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Abstract: Synthetic aperture radar (SAR) and optical images provide highly complementary ground
information. The fusion of SAR and optical data can significantly enhance semantic segmentation
inference results. However, the fusion methods for multimodal data remains a challenge for current
research due to significant disparities in imaging mechanisms from diverse sources. Our goal was to
bridge the significant gaps between optical and SAR images by developing a dual-input model that
utilizes image-level fusion. To improve most existing state-of-the-art image fusion methods, which
often assign equal weights to multiple modalities, we employed the principal component analysis
(PCA) transform approach. Subsequently, we performed feature-level fusion on shallow feature
maps, which retain rich geometric information. We also incorporated a channel attention module
to highlight channels rich in features and suppress irrelevant information. This step is crucial due
to the substantial similarity between SAR and optical images in shallow layers such as geometric
features. In summary, we propose a generic multimodal fusion strategy that can be attached to most
encoding–decoding structures for feature classification tasks, designed with two inputs. One input
is the optical image, and the other is the three-band fusion data obtained by combining the PCA
component of the optical image with the SAR. Our feature-level fusion method effectively integrates
multimodal data. The efficiency of our approach was validated using various public datasets, and the
results showed significant improvements when applied to several land cover classification models.

Keywords: multimodal fusion; land cover classification; deep learning; semantic segmentation

1. Introduction

The increasing trend of organizations disclosing their policies on satellite-based ac-
quisition of multimodal data has significantly increased the availability of such data. The
highly complementary nature of optical images and SAR data renders them invaluable for
various applications, including land cover analysis, building damage assessment, earth
resource surveys, crop identification, and more [1,2].

Optical remote sensing images, captured in various bands, offer distinct feature infor-
mation representations. The imaging mechanism of optical images resonates with human
visual habits. This alignment makes optical remote sensing images a cornerstone in most
current deep learning-based semantic segmentation research. However, these images face
limitations due to variable weather, seasons, light, and geographic factors. Moreover,
clouds and shadows can obscure feature information. In contrast, synthetic aperture radar
(SAR) photographs provide a rich array of landscape information from diverse material
and physical viewpoints. SAR, an active sensor, detects backscatter information and is
particularly sensitive to geometric features, such as surface roughness, temperature, and
complex dielectric constants [3]. Although SAR images can penetrate obstacles and are
impervious to water, they present challenges such as shortening, shadows, and speckle
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noise, making their imaging characteristics less intuitive for human visual interpretation.
The fusion of data from various imaging sources offers a solution to the difficulties posed by
single-modal data, especially in land cover classification (LCC) task [4]. These multimodal
data offer different perspectives on the same phenomena [1].

Fusing multimodal information for LCC tasks presents significant challenges due to
the considerable differences in images captured by separate sensors; pre-processing differ-
ent modal data and determining effective fusion methods is very difficult [5]. For example,
to effectively use fused multimodal data to interpret remote sensing images, it is necessary
to perform speckle reduction and register multimodal data because the backscattered signal
undergoes coherent processing and SAR images are damaged by multiplicative speckle
noise [6]. The registration of multimodal data is a complex task because of the significant
geometric distortions between the data. Several studies have been proposed to accomplish
the registration task of multimodal data, and these methods can be broadly categorized
into area-based, feature-based, and learning-based pipelines [7]. For example, among
feature-based pipelines, one study proposed the Harris-PIFD image registration framework
with multi-scale features [8]. Moreover, one area-based method has been proposed to
use two phases, coarse and fine registration, as well as first- and second-order gradients
in the fine registration phase for geometric deformation problems [9]. Learning-based
methods provide more possibilities for multimodal data registration, such as integrating
deep learning methods with traditional methods to form new registration processes. Addi-
tionally, learning-based pipelines convert one modality into another, transforming complex
multimodal data registration problems into simpler same source data registration problems.
These approaches can also directly train the transformation parameters between regression
multimodal data [7]. Overall, some targeted research has focused on improving multimodal
data registration. However, after completing this task, it is necessary to determine how
to utilize multimodal data with significant differences to perform remote sensing image
interpretation more effectively.

Multimodal data fusion methods can be categorized into pixel-level-based, feature-
level-based, and image-level-based approaches [2]. Pixel-level fusion uses fusion rules such
as intensity–hue–saturation, Gram–Schmidt orthogonalization, bravery transform, high
pass filtering, principal component analysis, wavelet transform, and generalized Laplace
pyramid to fuse the pixel values of multimodal data [10,11]. Fused images have richer
content but are more computationally demanding, and they require strict registration.
Feature-level fusion extracts features such as edges, shapes, and textures from the image
and then fuses them. Downstream tasks can be accomplished more accurately based
on these typical fused features. Decision-based fusion fuses information from classified
images and refines some uncertain information using decision rules, and the registration
requirements are less stringent [6].

There has been considerable research on three fusion methods based on traditional ap-
proaches. To achieve effective LCC using multimodal data, this study proposes a stochastic
gradient descent method for image fusion, leveraging three directional color components
and a Sobel approach [10]. Addressing the issue of noise in SAR images, the study in [12]
introduced a bilateral filter method based on a pixel-by-pixel similarity metric. This method
successfully fuses multimodal data using a co-aligned optical image as a reference. In the
realm of feature-level fusion methods, Zhang et al. [13] proposed a technique that involves
extracting spectral, texture, and spatial features from both optical images and SAR data.
Additionally, they incorporated the normalized difference in vegetation index, as well as
elevation and slope information. Despite the recognized importance of feature normal-
ization in data processing, most existing normalization methods are not suitable for the
fusion of multimodal data, primarily due to the differing imaging mechanisms of optical
images and SAR data. To address this challenge, the study proposed the use of a scale
normalization algorithm. This algorithm is specifically designed to combine multimodal
data effectively, thereby facilitating the evaluation of LCC [14]. To integrate contextual
information into the multimodal data fusion process for downstream tasks such as LCC,
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this study suggests employing the Markov random field (MRF) approach. Decision-level
fusion involves combining various options to generate a common decision [15].

