nimu, Motuo, and Qushui as representative of suburban LST. The difference between these
two values reflects the UHII in Lhasa. A value greater than 0 indicates the presence of
an UHI effect, while a value less than 0 indicates a cool island effect. The UHII can be
calculated as follows:

UHII = LSTU − LSTS (8)

where UHII is the urban heat island intensity, LSTU denotes the average LST in the urban
area, and LSTS denotes the average LST in the suburban area.

To analyze the spatial distribution characteristics of the UHI effect, in this study, we
further classified the UHI effect into different levels. Currently, there are three main meth-
ods for defining the levels of the UHI effect: the equal-interval (EI) method, mean-standard
deviation (MSD) method, and Moran’s I index–G coefficient (MG) method. Among them,
the second method outperforms the other methods in terms of the temperature variation
and spatial distribution differences [34]. By using this method to analyze the spatial distri-
bution characteristics of the UHI in the study area, the differences in the spatial distribution
of LST can be effectively presented. Therefore, in this study, the MSD method is adopted to
classify the levels of the UHI effect (Table 3).

In Table 3, TS is the LST, µ is the mean of the LST, and σ is the standard deviation of
the LST.

Table 3. Classification method for UHI levels.

Heat Island Intensity Temperature Range Temperature Range

Cold island Low TS < µ − σ

Green island Medium low µ − σ ≤ TS < µ − 0.5σ
Normal Medium µ − 0.5σ ≤ TS ≤ µ + 0.5σ

Subheat island Medium high µ + 0.5σ < TS ≤ µ + σ

Strong heat island High TS > µ + σ

Cold island Low TS < µ − σ

Green island Medium low µ − σ ≤ TS < µ − 0.5σ

4. Results
4.1. All-Weather LST Reconstruction

According to the abovementioned all-weather LST reconstruction method, the LST
for March, June, September, and December 2020 was reconstructed. Figure 3 shows a
comparison between the MODIS LST and the reconstructed LST (including pixels from the
surrounding area of the study region) for these four months, with 19 March, 5 June, and 22
September as dates completely covered by clouds. It can be observed that the MODIS LST
is less affected by cloud coverage in December relative to the other months, where extensive
cloud coverage is observed in the MODIS LST images. The results indicate that the recon-
structed LST effectively captures the spatial distribution characteristics and exhibits high
spatial continuity. Moreover, many spatial details, such as the UHI effect, LST differences,
and elevation temperature differences, are suitably captured in the reconstructed LST.

4.2. Accuracy of the All-Weather LST

To further analyze the reliability of the reconstructed LST. First, the accuracy of cloud
pixels and all pixels for these four months was calculated. Figure 4a reveals that the MAE
of cloud pixels is approximately 2 K, the RMSE is approximately 3 K, and ρ consistently
exceeds 0.9, indicating a high accuracy in reconstructing cloud pixels. Similarly, as shown
in Figure 4b, the MAE of all pixels is approximately 1 K, the RMSE is approximately 2 K,
and ρ consistently exceeds 0.9, indicating a high accuracy in reconstructing all pixels.
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The average accuracy for each month is calculated above. Next, daily accuracy analysis
of these four months was conducted. Figure 5 shows that the accuracy of the reconstructed
LST fluctuates with the day in all 4 months. For example, the accuracy is relatively low
on 21, 25, and 26 March, 15, 20, and 21 June, 9, 18, and 20 September, and 21, 25, and
30 December. This is mainly attributed to 2 factors: 1. the high cloud coverage in the
MODIS LST data, which results in insufficient pixels; and 2. the use of the weighting
method of temporal adjacent images to reconstruct the LST. However, the RMSE values
are consistently below 3 K, the MAE ranges from 1.0 to 2.0 K, and ρ remains above 0.9 for
these dates. On the other dates, the accuracy is higher, with the RMSE ranging from 1.5 to
3.0 K, and ρ still exceeding 0.9. Overall, the reconstructed LST in this study demonstrates a
high level of accuracy, with an average RMSE of 2.20 K, an average MAE of 1.51 K, and a ρ
value consistently above 0.9. The resulting data possesses both all-weather characteristics
and high precision.

