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Abstract: Since the early 1950s, the development of human settlements and over-exploitation of
agriculture in the China side of the Amur River Basin (CARB) have had a major impact on the water
environment of the surrounding lakes, resulting in a decrease of aquatic vegetation. According to
the United Nations Sustainable Development Goals, a comprehensive understanding of the extent
and variability of aquatic vegetation is crucial for preserving the structure and functionality of stable
aquatic ecosystems. Currently, there is a deficiency in the CARB long-sequence dataset of aquatic
vegetation distribution in China. This shortage hampers effective support for actual management.
Therefore, the development of a fast, robust, and automatic method for accurate extraction of aquatic
vegetation becomes crucial for large-scale applications. Our objective is to gather information on the
spatial and temporal distribution as well as changes in aquatic vegetation within the CARB. Utilizing
a hybrid approach that combines the maximum spectral index composite and Otsu algorithm, along
with the integration of convolutional neural networks (CNN) and random forest, we applied this
methodology to obtain an annual dataset of aquatic vegetation spanning from 1985 to 2020 using
Landsat series imagery. The accuracy of this method was validated through both field investigations
and Google Images. Upon assessing the confusion matrix spanning from 1985 to 2020, the producer
accuracy for aquatic vegetation classification consistently exceeded 87%. Further quantitative analysis
unveiled a discernible decreasing trend in both the water and vegetation areas of lakes larger than
20 km2 within the CARB over the past 36 years. Specifically, the total water area decreased from
3575 km2 to 3412 km2, while the vegetation area decreased from 745 km2 to 687 km2. These changes
may be attributed to a combination of climate change and human activities. These quantitative data
hold significant practical implications for establishing a scientific restoration path for lake aquatic
vegetation. They are particularly valuable for constructing the historical background and reference
indices of aquatic vegetation.

Keywords: aquatic vegetation; spatial distribution; CNN; random forest

1. Introduction

Lakes serve as crucial links in the interaction of various elements within terrestrial
ecosystems [1–3]. They fulfill diverse ecological functions, including the regulation of
river runoff and the breeding of aquatic organisms, and play a significant strategic role in
safeguarding national social and economic interests, and ecological security [4–6]. Aquatic
vegetation is a crucial component of lake ecosystems, and its degradation and loss serve
as important indicators of ecosystem decline in lakes [7,8]. It also plays a crucial role in
maintaining the balance of lake ecosystems by stabilizing sediments, sequestering carbon,

Remote Sens. 2024, 16, 654. https://doi.org/10.3390/rs16040654 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16040654
https://doi.org/10.3390/rs16040654
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4548-899X
https://orcid.org/0000-0002-9865-8235
https://doi.org/10.3390/rs16040654
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16040654?type=check_update&version=1


Remote Sens. 2024, 16, 654 2 of 19

improving water quality, facilitating nutrient cycling, and providing food and habitat for a
variety of aquatic organisms [9–12]. Aquatic vegetation can be categorized into three types
based on its position relative to the water surface: emergent vegetation, floating-leaved
vegetation, and submerged vegetation [13].

The Amur River Basin, spanning Russia, China, and Mongolia, ranks among the ten
largest river basins in the world [14]. The Chinese part of the basin constitutes 48% of
the entire basin and hosts the majority of freshwater lakes in Northeast China. It stands
as the region with the most abundant water resources and densest concentration of lakes
in Northeast China. Additionally, it boasts the largest natural forest area and serves as a
crucial commercial grain base in China [15,16]. More than 93% of the population of the
entire basin lives on the China side of the Amur River Basin (CARB) [17]. Since the early
1950s, the development of human settlements and agriculture in the CARB has significantly
impacted the region’s natural wetlands [18,19]. The excessive use of groundwater, fertilizers,
pesticides, and other agricultural inputs, along with the overdevelopment of agriculture,
has resulted in the degradation of cultivated land and the serious pollution of wetlands.
These practices have had a significant impact on the aquatic environment of the surrounding
lakes [20]. This has led to the decline of aquatic vegetation in the lakes, significantly affecting
the living environment quality of the surrounding residents. Moreover, it causes negative
impacts on the effective utilization of water supply resources and hampers social and
economic development. A comprehensive understanding of temporal and spatial changes
in aquatic vegetation within the basin is indispensable to assessing ecosystem services and
supporting the sustainable conservation of the region’s wetlands.