The commonly used deep learning methods for multimodal fusion can be broadly cat-
egorized into two types: those based on weight sharing and those in which the weights are
not shared. Because of the massive differences between SAR data and optical images, many
studies have proved that better inference results can be achieved by non-weight-sharing
methods [16]. The prevalent deep learning methods are mainly based on feature-level
fusion. For example, Zhang et al. [17] suggested constructing a model based on a classical
network structure, incorporating a dual encoder and a shared decoder to effectively process
both SAR and optical images, furthering the goal of leveraging the complementary aspects
of SAR data and optical images. Moreover, this study proposed a triple attention feature
network model. This model integrates a self-attention module, a spatial attention module,
and a spectral information attention module, which synergistically enhance the utilization
of multimodal features. Li et al. [18] proposed a method that involves analyzing distribu-
tion histograms of the depth semantic features of both optical and SAR images, revealing
the complementary nature of their feature information. They developed a model with a
dual-line feature extractor, a multimodal attention module, and a gated heterogeneous
data fusion module to improve the accuracy of multimodal fusion segmentation results.
Additionally, Li et al. [16] designed a multimodal bilinear fusion network that accomplishes
feature extraction using an encoder, a channel selection module for second-order attention,
and a bilinear fusion module.

Traditional approaches typically involve manually designed characteristics, such as
pixel color in the image space, gradient histograms, and other similar features, rather
than depending on domain-specific knowledge [2]. Thus, when using traditional methods
relying on parameter settings, whether applying feature-level fusion or decision-level
fusion, adjusting the appropriate parameters is a complex task. Moreover, machine learning
methods such as support vector machines are limited by their ability to represent manual
features, and thus, machine learning does not perform well in terms of robustness and
experimental accuracy [19]. The rapid development of deep learning provides a new
approach to multimodal data fusion, as this technology can leverage the diverse features of
remote sensing images, including spectral, textural, and structural information due to its
nonlinear expression and strong performance in feature extraction [7,13]. Therefore, deep
learning shows great potential. However, in general, the choice of fusion modality must be
based on the specific downstream task, and there is no single fusion modality that works in
all situations [19]. For example, in the completion of the underwater detection task, the
process suffers from image noise, texture blur, low contrast, color distortion, and impurity
particles affecting the optical imaging as a result of blurring atomization, as well as other
issues. Therefore, it is often difficult to use single modal data to comprehensively express
the characteristics of the object, and it is often necessary to combine multiple features in
order to accurately achieve this task. In this case, it is necessary to perform underwater
histogram enhancement and Retinex theory enhancement, or simulate the generation of
underwater images through generative adversarial networks, underwater restoration, or
other processing [20]. At the same time, SAS originates from SAR; as a sensor working
in different environments, it can perform underwater imaging, and based on this type
of imaging data, multimodal data fusion can be performed to accomplish underwater
observation and image interpretation [21,22].

In our research, we have developed modules that can be integrated into popular
encoding–decoding network architectures. These enhancements improve feature extraction
findings and overcome the limitations of optical images, such as their susceptibility to
weather conditions and inability to gather real-time feature information. By using multi-
modal data, our model overcomes these challenges. The proposed model consists of two
primary components. The first step involves processing SAR images to address the signifi-
cant differences in image disparities between SAR and optical data. We also introduced a
two-way network designed for multimodal-based semantic segmentation tasks. An image
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input into this dual-input network model undergoes image-level fusion and encoding,
resulting in a shallow feature map rich in geometric features. We focused on stitching
shallow feature maps due to their similarity in geometric features, such as shapes, found
in both optical images and SAR data. An attention module was incorporated to extract
the correlation and rich contextual information of the multimodal data effectively. This
module ensures that the fusion process goes beyond simple concatenation, preserving the
complementary characteristics of the multimodal data [19].

(1) We suggest implementing image-level fusion through the PCA transform prior to
performing feature-level fusion of multimodal data.

(2) Our approach introduces a two-input network model designed explicitly for feature-
level fusion of multimodal data. In this model, shallowly encoded feature maps are fused,
and an attention model is incorporated to achieve the LCC task for multiclass targets
effectively.

(3) The efficacy of our proposed method is validated through experimental results on
various public multi-class LCC datasets.

The structure of the remainder of this paper is as follows: Section 2 provides an
overview of the image-level and feature-level fusion methods we have proposed, as well
as the loss function utilized. Section 3 details the experimental datasets and experimental
setting details, and offers qualitative and quantitative analyses of the experimental results
for different models based on public datasets. This section also includes a comparison with
other prevalent multimodal fusion methods. Finally, Section 4 summarizes our study and
outlines potential directions for future research in this field.

2. Overview

To improve the inference results of LCC, we propose a multimodal fusion approach
that incorporates both image-level and feature-level fusion methods. Figure 1 depicts the
comprehensive architecture of this paper. The methodology is divided into two primary
sections: image-level and feature-level fusion. We carried out experiments with several
public datasets and established networks, aiming to develop a generalized strategy that
effectively utilizes multimodal data for LCC. The detailed experimental procedure is
described in the following sections.