4.3. Analysis of the Urban Heat Island Intensity

Figure 6 shows the daily UHII and LST in the urban and suburban areas for the four
months. Both the UHI effect and cold island effect occurred in Lhasa in these four months.
The urban LST, suburban LST, and UHII values exhibited the highest variability in March,
June, and September (Figure 6a–c). The changes in the urban LST, suburban LST, and
UHII values remained relatively stable in December (Figure 6d). Furthermore, March and
December exhibited the largest number of days with the UHI effect, accounting for 30 days
(96.77%) and 25 days (80.65%), respectively, followed by June and September, with 23 days
(76.67%) and 18 days (60.00%), respectively. If we consider March, June, September, and
December as the four representative months for the spring, summer, autumn, and winter
seasons, respectively, the UHI effect in Lhasa mainly occurs during the spring and winter
seasons, with the UHII remaining relatively stable in winter.

Figure 7 shows the spatial distribution of the UHI effect in the four months. In March
(Figure 7a), the areas and proportions of cold islands, green islands, normal areas, mild
heat islands, and strong heat islands are 6829 km2 (23.42%), 3980 km2 (13.65%), 9230 km2

(31.66%), 4251 km2 (14.58%), and 4867 km2 (16.69%), respectively. In June (Figure 7b),
the areas and proportions are 8265 km2 (28.35%), 5291 km2 (18.15%), 9778 km2 (33.54%),
3036 km2 (10.41%), and 2787 km2 (9.56%), respectively. In September (Figure 7c), the
areas and proportions are 9375 km2 (32.15%), 5034 km2 (17.27%), 8920 km2 (30.59%), 3059
km2 (10.49%), and 2769 km2 (9.50%), respectively. In December (Figure 7d), the areas
and proportions are 3513 km2 (12.05%), 3273 km2 (11.23%), 9422 km2 (32.31%), 6170 km2

(21.16%), and 6779 km2 (23.25%), respectively. The largest heat island area is mostly
observed during the spring and winter seasons, followed by the summer and autumn
seasons. Additionally, the southwestern part of Lhasa and the Linzhou area in the central
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region show significant UHI effects. This occurs because the major urban areas of Lhasa
are located along the Lhasa River, which is situated in the southwestern region, resulting in
a more significant UHI effect in this area relative to the other regions.
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5. Discussion

In this study, we combine the WRF model with remote sensing data to reconstruct
the all-weather LST at a resolution of 0.01◦ while using the MODIS LST as a reference in
terms of accuracy. This approach overcomes the limitation of incomplete LST retrieval
from satellite TIR imagery due to the influences of clouds and precipitation. The reason
for using the RF model in this paper is because it has high flexibility and stability, and
uses an “averaging” approach to enhance prediction accuracy and control overfitting. It is
commonly used in various LST inversion model studies [27,34,47]. The reconstructed LST
in this paper exhibited a high degree of accuracy, with an average RMSE of 2.20 K, average
MAE of 1.51 K, and ρ greater than 0.9. Reconstructing the all-weather LST has consistently
remained a topic of interest [5,48], and several studies have been conducted. For instance,
Zhou, et al. [49] proposed the data interpolating empirical orthogonal functions (DINEOF)
method for LST reconstruction, with an RMSE of 4.57 K. Duan, Li and Leng [7] fused TIR
and passive microwave data to reconstruct the LST, with an RMSE ranging from 3.50 to
4.40 K. Li, et al. [50] introduced a three-step mixed gap-filling method, with an RMSE of
4.78 K. Long, Yan, Bai, Zhang and Shi [9] utilized a data fusion approach combined with
bias correction to reconstruct the LST, with an RMSE of 2.72 to 4.00 K. Compared with
previous results [41], the reconstructed LST in this study exhibits a higher precision and
hence can provide a valuable reconstruction approach for future research and serve as a
fundamental data source for studies related to the thermal environment.