Traditional methods of monitoring aquatic vegetation rely on labor-intensive field
surveys, making it challenging to obtain continuous spatial distribution information. As a
non-contact detection method, remote sensing has unique advantages in the monitoring
and extraction of aquatic vegetation information [21]. In general, satellite remote sens-
ing data with varying resolutions can achieve an overall accuracy of aquatic vegetation
group classification above 80% [22]. However, due to the influence of water and other
environmental factors, the radiation transfer mechanism of the aquatic vegetation canopy
becomes highly complex, thereby increasing the difficulty of its accurate identification.
In recent years, various classification methods have been applied to monitor changes in
aquatic vegetation. For example, Jing et al. used micro unmanned aerial vehicle images to
generate visible vegetation indices, establish decision tree rules, and automatically classify
the ecological area of the Xin Cheng Waterside Forest Park in Beijing, achieving an overall
accuracy of 91.7% [23]. Chen et al. proposed a new concave–convex decision function
for detecting submerged aquatic vegetation (SAV) in Lake Ulansuhai, with classification
accuracies of 92.17% and 91.79% for July and August, respectively [24]. Wang et al. first
proposed an enhanced aquatic vegetation index based on the difference in two short-wave
infrared (SWIR) bands to extract the aquatic vegetation above the water surface. Subse-
quently, using Taihu Lake as an example, they accurately extracted seasonal and annual
distributions of aquatic vegetation [25]. Ashford described a field investigation method
and image processing workflow based on unmanned aerial systems (UAS), which was
used to map local, exotic, and invasive aquatic vegetation, indicating that small UAS can
investigate, map, and detect features of interest in a large area [26]. Additionally, machine
learning methods, including random forest (RF) classification and deep learning, have
also been employed [27–29], demonstrating significant potential in the field of aquatic
vegetation extraction. Aquatic vegetation extraction based on deep learning achieves pre-
cise identification by learning features from a large amount of remote sensing image data.
Therefore, deep learning technology provides new insights and approaches for aquatic
vegetation extraction. The results of Ji et al. indicated that the integration of CNN and RF
classifiers slightly outperforms independent RF classification and CNN classification meth-
ods in terms of classification accuracy [30]. However, there is currently a lack of research
on integrating CNN and RF classifiers for aquatic vegetation information extraction.
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The specific objectives of this study are as follows: (1) to propose a novel and robust
classification method by integrating image composite algorithms, CNN, and RF classifiers;
(2) to apply the proposed method to generate annual maps of aquatic vegetation, water, and
other land cover types in the CARB from 1985 to 2020; (3) to analyze the spatiotemporal
changes of aquatic vegetation, water, and other land cover types during the period of
climate change from 1985 to 2020. This study extends the spatial transferability of the
model and provides strong methodological and theoretical support for future extraction
and monitoring of aquatic vegetation.

2. Materials and Methods
2.1. Study Area

As shown in Figure 1, the CARB (41◦45′–53◦33′N, 115◦13′–135◦05′E) encompasses
most of Heilongjiang and parts of Jilin and Inner Mongolia. We selected the China side
of the Amur River Basin with lakes larger than 20 km2 as the study area. The basin
has a monsoon climate, with winds alternating between continental and maritime with
the seasons. The summer is short, warm, and humid, with temperatures ranging from
16–18 ◦C in July. The winter is long (November to March), dry, and cold, and January is
the coldest month, with temperatures ranging from −31 to −15 ◦C. Nearly two-thirds
of the basin’s precipitation occurs from June to August. The peak period of vegetation
biomass in the study area occurs from July to August, while the ice cover period lasts
from November to March the following year. The average annual temperature ranges from
−8 to 6 ◦C, and the average annual precipitation ranges from 250 to 800 mm. The area
exhibits abundant water resources and diverse flora and fauna, making it a significant
ecological hotspot. The aquatic vegetation types of the CARB are mainly reed communities,
wild barley communities, Potamogeton wrightii Morong communities, Calamagrostis epigeios
(L.) Roth communities, Suaeda salsa communities, Zizania latifolia (Griseb.) Turcz. ex Stapf
communities, Typha orientalis Presl communities, and so on. Moreover, over the past three
decades, it has thrived as an agricultural region, particularly renowned for its prominent
role in rice cultivation.
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2.2. Remote Sensing Data