Figure 1. Overview of content in this paper. SAR is first fused with optical image at image-level
using PCA transform. Subsequently, shallow feature maps obtained are fused at feature-level, and
the attention module is added to complete the encoding–decoding operation, and the task of LCC is
accomplished after back-propagation training by means of the cross-entropy loss function.

As presented in Figure 2, the visualization of multimodal data intuitively showcases
the optical image and SAR data of typical geographic elements, such as farmland, buildings,
water, and forests. A comparative analysis of the figure reveals that distinguishing features
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such as farmland is challenging when solely relying on optical images, whereas SAR data
provide a clearer classification. For elements such as buildings and water, features such as
texture, color, and shape are more discernible in optical images, but these features are less
apparent in the SAR data. Therefore, finding an appropriate method to fuse optical images
with SAR data is crucial for enhancing the effectiveness of LCC tasks.

Figure 2. Feature characteristics of the same area from optical and SAR images obtained from different
remote sensors, such as the GF-2 and GF-3 satellites.

In optical images, different classes of pixels can display similar spectral characteris-
tics [23]. This phenomenon is evident in Figure 3, which shows spectral reflectance values
across different bands. It can be observed that roads and buildings exhibit similar re-
flectance values in optical images. Similarly, the spectral reflectance values of the farmland
and forest are closely aligned in the blue and red bands. As a result, when relying solely
on optical images for LCC, features with similar spectral reflectance values, manifesting
as similar colors and other features, become challenging to distinguish. However, these
features exhibit distinctly different characteristics in SAR data. Consequently, fusing optical
images with SAR data proves to be an effective strategy for accomplishing LCC tasks.

Figure 1 demonstrates the proposed process for fusing multimodal data. This process
encompasses two key phases to achieve multimodal multitarget semantic segmentation
based on remote sensing images: the use of the PCA transform for image-level fusion of
optical images with SAR data and feature-level fusion following the encoder stage. For
processing optical images, a network model can be chosen from several widely recognized
semantic segmentation model structures. These include U-Net [24], UNetPlusPlus [25],
EfficientNet-UF [26], and Swin-Transformer [27]. The initial step in the process involves
encoding the data using popular encoders designed for SAR data processing. Numer-
ous available encoders come with suitable pre-training weights, enhancing their efficacy.
Notable examples of such encoder models include VGG [28] and ResNet [29], among
other structures.
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Figure 3. To comparatively analyze the shortcomings of most semantic segmentation tasks using
single-modal optical images, spectral reflectance value curves of typical land dividing features in
the red, green, blue, and near-infrared bands were plotted to determine the relationship between
spectral reflectance of different features. The horizontal axis index denotes the number of bands, and
the band number of the used optical images is 4, representing the four bands R-G-B-N, respectively.
The vertical axis represents the value of the radiant received by a satellite.

2.1. Image-Level Fusion

The PCA transformation is an effective and widely used method for reducing data
dimensionality. It transforms correlated data into a set of uncorrelated features through
orthogonal variations. The principal components (PCs) at the forefront represent the
greatest differences in the features they contain. This method is notable for its ability to
reduce data loss [30].

To achieve feature-level fusion of multimodal data, most current deep-learning-based
strategies for multimodal data fusion have developed specialized fusion modules. In this
study, the multimodal fusion task was accomplished by first adding an image-level fusion
step. The primary steps for processing SAR data are outlined below. First, SAR data
significantly differ from optical images, as they employ active microwave transmission
for feature detection while simultaneously receiving ground-based echo information. To
optimally harness the feature information from both optical and SAR data, we proposes the
implementation of PCA fusion for these data types. This strategy is leveraged to reduce the
number of parameters necessary for developing relevant deep learning modules, thereby
achieving a more efficient feature-level fusion approach. Simultaneously, PCA fusion
methods are used to generate three-dimensional images for SAR data input, which can
be equipped with pre-training weights bearing optimal initial values. This enhances the
efficiency of subsequent training processes. The ultimate goal is to successfully complete the
semantic segmentation task using multimodal data while addressing two main challenges:
reducing semantic differences between different datasets and accommodating the fact that
SAR data typically consist of single-band images. The information from SAR and optical
images is then fed into an encoder designed for processing SAR data. These procedural
steps are detailed in Figure 4.
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Figure 4. The optical image was fused with the SAR image using PCA. The feature vectors of
the optical image and SAR data are calculated and sorted to obtain essential features, after which
feature maps are matched, and the PCA inverse transformation is performed to complete the fusion
of the images. Subsequently, the optical image is fused with the encoding operation. This figure
demonstrates that after applying the PCA approach, the shape features are enhanced. Furthermore,
the spatial detail information and spectral similarity aspects are preserved to a large extent in the
original image.

2.2. Feature-Level Fusion

To achieve feature-level fusion, we performed separate encoding operations for the
optical and fused multimodal images, which had previously undergone image-level fusion.
During the encoding process, feature maps rich in geometric features acquired from the
shallow layers of the encoder were fused. Additionally, some existing linear fusion meth-
ods that perform element-wise summation tend to assign identical weights to different
modalities, overlooking the fact that each modality contributes differently to various land
classes. In contrast, attention module is employed to assign distinct weights to features
based on their respective contributions [2,18,31]. Thus, following this, a channel attention
module was added to allocate more weight to the channels containing important informa-
tion, thus completing the encoding operation. Figure 5 provides a visual representation of
this specific fusion method.

In the realm of semantic segmentation models, the choice of encoder for processing
optical images is typically predefined. For our research, we selected resnet18 [29] as the
encoder for processing SAR data. Additionally, we incorporate an attention module in
our method, specifically the channel attention module. Its primary function is assigning
proportional weights to different channels, based on the amount of information they
contain, after the optical image and SAR data have finished the concatenation process.