Based on the reconstructed all-weather LST, in this study, we also analyzed the UHI
effect in the Lhasa region. The occurrence of the UHI effect could be better captured in
March and December, indicating that the UHI effect in Lhasa can mainly be observed during
the spring and winter seasons. Moreover, the UHII in winter is relatively stable, which is
similar to the conclusions drawn by Ciren, Ga, Bu and Ciren [46] based on meteorological
station data. Additionally, from the spatial distribution of the UHI effect in Lhasa, high-
UHI areas are more prevalent during the spring and winter seasons than during the
summer and autumn seasons. Furthermore, the UHI effect is primarily concentrated in the
southwestern part of Lhasa and the Linzhou area in the central part. This occurs because the
important urban areas of Lhasa are developed along the Lhasa River [38], which is located
in the southwestern region of Lhasa, leading to a more pronounced UHI effect relative
to the other regions. In recent years, the Lhasa region has experienced rapid economic
development, leading to increased density of buildings. This has resulted in strong diffuse
reflection and low wind speed, which hinders heat dissipation [40]. Additionally, with
the growing population, artificial heat release in the main residential areas has become
significant [51]. As a result, the region has exhibited noticeable HUI. The UHI in the Lhasa
region reduces air density and lowers atmospheric pressure in the high-temperature areas.
This leads to the continuous influx of various exhaust gases and harmful chemicals into the
high-temperature zone, making residents highly susceptible to digestive or neurological
disorders. To verify the reliability of the UHI results, we selected dates with minimal cloud
and precipitation influences in the MODIS data, which provided a higher coverage of
clear-sky pixels in both the urban and suburban areas (needed for UHII calculation). A
comparison was made between the urban MODIS LST and reconstructed LST, the suburban
MODIS LST and reconstructed LST, and the urban UHII and suburban UHII. The results
for both datasets were highly consistent (Figure 8), indicating the high reliability of UHII
analysis in this study.

As we utilized the WRF model in this study to reconstruct the all-weather LST, its
application requires high computational power and a significant amount of time. Ap-
proximately three days are needed to simulate one month of data, resulting in relatively
high computational costs [52]. With future advancements in computing power, it will be
possible to apply the methodology proposed in this paper to reconstruct long-term LST
data for various studies on thermal environments. Although the spatial distribution details
of WRF LST are not sufficient and its accuracy is relatively lower compared to MODIS
LST, its all-weather characteristics make it suitable for compensating for missing data from
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MODIS LST [13]. Since this paper is based on the reconstruction of LST from clear-sky
pixels, the accuracy of cloud pixels is also validated based on clear-sky pixels. In the
future, the accuracy of cloud pixels can be further improved by collecting a large amount
of station data in cloud-covered areas to enhance the reliability of validating cloud pixels’
accuracy. This study only utilized some commonly used multisource remote sensing data
as driving data for RF. In the future, it can be considered to incorporate more driving data
that may affect LST, including water-related data, in order to further improve the accuracy
of LST reconstruction. Additionally, we only conducted a simple analysis of the UHII in the
research area. In future research, social and natural factors can be incorporated to analyze
the driving forces behind the UHII. Thus, the impact of human activities on the UHI effect
can be comprehensively explored.
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6. Conclusions

In this study, we first combine WRF simulation with remote sensing data to reconstruct
an all-weather LST dataset for the study area of Lhasa. This approach addresses the
limitation of satellite TIR imagery, which is affected by cloud cover and precipitation,
resulting in incomplete LST data. Subsequently, the reconstructed LST is analyzed to assess
the UHI effect in the region. The method of reconstructing all-weather LST presented in
this paper can provide new ideas for obtaining all-weather LST in the future. Although
the urban heat island effect was only briefly analyzed in this study, we plan to reconstruct
long-term LST in the future to further explore the thermal environment issues in the study
area. The research findings are as follows:

(1) The all-weather LST reconstructed in this study can effectively compensate for the
missing pixels in MODIS LST and exhibits high spatiotemporal continuity. Many
spatial distribution details are accurately restored. This provides a new method for
the reconstruction of all-weather LST.