The Landsat series, initially launched in 1972, has a 16-day revisit period and a spatial
resolution of 30 m. Due to the limited availability of Landsat-4 TM satellite imagery in
China, this study utilized surface reflectance data from Landsat-8 OLI, Landsat-7 ETM+,
and Landsat-5 TM. The Scan Line Corrector (SLC) of the Landsat-7 ETM+ sensor failed
after 2003, resulting in striping gaps in Landsat-7 image data. This study utilized Landsat-
7 ETM+ data from 1999 to 2002. For 2012, only Landsat-7 ETM+ satellite imagery was
available, which required banding correction before use. A total of 6175 Landsat surface
reflectance images were selected from the Google Earth Engine (GEE) data catalog for the
period between 1985 and 1 June 2020, with a focus on the dates from 15 May to 15 October.
The temporal distribution of the Landsat satellite series used in this study and the effective
observation quantity of Landsat-8 satellite in 2020 are shown in Figure 2.
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2.3. Ground Sample Data

The validation data used in this study consisted of 286 field survey samples, high-
resolution images obtained from Google Earth, and high-resolution images from national
geographic monitoring. The labelme tool was employed for manual visual interpretation to
create a labeled dataset of 1200 images with pixels of 128 × 128, which included water sur-
faces, aquatic vegetation (emergent vegetation, floating-leaved vegetation, and submerged
vegetation), and other surface features such as muddy areas in lake transition zones and
terrestrial vegetation. In this dataset, 70% of the labels were used for training, while 30% of
the samples were reserved for validating the accuracy of the classification results.

2.4. Methodologies
2.4.1. Basic Idea

The mapping workflow for aquatic vegetation, water, and other land cover types
(including inland vegetation, algal blooms, agricultural fields, bare soil, built-up areas, etc.)
in the CARB is illustrated in Figure 3. Firstly, we utilized the Landsat imagery along with
image composite (the specified band value of each pixel at all pixel positions in the image
stack is sorted pixel by pixel, maximum value, mean value, or median value, etc., of the
specified band are extracted, and finally, all these pixels are formed into an image) and
Otsu algorithm (Otsu) to delineate the maximum spatial extent of water surfaces of large
lakes (larger than 20 km2) in the CARB. Subsequently, we developed a novel and robust
classification method by combining the image composite, CNN, and RF classifier. This
classification approach consists of three steps: (1) obtaining a synthesized image collection
of the CARB lakes from high-quality observational data; (2) extracting features from the
image collection using a CNN model; (3) classifying the extracted CNN features using an
RF classifier.
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2.4.2. The Maximum Spectral Index Composite (MSIC) and Otsu

The GEE API offers the “imageCollection.qualityMosaic” function, which utilizes a
maximum spectral index composite (MSIC). The MSIC algorithm selects a specified band
as a sorting criterion on a pixel-by-pixel basis. It then computes the maximum value
after sorting the pixels based on this criterion. The quality measure band is used as the
primary source for each pixel in the final composite image, where the pixel values are
obtained by overlaying the specified band data. This approach ensures that the resulting
composite image showcases the highest quality pixels, which are defined as the pixels with
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the maximum spectral index selected at each pixel position in the time series image stack
after cloud removal, based on the selected band. The Otsu, also referred to as the maximum
inter-class variance method, was proposed by Otsu in 1975 [31] and has been further
studied [32]. This algorithm divides an image into two parts, distinguishing between
the background and foreground based on the grayscale characteristics of the image. The
optimal threshold is determined by selecting the threshold that maximizes the inter-class
variance and minimizes the in-class variance which is then applied for automatic binary
classification of the image, enabling efficient segmentation.

2.4.3. Spectral Feature Construction

This study relies on the GEE platform to construct spectral features and enhance the
extraction of aquatic vegetation information. These feature variables have been carefully se-
lected and integrated to provide comprehensive and reliable analysis of aquatic vegetation.
The spectral index formulas used in this study are shown in Table 1.

Table 1. Formulas of the spectral indices used in this study.

Spectral Name Expression Source

NDVI (Normalized Differential
Vegetation Index) NDVI = NIR−Red

NIR+Red [33]

mNDWI (Modified Normalized
Difference Water Index) mNDWI = Green−SWIR

Green+SWIR [34,35]

FAI (Floating Algae Index) FAI = (NIR − Red − (SWIR − Red)× (λNIR−λRed)
(λSWIR−λRed)

[36]

NIR represents Near-Infrared band Reflectance; Red represents infrared band reflectance; SWIR represents Short-
Wave Infrared band reflectance; Green represents green band reflectance; λNIR, λRed, and λSWIR are the center
wavelengths of the near-infrared, red, and shortwave infrared bands, respectively.