After completing the feature fusion step, the probability of the LCC is obtained using
softmax. The commonly used loss function in LCC is cross entropy loss [32–34], and some
studies explored the influence of inference results after adding the label smoothing to the
loss function [35]. To make the experimental inference results comparable, the most com-
monly used cross-entropy loss function is selected and defined by the following equation:

loss = −
M

∑
c=1

[yiclog(pic)] (1)
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where M denotes the number of categories, yic takes 0 or 1, 1 if the true category of the
sample is c and 0 otherwise, and pic denotes the probability that sample i belongs to
category c.

Figure 5. We concatenate shallow feature maps containing rich geometric features and add a channel
attention module. We also execute distinct encoding processes for optical images and images that
have been fused by PCA approaches. After completing the encoding and decoding processes, the
cross-entropy loss is used to achieve semantic segmentation task.

3. Experimental Setup
3.1. Datasets

The WHU-OPT-SAR dataset [36] contains 100 optical images, each with dimensions
of 5556 × 3704 pixels, and corresponding SAR images covering the same geographical
area. This area spans approximately 50,000 km2 in Hubei Province. Characterized by a
wide variety of plants and rich terrain, this dataset offers a substantial number of remote
sensing images. Additionally, pixel-level annotations are provided, which are invaluable
for obtaining precise labels for deep learning-based training. To maintain consistency and
fairness in comparison with other datasets, we selected only the first three RGB bands
from this dataset for our training. The images were resized to uniform dimensions of
512 × 512 pixels. In total, we generated 5000 images of this size. These were then split into
training and validation sets in a ratio of 9:1. To ensure robustness and generalizability of
the model, the images were randomized before being allocated to the respective sets.

The DDHRNet dataset [37] comprises satellite images obtained using the GF-2 and
GF-3 satellites, which provide both optical images and SAR data of identical geographic
locations. To capture a wide array of topographic and vegetative features, the dataset
includes images from diverse locations such as Xi’an and Dongying in China and Pohang
in South Korea. After pre-processing, the ground resolution of the satellite images in this
dataset is 1 m, offering a detailed view of the terrain. The remote sensing image data
utilized for the experiments varied in resolution depending on the location: images from
Pohang and Dongying were processed at a resolution of 256 × 256 pixels, while those from
Xi’an were processed at a resolution of 128× 128 pixels. In order to ensure a comprehensive
and unbiased evaluation, the images were divided into training and validation sets. This
division was carried out in a ratio of 9:1.

3.2. Implementation Details

During our experimental phase, we utilized three GeForce RTX2080Ti GPUs to conduct
training on public datasets. Given the complexity of the model and the uniformity of
training hyperparameters across different models, we processed six images simultaneously
for each training iteration. The total number of epochs was set to 100. The training was
conducted using the PyTorch 1.9.1 deep learning framework, with Python version 3.7.7.
The learning rate was set to 0.001, the decay rate was set to 0.1, and the optimizer was
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AdamW. For data augmentation, a standardized approach was adopted. This included
horizontal flipping of the images and random rotations at angles of 90

◦
, 180

◦
, and 270

◦
.

This augmentation method was applied only to the training set, not during the inference
phase, to ensure the integrity and realism of the test data. For the LCC experiments, we
specifically selected cropped images from the WHU-OPT-SAR dataset and no-cloud images
from the DDHRNet dataset.

In this study, we adhered to the same evaluation criteria commonly used in remote
sensing image-based LCC methods for assessing the validity of our experimental results.
These metrics included precision, recall, accuracy, mIoU, and mPA. The definitions and
calculations for these metrics are as follows (Pr. deotes Precision, Ac. denotes accuracy, and
Rec. denotes recall):

Pr. =
TP

TP + FP
× 100% (2)

Rec. =
TP

TP + FN
× 100% (3)

mPA =
1

ncls
× Rec. × 100% (4)

Ac. =
TP + TN

TP + TN + FP + FN
× 100% (5)

mIoU =
1

ncls
Pr. × Rec.

Pr. + Rec. − Pr. × Rec.
× 100% (6)

3.3. Experiment and Discussion

Tables 1 and 2 present the experimental results of our model alongside various com-
parison methods, employing three commonly used accuracy evaluation metrics. Given the
limited interpretability of SAR data and the typically unsatisfactory experimental inference
accuracy, we established three sets of experiments on the public LCC dataset. These experi-
ments included training single-modal data containing only optical images on the same base
model. This approach allowed for a direct comparison between our proposed multimodal
data fusion strategy and other prominent multimodal fusion methods. The results from
these experiments indicate that our fusion strategy achieves superior inference accuracy,
particularly when applied to a model with inherently high inference accuracy. This outcome
not only attests to the effectiveness of our fusion strategy, but also demonstrates that it can
successfully exploit the complementary information in optical images and SAR data to
enhance LCC inference results.

Table 1. In our experiments, the WHU-OPT-SAR dataset was utilized, selecting only the RGB bands
from this dataset to ensure a fair comparison with other public datasets. For the fusion of SAR data,
we implemented the proposed method on two foundational models: U-Net and EfficientNet-UF (O
and S denote optical and SAR, respectively, and E-UF denotes EfficientNet-UF).