(2) The reconstructed LST in this study demonstrates high accuracy, with an average
RMSE of 2.20 K, average MAE of 1.51 K, and ρ greater than 0.9. This provides
fundamental research data for studies related to the thermal environment.

(3) In terms of the seasonal analysis, the UHI effect is most frequently observed during
the spring and winter seasons in the Lhasa region, with the winter season showing a
relatively stable UHII value. In terms of the spatial distribution, the areas with the
highest proportion of strong heat islands are primarily observed during the spring
and winter seasons, followed by the summer and autumn seasons.



Remote Sens. 2024, 16, 373 15 of 17

Author Contributions: X.Z., methodology, writing, and data sources. C.M., analysis and coding. P.G.,
coding and investigation. Y.H., validation and investigation. Y.M., investigation and coding. W.M.,
data sources. Z.W., supervision. Z.H., validation. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was financially supported by the Second Tibetan Plateau Scientific Expedition
and Research Program (Grant No. 2019QZKK0103), the National Natural Science Foundation of
China (Grant Nos. 42230610, U2242208, and 41830650), and the Science and Technology Program of
Zhejiang Province (Grant No. 2022C35070).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare that they have no competing interests.

References
1. Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens.

Environ. 2014, 140, 36–45. [CrossRef]
2. Zhang, X.; Gou, P.; Zhang, F.; Huang, Y.; Wang, Z.; Li, G.; Xing, J. Reconstruction of all-weather land surface temperature based

on a combined physical and data-driven model. Environ. Sci. Pollut. Res. 2023, 30, 78865–78878. [CrossRef] [PubMed]
3. Srivastava, P.K.; Han, D.; Ramirez, M.R.; Islam, T. Machine Learning Techniques for Downscaling SMOS Satellite Soil Moisture

Using MODIS Land Surface Temperature for Hydrological Application. Water Resour. Manag. 2013, 27, 3127–3144. [CrossRef]
4. Zhang, F.; Zhang, X.; Chen, W.; Yang, B.; Chen, Z.; Tang, H.; Wang, Z.; Bi, P.; Yang, L.; Li, G.; et al. Cloud-Free Land Surface

Temperature Reconstructions Based on MODIS Measurements and Numerical Simulations for Characterizing Surface Urban
Heat Islands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 6882–6898. [CrossRef]

5. Bartkowiak, P.; Castelli, M.; Crespi, A.; Niedrist, G.; Zanotelli, D.; Colombo, R.; Notarnicola, C. Land Surface Temperature
Reconstruction Under Long-Term Cloudy-Sky Conditions at 250 m Spatial Resolution: Case Study of Vinschgau/Venosta Valley
in the European Alps. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2037–2057. [CrossRef]

6. Ding, L.; Zhou, J.; Li, Z.-L.; Ma, J.; Shi, C.; Sun, S.; Wang, Z. Reconstruction of Hourly All-Weather Land Surface Temperature by
Integrating Reanalysis Data and Thermal Infrared Data From Geostationary Satellites (RTG). IEEE Trans. Geosci. Remote Sens.
2022, 60, 1–17. [CrossRef]

7. Duan, S.-B.; Li, Z.-L.; Leng, P. A framework for the retrieval of all-weather land surface temperature at a high spatial resolution
from polar-orbiting thermal infrared and passive microwave data. Remote Sens. Environ. 2017, 195, 107–117. [CrossRef]

8. Jia, A.; Ma, H.; Liang, S.; Wang, D. Cloudy-sky land surface temperature from VIIRS and MODIS satellite data using a surface
energy balance-based method. Remote Sens. Environ. 2021, 263, 112566. [CrossRef]