2.4.4. Delineating Spatial Extents of Lakes in the CARB

According to research conducted by Jia et al. [35], the mNDWI (Modified Normalized
Difference Water Index) effectively enhances the distinction between artificial shorelines,
such as embankments, roads, and pond edges, and the surrounding water. It outperforms
the NDWI (Normalized Difference Water Index) in extracting intertidal zones and inland
surface water coverage. Therefore, this study selected mNDWI for the extraction of lake
water. In this study, the MSIC synthetic image was constructed annually using the mNDWI,
and the maximum water surface image was generated. The OA was applied to select
the threshold for mNDWI, facilitating the determination of the maximum water surface
range on a yearly basis. Subsequently, these ranges were merged to obtain the maximum
coverage of lake water surfaces within the study area from 1985 to 2020.

2.4.5. Convolutional Neural Network (CNN)

CNN, proposed by Lecun et al. in the late 1980s [37], is a deep learning model
primarily used for image recognition and computer vision tasks. The principle consists
of the following key concepts: (1) Convolutional Layer: The convolutional layer is a core
component of CNN. It extracts the features of the image by convolution operations on
the input image using a series of learnable filters, or convolution nuclei. Each filter slides
over the image and calculates the inner product of its corresponding local receptive field,
generating a Feature Map. Through the combination of multiple filters, the convolution
layer can learn different features, such as edges, textures, etc. (2) Pooling Layer: the pooling
layer is used to downsample the feature map, reduce the size and number of parameters
of the feature map, and retain the main features. Common pooling operations include
Max Pooling and Average Pooling, which select the maximum value or average value
of the experience field, respectively, as the pooled value. (3) Activation Function: The
activation function introduces nonlinear transformations that enable the CNN to learn
nonlinear features. Common activation functions include Rectified Linear Unit (ReLU),
Sigmoid, and Tanh. (4) Fully Connected Layer: The fully connected layer flattens the output
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of the convolutional layer and the pooling layer and fully connects it with the previous
layer to convert the extracted feature map into the output of classification or regression.
Fully connected layers typically use a Multi-Layer Perceptron (MLP) structure. (5) Back
propagation: Forward propagation and back propagation are interdependent processes.
Forward propagation calculates and stores the results of each layer of the neural network
from the input layer to the output layer in turn. On the other hand, back propagation uses
chain rule to calculate the gradient of loss function relative to the weight of each layer, so
as to update the weight to minimize the loss function. Loss function plays a key role in the
training process by measuring the difference between the predicted results of the model and
the actual tags. Through back propagation, CNN can gradually extract the abstract features
of the image and automatically learn more advanced feature representations during the
training process.

The CNN structure adopted in this study is shown in Figure 4. The network structure
of DeepPlabv 3+ is used to extract features [38]. The model is trained with labeled data
sets. The main body of its encoder is the DCNN feature extraction network with atrous
convolution, and the Xception_65 network structure and Xception_71 network structure are
selected. DeepPlabv3+ introduces atrous spatial pyramid pooling (ASPP) to fuse context
information at different scales. The ASPP module includes several parallel branches of
atrous convolution. Each branch has a different dilation rate. In this way, rich contextual
information can be captured at different scales and fused into the segmentation results.
The decoder fuses the features of the bottom layer and the top layer by techniques such as
upsampling and skip connections, and the extracted CNN features are used as the input of
the random forest classifier.
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2.4.6. Random Forest (RF) Classification Algorithm

RF is an ensemble learning algorithm known for its advantages, including insensitivity
to multivariate collinearity, no requirement for data normalization, and good tolerance for
missing and unbalanced data [39]. RF is an integrated method consisting of classification
trees and regression trees. The final classification decision is determined by averaging
the probabilities of class assignments computed across all generated trees [40]. There
are two random processes in RF. First, a training set is created for each tree by sampling
replacements from the original training data set. Second, when the nodes of the tree
are split, random features are selected from the total features without replacement. RF
has been widely adopted because it can improve the robustness and performance of
classification based on bootstrap sampling and random feature combination strategies [41].
In addition, it can process multiple variables, rank them, assess variable importance based
on performance, and determine the computationally optimal number of trees through
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algorithm testing. Moreover, RF can overcome the overfitting problem of decision trees
and exhibits strong resilience to noise and outliers.

2.4.7. Accuracy Assessment

In this study, a confusion matrix was constructed to obtain the Kappa coefficient,
Overall Accuracy (OA), Producer Accuracy (PA), and User Accuracy (UA). OA expresses
the overall degree of agreement in the matrix. UA represents the likelihood that a classified
object matches the ground situation. PA shows the percentage of an object type, which was
correctly classified. Kappa coefficient states how well the classification results agree with
the reference data. The formulas are shown in Table 2.