Datasets Method mIoU% mPA% Accuracy%

WHU-OPT-SAR

Deeplab-v3-O+S [38] 39.97 49.95 76.68
SOLC-O+S [38] 42.80 53.21 79.11
U-Net-O [24] 50.43 61.43 80.37
U-Net+Ours 52.87 63.22 80.88
E-UF-O [26] 51.55 65.05 80.87
E-UF+Ours 53.37 64.98 81.16
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Table 2. The DDHRNet dataset was employed in our experiments. To highlight the effectiveness
of our proposed fusion method, we conducted experiments across three different areas, each char-
acterized by a unique style of feature information distribution. Similar to the approach with the
WHU-OPT-SAR dataset, the fusion of SAR data was executed using the same two base models: U-Net
and EfficientNet-UF (O and S denote optical and SAR, respectively, and E-UF denotes EfficientNet-UF).

Datasets Area Method mIoU% mPA% Accuracy%

DDHRNet

Korea

Deeplab-v3-O+S [38] 68.75 79.13 86.23
SOLC-O+S [38] 74.38 83.05 89.31
U-Net-O [24] 83.30 90.02 93.68
U-Net+Ours 87.04 92.05 95.35
E-UF-O [26] 89.83 93.95 96.52
E-UF+Ours 91.42 94.91 97.07

Shandong

SOLC-O+S [38] 72.88 78.33 92.73
Deeplab-v3-O+S [38] 75.46 83.47 90.37
U-Net-O [24] 79.38 86.90 91.20
U-Net+Ours 83.26 89.63 92.79
E-UF-O [26] 85.62 91.15 94.23
E-UF+Ours 86.52 91.86 94.63

Xi’an

SOLC-O+SAR [38] 67.65 73.82 90.87
Deeplab-v3-O+S [38] 69.50 76.02 91.91
U-Net-O [24] 78.42 83.40 95.26
U-Net+Ours 78.99 83.66 95.50
E-UF-O+S [26] 82.18 86.60 96.28
E-UF+Ours 83.09 87.45 96.49

The inference results for SOLC and Deeplab-v3 were obtained through the reproduction of the official code. To
maintain experimental fairness, the same data augmentation methods applied in our experiments were also used
during the training phase of these models. The chosen loss function was cross-entropy, which does not incorporate
weights assigned to different classes in the open-source code and is consistent with the loss function introduced in
our paper.

The inclusion of SAR data has been found to effectively improve the inference results
across different models after utilizing our proposed method, notably improving evaluation
metrics for various classes. Specifically, with the WHU-OPT-SAR dataset, there was a
significant improvement in the mIoU of the inference results. For instance, when the U-Net
network was used for the inference process, the mIoU improved by 2.44%, while in the
DDHRNet dataset, improvements were noted as 3.74% for the Korea dataset, 3.88% for the
Shandong dataset, and 0.57% for the Xi’an dataset. Moreover, when our proposed method
was integrated into the EfficientNet-UF model with the WHU-OPT-SAR dataset, the mIoU
improved by 1.82%. In the Korea dataset of DDHRNet, the application of our method
with the EfficientNet-UF model led to mIoU improvement of 1.59%. For the Shandong
dataset, there was an increase of 0.90%, and in the Xi’an dataset, the mIoU improved by
0.91%. It is noteworthy that while the comparison methods achieved accuracy metrics
comparable to those of our method, the mIoU values were generally lower than those
achieved with our proposed method. A potential reason for this could be the training
strategy used in the open source models, which might have involved different weights
according to the distribution of classes. However, given the complexity and variability of
class distribution across different datasets and real-world scenarios, and to validate our
method across various public datasets, we opted not to set different weights for classes
during the training phase. This decision could lead to the comparative methods achieving
higher accuracy but lower mIoU values.

To thoroughly assess the effect of our proposed multimodal data fusion approach on
LCC tasks using public datasets, we focused on the mIoU evaluation metrics for specific
classes. These classes include farmland, city, village, water, forest, road, others, and
background, encompassing all pixels in an image in these eight classes. From the data
presented in Table 3, it is evident that the fusion of SAR data using our method effectively
improves the distinction between the background and other classes. Moreover, in the
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WHU-OPT-SAR dataset, there were marked improvements in the mIoU values for the
farmland, city, village, water, and road classes across different models. However, it was
observed that in the forest and other classes, the mIoU values experienced a slight decrease
when using the EfficientNet-UF and U-Net models. We attribute this phenomenon to the
unique spectral characteristics of forests. As green vegetation, forests exhibit high spectral
reflectance in the near-infrared and green wavelength bands, making them relatively easy to
distinguish from other features in optical images. We provide solutions for accomplishing
the LCC task based on remote sensing images obtained from different sensors.

Table 3. In the WHU-OPT-SAR dataset, mIoU evaluation criteria were calculated for all classes to
which each pixel in the sample belonged (bg denotes background, O and S denote optical and SAR,
respectively, and E-UF denotes EfficientNet-UF).

Method bg Farmland City Village Water Forest Road Others

Deeplab-v3-O+S 10.84 62.31 52.75 38.09 58.65 75.14 11.12 10.84
SOLC-O+S 0.39 65.95 56.48 47.20 61.97 76.93 25.73 7.75
U-Net-O 38.64 67.70 54.96 47.31 64.80 77.53 33.56 18.93
U-Net+Ours 56.42 68.52 56.04 47.68 65.32 77.95 33.67 17.34
E-UF-O 40.35 68.88 54.12 47.76 64.83 78.20 37.35 20.88
E-UF+Ours 48.73 68.90 55.15 48.67 66.62 77.73 38.68 22.44

As shown in Table 4, the inference results for different classes such as building, road,
farmland, water, greenery, and others within the DDHRNet dataset demonstrate that the
mIoU for all six of these classes improved upon applying the proposed method. This
outcome effectively validates the efficacy of our approach. In regions such as Korea, Shan-
dong, and Xi’an, which each have distinct feature distribution styles and characteristics,
significant enhancements were noted in classes such as roads, farmland, greenery, and
others across two commonly used base models. The category of buildings showed notable
improvement in both models in Korea and Shandong, but there was no substantial en-
hancement in the U-Net network in Xi’an. Additionally, the U-Net model did not show
significant mIoU improvement in the water class in Shandong. This variance in perfor-
mance, particularly with the U-Net model, might be attributed to its simpler architecture,
which potentially limits its ability to effectively utilize the rich and complementary semantic
information available in the fused multimodal data.