9. Long, D.; Yan, L.; Bai, L.; Zhang, C.; Shi, C. Generation of MODIS-like land surface temperatures under all-weather conditions
based on a data fusion approach. Remote Sens. Environ. 2020, 246, 111863. [CrossRef]

10. Zhang, X.; Zhou, J.; Liang, S.; Wang, D. A practical reanalysis data and thermal infrared remote sensing data merging (RTM)
method for reconstruction of a 1-km all-weather land surface temperature. Remote Sens. Environ. 2021, 260. [CrossRef]

11. Liu, W.; Cheng, J.; Wang, Q. Estimating Hourly All-Weather Land Surface Temperature from FY-4A/AGRI Imagery Using the
Surface Energy Balance Theory. IEEE Trans. Geosci. Remote Sens. 2023, 61. [CrossRef]

12. Zhou, S.; Cheng, J.; Shi, J. A Physical-Based Framework for Estimating the Hourly All-Weather Land Surface Temperature by
Synchronizing Geostationary Satellite Observations and Land Surface Model Simulations. IEEE Trans. Geosci. Remote Sens. 2022,
60, 112437. [CrossRef]

13. Fu, P.; Xie, Y.; Weng, Q.; Myint, S.; Meacham-Hensold, K.; Bernacchi, C. A physical model-based method for retrieving urban land
surface temperatures under cloudy conditions. Remote Sens. Environ. 2019, 230, 111191. [CrossRef]

14. Urquhart, E.A.; Hoffman, M.J.; Murphy, R.R.; Zaitchik, B.F. Geospatial interpolation of MODIS-derived salinity and temperature
in the Chesapeake Bay. Remote Sens. Environ. 2013, 135, 167–177. [CrossRef]

15. Dalawi, A.N.; Lakestani, M.; Ashpazzadeh, E. Solving Fractional Optimal Control Problems Involving Caputo-Fabrizio Derivative
Using Hermite Spline Functions. Iran. J. Sci. 2023, 47, 545–566. [CrossRef]

16. Wenjun, Y.; Tonghua, W.; Zhuotong, N.; Lin, Z.; Zhiwei, W. A novel interpolation method for MODIS land surface temperature
data on the Tibetan Plateau. Proc. SPIE 2014, 9260, 92600Y.

17. Huang, C.; Duan, S.-B.; Jiang, X.-G.; Han, X.-J.; Leng, P.; Gao, M.-F.; Li, Z.-L. A physically based algorithm for retrieving land
surface temperature under cloudy conditions from AMSR2 passive microwave measurements. Int. J. Remote Sens. 2019, 40,
1828–1843. [CrossRef]

18. Prigent, C.; Jimenez, C.; Aires, F. Toward “all weather,” long record, and real-time land surface temperature retrievals from
microwave satellite observations. J. Geophys. Res.-Atmos. 2016, 121, 5699–5717. [CrossRef]

19. Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning and process understand-
ing for data-driven Earth system science. Nature 2019, 566, 195–204. [CrossRef]

https://doi.org/10.1016/j.rse.2013.08.027
https://doi.org/10.1007/s11356-023-27986-z
https://www.ncbi.nlm.nih.gov/pubmed/37278893
https://doi.org/10.1007/s11269-013-0337-9
https://doi.org/10.1109/JSTARS.2022.3199248
https://doi.org/10.1109/JSTARS.2022.3147356
https://doi.org/10.1109/TGRS.2022.3227074
https://doi.org/10.1016/j.rse.2017.04.008
https://doi.org/10.1016/j.rse.2021.112566
https://doi.org/10.1016/j.rse.2020.111863
https://doi.org/10.1016/j.rse.2021.112437
https://doi.org/10.1109/TGRS.2023.3254211
https://doi.org/10.1109/TGRS.2022.3222563
https://doi.org/10.1016/j.rse.2019.05.010
https://doi.org/10.1016/j.rse.2013.03.034
https://doi.org/10.1007/s40995-022-01404-4
https://doi.org/10.1080/01431161.2018.1508920
https://doi.org/10.1002/2015JD024402
https://doi.org/10.1038/s41586-019-0912-1