However, considering the overall inference results, it is clear that significant mIoU
improvement is attainable using our proposed strategy, regardless of whether the eight
classes WHU-OPT-SAR dataset or the six classes DDHRNets dataset are used. Most notably,
there is a significant improvement in classes such as road, farmland, and greenery.

The visualization results depicted in Figure 6 clearly illustrate that the LCC results
obtained using our proposed method exhibit more detailed completeness, and are closer to
the ground truth. The fusion of SAR data into the analysis notably enhances the clarity of
land classification inference results, particularly in terms of the edge information of various
feature targets. In this study, we employed image-level fusion through the application of
PCA and the feature level fusion method, which effectively highlights target objects and
larger weights to features with more informative content. Moreover, with the addition of
SAR data, we enhanced the remote sensing images of ground information, which were
acquired using various imaging modalities. The results of extracting features, particularly
for elements such as farmland, cities, villages, and water, show considerable improvement.
Notably, in urban areas and water, the number of misclassified pixels was significantly
reduced with our proposed fusion strategy. Farmland, which is often challenging to
differentiate in optical images, showed marked improvement with the addition of SAR
data. In the DDHRNet dataset, the extraction results for roads, farmland, buildings, and
greenery also saw significant improvements when using our proposed method. It can
be concluded from the LCC inference results that using our method can improve model
segmentation performance, with different kinds of segmentation results being further
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refined to obtain superior LCC classification results. Additionally, our method can make it
easier to recognize different classes from four different regions with six and eight classes,
indicating that our method has a clear advantage in predicting multiple semantic classes.

Figure 6. The inference results, both with and without the implementation of the proposed method,
were visualized using the WHU-OPT-SAR and DDHRNet datasets. These visualization results were
then thoroughly analyzed and compared against the original, SAR, and ground truth images to assess
the efficacy of the proposed method.

We incorporated a channel attention module to enhance the feature and multimodal
data fusion process. This module effectively strengthened the extraction of important
features while simultaneously inhibiting the extraction of unimportant information. The
visualization results indicate that our proposed method notably improved the accuracy of
target feature extraction by significantly reducing the erroneous extraction of background
information.
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Table 4. In the DDHRNet dataset, the mIoU evaluation criteria were meticulously calculated for
all the classes that are specified in the dataset’s labeling system (O and S denote optical and SAR,
respectively, and E-UF denotes EfficientNet-UF).

Area Method Building Road Farmland Water Greenery Others

Korea

Deeplab-v3-O+S 79.61 63.03 66.83 85.51 80.70 36.83
SOLC-O+S 85.35 54.32 82.19 97.51 77.24 49.67
U-Net-O 91.61 72.83 89.17 98.34 87.18 60.69
U-Net+Ours 94.04 79.50 91.81 98.42 90.86 67.61
E-UF-O 95.73 84.85 94.30 98.91 92.96 72.20
E-UF+Ours 96.30 87.51 95.12 99.10 93.73 76.78

Shandong

SOLC-O+S 89.92 70.73 91.74 82.96 95.95 6.00
Deeplab-v3-O+S 87.13 49.41 84.27 96.38 82.51 53.05
U-Net-O 84.35 74.84 78.02 90.67 88.80 59.62
U-Net+Ours 87.07 81.04 82.14 90.62 90.60 68.10
E-UF-O 90.41 83.15 85.73 93.56 90.45 70.44
E-UF+Ours 91.52 84.08 86.13 93.72 92.07 71.58

Xi’an

SOLC-O+S 86.67 57.49 90.33 81.13 91.98 0.12
Deeplab-v3-O+S 88.97 60.36 91.45 82.83 93.31 0.10
U-Net-O 93.45 81.37 96.09 90.01 96.19 13.39
U-Net+Ours 93.38 81.58 96.13 90.64 96.29 15.91
E-UF-O 94.31 84.84 96.83 91.73 95.96 29.41
E-UF+Ours 94.56 85.30 97.16 92.00 97.05 32.48

4. Conclusions and Discussion

Because SAR data and optical images contain complementary feature information,
we have achieved LCC using a multimodal approach that fuses SAR data with optical
images. Multimodal fusion methods can generally be categorized into three types: image-
level, feature-level, and decision-level. Considering the distinct nature of the information
in SAR data and optical images, this paper proposes using the PCA algorithm to retain
the important components of both as one branch of a dual input system for semantic
segmentation. We spliced shallow feature maps obtained from different images using two
encoders into the depth dimensions. To more effectively capture important features from
SAR data and optical images, a channel attention module was added after concatenating
the shallow feature maps. This addition helps to extract important information from
the fused SAR features and facilitates the subsequent decoding process. To validate the
effectiveness of our methods, we conducted experiments on multimodal fusion using
two public datasets encompassing various geographical areas. We utilized the U-Net and
EfficientNet-UF networks as our base models and incorporated our proposed multimodal
fusion method. The quantitative data suggest that our method notably improves the
classification accuracy of different features, significantly improving the results for multi-
class features. Visualization results indicate that our approach can extract better features
and define boundaries more effectively. Comparing our method with other multimodal
fusion approaches, it is evident that our method achieves superior accuracy. In future
research, our aim is to fuse hyperspectral images, optical images, and SAR data, as well as
multimodal data with greater variance in the resolution of remote sensing images. We plan
to leverage large or world models more effectively to minimize sample use and enhance
inference results. The fusion of multimodal data requires pre-processing tasks, such as
registration and scatter noise reduction, which have a significant impact on the inference
results of the downstream tasks and are cumbersome to perform. In our future work, we
will consider exploring more adaptive registration methods for downstream tasks or using
fewer samples to complete the LCC task.