Remote Sens. 2024, 16, 373 16 of 17

20. Jin, M.; Dickinson, R.E. A generalized algorithm for retrieving cloudy sky skin temperature from satellite thermal infrared
radiances. J. Geophys. Res.-Atmos. 2000, 105, 27037–27047. [CrossRef]

21. Kadaverugu, R. A comparison between WRF-simulated and observed surface meteorological variables across varying land cover
and urbanization in south-central India. Earth Sci. Inform. 2023, 16, 147–163. [CrossRef]

22. Zhang, X.D.; Zhou, J.; Liang, S.L.; Chai, L.N.; Wang, D.D.; Liu, J. Estimation of 1-km all-weather remotely sensed land surface
temperature based on reconstructed spatial-seamless satellite passive microwave brightness temperature and thermal infrared
data. Isprs J. Photogramm. Remote Sens. 2020, 167, 321–344. [CrossRef]

23. Xiao, Y.; Zhao, W.; Ma, M.; Yu, W.; Fan, L.; Huang, Y.; Sun, X.; Lang, Q. An Integrated Method for the Generation of Spatio-
Temporally Continuous LST Product With MODIS/Terra Observations. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [CrossRef]

24. Han, W.; Duan, S.-B.; Tian, H.; Lian, Y. Estimation of land surface temperature from AMSR2 microwave brightness temperature
using machine learning methods. Int. J. Remote Sens. 2023, 22, 1–12. [CrossRef]

25. Zhao, W.; Duan, S.-B. Reconstruction of daytime land surface temperatures under cloud-covered conditions using integrated
MODIS/Terra land products and MSG geostationary satellite data. Remote Sens. Environ. 2020, 247, 111931. [CrossRef]

26. Zhang, Y.; Yang, Y.; Pan, X.; Ding, Y.; Hu, J.; Dai, Y. Multiinformation Fusion Network for Mapping Gapless All-Sky Land Surface
Temperature Using Thermal Infrared and Reanalysis Data. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [CrossRef]

27. Liu, K.; Su, H.B.; Li, X.K.; Chen, S.H. Development of a 250-m Downscaled Land Surface Temperature Data Set and Its Application
to Improving Remotely Sensed Evapotranspiration Over Large Landscapes in Northern China. IEEE Trans. Geosci. Remote Sens.
2022, 60, 1–12. [CrossRef]

28. Wang, S.; Fu, G. Modelling soil moisture using climate data and normalized difference vegetation index based on nine algorithms
in alpine grasslands. Front. Environ. Sci. 2023, 11, 1130448. [CrossRef]

29. Wang, D.; Liu, Y.; Yu, T.; Zhang, Y.; Liu, Q.; Chen, X.; Zhan, Y. A Method of Using WRF-Simulated Surface Temperature to
Estimate Daily Evapotranspiration. J. Appl. Meteorol. Climatol. 2020, 59, 901–914. [CrossRef]

30. Diaz, L.R.; Santos, D.C.; Käfer, P.S.; Rocha, N.S.d.; Costa, S.T.L.d.; Kaiser, E.A.; Rolim, S.B.A. Land Surface Temperature Retrieval
Using High-Resolution Vertical Profiles Simulated by WRF Model. Atmosphere 2021, 12, 1436. [CrossRef]

31. Leng, P.; Yang, Z.; Yan, Q.-Y.; Shang, G.-F.; Zhang, X.; Han, X.-J.; Li, Z.-L. A framework for estimating all-weather fine resolution
soil moisture from the integration of physics-based and machine learning-based algorithms. Comput. Electron. Agric. 2023,
206, 107673. [CrossRef]

32. Liu, Z.H.; Zhan, W.F.; Lai, J.M.; Hong, F.L.; Quan, J.L.; Bechtel, B.; Huang, F.; Zou, Z.X. Balancing prediction accuracy and
generalization ability: A hybrid framework for modelling the annual dynamics of satellite-derived land surface temperatures.
Isprs J. Photogramm. Remote Sens. 2019, 151, 189–206. [CrossRef]