Remote Sens. 2024, 16, 431 14 of 15

Author Contributions: Methodology, Y.Q. and R.Z.; investigation, J.L. and S.J.; resources, H.G. and
A.Y.; writing—original draft preparation, Y.Q. and R.Z.; writing—review and editing, J.L. and S.J.;
visualization, Y.Q. and R.Z.; supervision, H.G. and A.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This researchwas funded by the National Natural Science Foundation of China under
Grants 42101458, 42171456, 42130112, 41901285, and 42277478.

Data Availability Statement: The raw data will be made available on the request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Xia, J.; Yokoya, N.; Baier, G. DML: Differ-Modality Learning for Building Semantic Segmentation. IEEE Trans. Geosci. Remote Sens.

2022, 60, 1–14. [CrossRef]
2. Peng, B.; Zhang, W.; Hu, Y.; Chu, Q.; Li, Q. LRFFNet: Large Receptive Field Feature Fusion Network for Semantic Segmentation

of SAR Images in Building Areas. Remote Sens. 2022, 14, 6291. [CrossRef]
3. Wu, W.; Guo, S.; Shao, Z.; Li, D. CroFuseNet: A Semantic Segmentation Network for Urban Impervious Surface Extraction Based

on Cross Fusion of Optical and SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2573–2588. [CrossRef]
4. Kang, W.; Xiang, Y.; Wang, F.; You, H. CFNet: A Cross Fusion Network for Joint Land Cover Classification Using Optical and

SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1562–1574. [CrossRef]
5. Xu, H.; He, M.; Rao, Z.; Li, W. Him-Net: A New Neural Network Approach for SAR and Optical Image Template Matching1. In

Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021;
pp. 3827–3831. [CrossRef]

6. Kulkarni, S.; Rege, P.P. Pixel level fusion techniques for SAR and optical images: A review. Inf. Fusion 2020, 59, 13–29. [CrossRef]
7. Zhu, B.; Zhou, L.; Pu, S.; Fan, J.; Ye, Y. Advances and Challenges in Multimodal Remote Sensing Image Registration. IEEE J.

Miniaturization Air Space Syst. 2023, 4, 165–174. [CrossRef]
8. Gao, C.; Li, W. Multi-Scale PIIFD for Registration of Multi-Source Remote Sensing Images. J. Beijing Inst. Technol. 2021, 30,

113–124.
9. Ye, Y.; Zhu, B.; Tang, T.; Yang, C.; Xu, Q.; Zhang, G. A Robust Multimodal Remote Sensing Image Registration Method and

System Using Steerable Filters with First- and Second-order Gradients. arXiv 2022, arXiv:2202.13347. [CrossRef]
10. Shakya, A.; Biswas, M.; Pal, M. Fusion and Classification of SAR and Optical Data Using Multi-Image Color Components with

Differential Gradients. Remote Sens. 2023, 15, 274. [CrossRef]
11. Lewis, J.J.; O’Callaghan, R.J.; Nikolov, S.G.; Bull, D.R.; Canagarajah, N. Pixel- and region-based image fusion with complex

wavelets. Inf. Fusion 2007, 8, 119–130. [CrossRef]
12. Gaetano, R.; Cozzolino, D.; D’Amiano, L.; Verdoliva, L.; Poggi, G. Fusion of sar-optical data for land cover monitoring. In

Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28
July 2017; pp. 5470–5473. [CrossRef]

13. Zhang, R.; Tang, X.; You, S.; Duan, K.; Xiang, H.; Luo, H. A Novel Feature-Level Fusion Framework Using Optical and SAR
Remote Sensing Images for Land Use/Land Cover (LULC) Classification in Cloudy Mountainous Area. Appl. Sci. 2020, 10, 2928.
[CrossRef]

14. Zhang, H.; Lin, H.; Li, Y. Impacts of Feature Normalization on Optical and SAR Data Fusion for Land Use/Land Cover
Classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1061–1065. [CrossRef]

15. Maggiolo, L.; Solarna, D.; Moser, G.; Serpico, S.B. Optical-SAR Decision Fusion with Markov Random Fields for High-Resolution
Large-Scale Land Cover Mapping. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing
Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 5508–5511. [CrossRef]

16. Li, X.; Lei, L.; Sun, Y.; Li, M.; Kuang, G. Multimodal Bilinear Fusion Network With Second-Order Attention-Based Channel
Selection for Land Cover Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1011–1026. [CrossRef]

17. Zhang, D.; Gade, M.; Zhang, J. SOF-UNet: SAR and Optical Fusion Unet for Land Cover Classification. In Proceedings of the
IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022;
pp. 907–910. [CrossRef]

18. Li, X.; Lei, L.; Sun, Y.; Li, M.; Kuang, G. Collaborative Attention-Based Heterogeneous Gated Fusion Network for Land Cover
Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3829–3845. [CrossRef]

19. Li, Y.; Zhou, Y.; Zhang, Y.; Zhong, L.; Wang, J.; Chen, J. DKDFN: Domain Knowledge-Guided deep collaborative fusion network
for multimodal unitemporal remote sensing land cover classification. ISPRS J. Photogramm. Remote Sens. 2022, 186, 170–189.
[CrossRef]