33. Yu, L.X.; Liu, Y.; Yang, J.C.; Liu, T.X.; Bu, K.; Li, G.S.; Jiao, Y.; Zhang, S.W. Asymmetric daytime and nighttime surface temperature
feedback induced by crop greening across Northeast China. Agric. For. Meteorol. 2022, 325, 109136. [CrossRef]

34. Lu, Y.S.; He, T.; Xu, X.L.; Qiao, Z. Investigation the Robustness of Standard Classification Methods for Defining Urban Heat
Islands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11386–11394. [CrossRef]

35. Sheng, L.; Tang, X.L.; You, H.Y.; Gu, Q.; Hu, H. Comparison of the urban heat island intensity quantified by using air temperature
and Landsat land surface temperature in Hangzhou, China. Ecol. Indic. 2017, 72, 738–746. [CrossRef]

36. Lin, L.; Meng, L.N.; Mei, Y.D.; Zhang, W.T.; Liu, H.; Xiang, W.L. Spatial-temporal patterns of summer urban islands and their
economic implications in Beijing. Environ. Sci. Pollut. Res. 2022, 29, 33361–33371. [CrossRef] [PubMed]

37. de Speville, C.D.; Seviour, W.J.M.; Lo, Y.T.E. Predicting future UK nighttime urban heat islands using observed short-term
variability and regional climate projections. Environ. Res. Lett. 2023, 18, 104044. [CrossRef]

38. Zhong, Y.L.; Chen, S.Q.; Mo, H.H.; Wang, W.W.; Yu, P.F.; Wang, X.M.; Chuduo, N.; Ba, B. Contribution of urban expansion to
surface warming in high-altitude cities of the Tibetan Plateau. Clim. Change 2022, 175, 1–22. [CrossRef]

39. Zhong, Y.L.; Yu, H.; Wang, W.W.; Yu, P.F. Impacts of future urbanization and rooftop photovoltaics on the surface meteorology
and energy balance of Lhasa, China. Urban Clim. 2023, 51, 101668. [CrossRef]

40. Wang, S.; Tan, X.; Fan, F. Changes in Impervious Surfaces in Lhasa City, a Historical City on the Qinghai-Tibet Plateau.
Sustainability 2023, 15, 5510. [CrossRef]

41. Zhang, X.; Chen, W.; Chen, Z.; Yang, F.; Meng, C.; Gou, P.; Zhang, F.; Feng, J.; Li, G.; Wang, Z. Construction of cloud-free
MODIS-like land surface temperatures coupled with a regional weather research and forecasting (WRF) model. Atmos. Environ.
2022, 283, 119190. [CrossRef]

42. Huang, D.; Gao, S. Impact of different reanalysis data on WRF dynamical downscaling over China. Atmos. Res. 2018, 200, 25–35.
[CrossRef]

43. O’Loughlin, F.E.; Paiva, R.C.D.; Durand, M.; Alsdorf, D.E.; Bates, P.D. A multi-sensor approach towards a global vegetation
corrected SRTM DEM product. Remote Sens. Environ. 2016, 182, 49–59. [CrossRef]

44. Liu, L.; Zhang, X.; Han, C.; Ma, Y. A performance evaluation of various physics schemes on the predictions of precipitation and
temperature over the Tibet Autonomous Region of China. Atmos. Res. 2023, 292, 106878. [CrossRef]

45. Quan, J.; Chen, Y.; Zhan, W.; Wang, J.; Voogt, J.; Li, J. A hybrid method combining neighborhood information from satellite data
with modeled diurnal temperature cycles over consecutive days. Remote Sens. Environ. 2014, 155, 257–274. [CrossRef]

46. Ciren, L.; Ga, Z.; Bu, L.; Ciren, P. Temporal and Spatial Distribution of Urban Heat Islands Around Lhasa City. Resour. Sci. 2012,
34, 2364–2373.