20. Lin Sen, Z.Y. Reiview on key technologies of target exploration in underwater optical images. Laster Optoelectron. Prog. 2020,
57, 060002. [CrossRef]

21. Zhang, X.; Wu, H.; Sun, H.; Ying, W. Multireceiver SAS Imagery Based on Monostatic Conversion. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 2021, 14, 10835–10853. [CrossRef]

https://doi.org/10.1109/TGRS.2022.3148383
https://doi.org/10.3390/rs14246291
https://doi.org/10.1109/JSTARS.2023.3250461
https://doi.org/10.1109/JSTARS.2022.3144587
https://doi.org/10.1109/ICIP42928.2021.9506616
https://doi.org/10.1016/j.inffus.2020.01.003
https://doi.org/10.1109/JMASS.2023.3244848
https://doi.org/10.1016/j.isprsjprs.2022.04.011
https://doi.org/10.3390/rs15010274
https://doi.org/10.1016/j.inffus.2005.09.006
https://doi.org/10.1109/IGARSS.2017.8128242
https://doi.org/10.3390/app10082928
https://doi.org/10.1109/LGRS.2014.2377722
https://doi.org/10.1109/IGARSS46834.2022.9884751
https://doi.org/10.1109/JSTARS.2020.2975252
https://doi.org/10.1109/IGARSS46834.2022.9884504
https://doi.org/10.1109/TGRS.2020.3015389
https://doi.org/10.1016/j.isprsjprs.2022.02.013
https://doi.org/10.3788/LOP57.060002
https://doi.org/10.1109/JSTARS.2021.3121405


Remote Sens. 2024, 16, 431 15 of 15

22. Yang, P. An imaging algorithm for high-resolution imaging sonar system. Multimed. Tools Appl. 2023. [CrossRef]
23. Luo, D.; Li, L.; Mu, F.; Gao, L. Fusion of high spatial resolution optical and polarimetric SAR images for urban land cover

classification. In Proceedings of the 2014 Third International Workshop on Earth Observation and Remote Sensing Applications
(EORSA), Changsha, China, 1–14 June 2014; pp. 362–365. [CrossRef]

24. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015,
arXiv:1505.04597.

25. Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation.
arXiv 2018, arXiv:1807.10165.

26. Quan, Y.; Yu, A.; Cao, X.; Qiu, C.; Zhang, X.; Liu, B.; He, P. Building Extraction From Remote Sensing Images With DoG as Prior
Constraint. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 6559–6570. [CrossRef]

27. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC,
Canada, 11–17 October2021; pp. 9992–10002. [CrossRef]

28. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556.
29. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]
30. Makar, R.; Shahin, S.; El-Nazer, M.; Wheida, A. Development of a PCA-based land use/land cover classification utilizing

Sentinel-2 time series. Middle East J. Agric. Res. 2022, 11, 630–637.
31. Hazirbas, C.; Ma, L.; Domokos, C.; Cremers, D. FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-Based

CNN Architecture. In Computer Vision—ACCV 2016: 13th Asian Conference on Computer Vision, Taipei, Taiwan, 20–24 November
2016, Revised Selected Papers, Part I 13; Lai, S.H., Lepetit, V., Nishino, K., Sato, Y., Eds.; Springer International Publishing: Cham,
Switzerland, 2017; pp. 213–228.

32. Yao, J.; Cao, X.; Hong, D.; Wu, X.; Meng, D.; Chanussot, J.; Xu, Z. Semi-Active Convolutional Neural Networks for Hyperspectral
Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5537915. [CrossRef]

33. Dong, W.; Zhang, T.; Qu, J.; Xiao, S.; Zhang, T.; Li, Y. Multibranch Feature Fusion Network With Self- and Cross-Guided Attention
for Hyperspectral and LiDAR Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5530612. [CrossRef]

34. Quan, D.; Wei, H.; Wang, S.; Gu, Y.; Hou, B.; Jiao, L. A Novel Coarse-to-Fine Deep Learning Registration Framework for
Multimodal Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5108316. [CrossRef]

35. Müller, R.; Kornblith, S.; Hinton, G.E. When Does Label Smoothing Help? arXiv 2019, arXiv:1906.02629.
36. Li, X.; Zhang, G.; Cui, H.; Hou, S.; Wang, S.; Li, X.; Chen, Y.; Li, Z.; Zhang, L. MCANet: A joint semantic segmentation framework

of optical and SAR images for land use classification. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102638. [CrossRef]
37. Ren, B.; Ma, S.; Hou, B.; Hong, D.; Chanussot, J.; Wang, J.; Jiao, L. A dual-stream high resolution network: Deep fusion of GF-2

and GF-3 data for land cover classification. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102896. [CrossRef]
38. Sun, Y.; Zhao, Y.; Wang, Z.; Fan, Y. SOLC. 2022. Available online: https://github.com/yisun98/SOLC (accessed on 22 Jan-

uary 2020).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11042-023-16757-0
https://doi.org/10.1109/EORSA.2014.6927913
https://doi.org/10.1109/JSTARS.2022.3195808
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/TGRS.2022.3206208
https://doi.org/10.1109/TGRS.2022.3179737
https://doi.org/10.1109/TGRS.2023.3306042
https://doi.org/10.1016/j.jag.2021.102638
https://doi.org/10.1016/j.jag.2022.102896
https://github.com/yisun98/SOLC

	Introduction 
	Overview 
	Image-Level Fusion 
	Feature-Level Fusion 

	Experimental Setup 
	Datasets 
	Implementation Details 
	Experiment and Discussion 

	Conclusions and Discussion 
	References