https://doi.org/10.1029/2000JD900318
https://doi.org/10.1007/s12145-022-00927-z
https://doi.org/10.1016/j.isprsjprs.2020.07.014
https://doi.org/10.1109/TGRS.2023.3254598
https://doi.org/10.1080/01431161.2023.2208714
https://doi.org/10.1016/j.rse.2020.111931
https://doi.org/10.1109/TGRS.2023.3269622
https://doi.org/10.1109/TGRS.2020.3037168
https://doi.org/10.3389/fenvs.2023.1130448
https://doi.org/10.1175/JAMC-D-19-0287.1
https://doi.org/10.3390/atmos12111436
https://doi.org/10.1016/j.compag.2023.107673
https://doi.org/10.1016/j.isprsjprs.2019.03.013
https://doi.org/10.1016/j.agrformet.2022.109136
https://doi.org/10.1109/JSTARS.2021.3124558
https://doi.org/10.1016/j.ecolind.2016.09.009
https://doi.org/10.1007/s11356-021-18029-6
https://www.ncbi.nlm.nih.gov/pubmed/35022968
https://doi.org/10.1088/1748-9326/acf94c
https://doi.org/10.1007/s10584-022-03460-6
https://doi.org/10.1016/j.uclim.2023.101668
https://doi.org/10.3390/su15065510
https://doi.org/10.1016/j.atmosenv.2022.119190
https://doi.org/10.1016/j.atmosres.2017.09.017
https://doi.org/10.1016/j.rse.2016.04.018
https://doi.org/10.1016/j.atmosres.2023.106878
https://doi.org/10.1016/j.rse.2014.08.034


Remote Sens. 2024, 16, 373 17 of 17

47. Hutengs, C.; Vohland, M. Downscaling land surface temperatures at regional scales with random forest regression. Remote Sens.
Environ. 2016, 178, 127–141. [CrossRef]

48. Duan, S.B.; Lian, Y.H.; Zhao, E.Y.; Chen, H.; Han, W.J.; Wu, Z.H. A Novel Approach to All-Weather LST Estimation Using XGBoost
Model and Multisource Data. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [CrossRef]

49. Zhou, W.; Peng, B.; Shi, J. Reconstructing spatial-temporal continuous MODIS land surface temperature using the DINEOF
method. J. Appl. Remote Sens. 2017, 11, 046016. [CrossRef]

50. Li, X.; Zhou, Y.; Asrar, G.R.; Zhu, Z. Creating a seamless 1km resolution daily land surface temperature dataset for urban and
surrounding areas in the conterminous United States. Remote Sens. Environ. 2018, 206, 84–97. [CrossRef]

51. Wang, M.; Shen, P. Investigation of Indoor Asymmetric Thermal Radiation in Tibet Plateau: Case Study of a Typical Office
Building. Buildings 2022, 12, 129. [CrossRef]

52. Zou, H.B.; Wu, S.S.; Shan, J.S. Sensitivity of Lake-Effect Convection to the Lake Surface Temperature over Poyang Lake in China.
J. Meteorol. Res. 2022, 36, 342–359. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.rse.2016.03.006
https://doi.org/10.1109/TGRS.2023.3324481
https://doi.org/10.1117/1.JRS.11.046016
https://doi.org/10.1016/j.rse.2017.12.010
https://doi.org/10.3390/buildings12020129
https://doi.org/10.1007/s13351-022-1142-2

	Introduction 
	Study Area and Datasets 
	Study Area 
	Datasets 
	Modis Data 
	FNL Data 
	Other Data 


	Methodology 
	All-Weather LST Reconstruction 
	WRF Configuration 
	LST Reconstruction 
	Accuracy Verification Metrics 

	Analysis of the UHI Effect 

	Results 
	All-Weather LST Reconstruction 
	Accuracy of the All-Weather LST 
	Analysis of the Urban Heat Island Intensity 

	Discussion 
	Conclusions 
	References