Table 2. Formulas of overall accuracy, Kappa coefficient, producer accuracy, and user accuracy.

Evaluation Index Equation Description

Overall Accuracy
OA =

k
∑

i=1
Xi

N

The ratio of correctly classified category
pixels to total category pixels

Kappa coefficient
Kappa = OA−P

1−P

P = 1
N2

(
m
∑

i=1
Xi•

r
∑

i=1
Xi

) Used to evaluate the consistency of
classification results

Producer Accuracy PA = Xi
m
∑

i=1
Xi

The ratio of the number of correctly classified
pixels of a class to the total number of true

reference pixels of that class

User Accuracy UA = Xi
r
∑

i=1
Xi

The ratio of the number of correctly classified
pixels of a class to the total number of pixels

of that class

3. Results
3.1. Accuracy Assessment

Table 3 presents the comprehensive confusion matrix for the classification results in
2020. The OA of the land cover map reached 90.6%. The UA for aquatic vegetation and
water was 91.07% and 90.91%, respectively, while the UA for other land cover types was
89.29%. Notably, the OA for aquatic vegetation and other land cover types fell below
90%, although the highest PA for water reached 93.75%. When assessing the confusion
matrix from 1985 to 2020, the PA of the land cover maps consistently exceeded 87%. The
evaluation, conducted through confusion matrix calculations, indicated strong agreement
between the obtained maps and ground measurement points.

Table 3. Classification confusion matrix and precision analysis in 2020.

Class Aquatic Vegetation Water Other Total UA

Aquatic vegetation 51 2 3 56 91.07%
Water 3 30 0 33 90.91%
Other 3 0 25 28 89.29%
Total 57 32 28 117
PA 89.47% 93.75% 89.29%
OA 90.60% Kappa 85.13%

3.2. Analysis of the Spatial–Temporal Changes of the Overall Water and Aquatic Vegetation
in the Study Area

The overall lake changes are shown in Figure 5. Aquatic vegetation fluctuated greatly
during 1985–2001, showing an overall increasing trend, rising from 745 km2 to 851 km2.
Aquatic vegetation showed a decreasing trend from 2001 to 2003, reducing from 851 km2

to 596 km2. The change in aquatic vegetation remained relatively stable from 2004 to
2019, with a significant increase observed in 2020. The overall water surface of the CARB
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shows a shrinking trend. Water surface showed a slight increasing trend from 1985 to
1987, rising from 3575 km2 to 3775 km2, a slight decreasing trend from 1988 to 1989, from
3671 km2 to 3619 km2, and a small increasing trend from 1990. By 1997, water surface was
in a relatively stable state. Due to artificial intervention, water surface showed an overall
decreasing trend from 1998 to 2012, reducing from 3795 km2 to 2902 km2. To promote the
integrated protection and restoration of mountains, rivers, forests, fields, lakes, grasslands,
and deserts, a series of fundamental, pioneering, and long-term efforts has been undertaken.
Water surface showed a small decline from 2013 to 2018, gradually recovering after 2019.
From 1997 to 2011, other land use classes increased sharply from 349 km2 to 1135 km2.
With population growth and economic development, the demand for food, agricultural
products, and construction also increased, causing people to sacrifice part of the water
surface and aquatic vegetation to meet the needs of development. By 2013, it dropped
sharply to 612 km2. From 2014 to 2018, the area of other landincreased. However, by 2020
other land area reduced to 522.4 km2.
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The changes in the main lakes (Hulun Lake, Lianhuan Lake, Chagan Lake and Xiaox-
ingkai Lake) are shown in Figure 6. Aquatic vegetation showed a slight decreasing trend
from 1985 to 1987, from 486 km2 to 485 km2, and began to increase in 1988. In 1989, the
aquatic vegetation was relatively stable, with an area of 549 km2, and then it showed a
decreasing trend. In 1992, aquatic vegetation area was 332 km2, and during 1992–1996 it
showed a fluctuating trend. In 1996, the aquatic vegetation area was 315 km2, and this
increased to 477 km2 in 1997. From 1997 to 2006, aquatic vegetation fluctuated in a small
range. In 2006, the aquatic vegetation area was 340 km2, and during 2006–2020, the area
of aquatic vegetation was relatively stable. In 2020, the area of aquatic vegetation was
428 km2. Overall, the change trend of water surface and other land in these four typical
lakes is close to that in all the lakes as a whole.
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3.2.1. Temporal and Spatial Changes of Aquatic Vegetation in Hulun Lake

As depicted in Figure 7, aquatic vegetation in Hulun Lake is primarily concentrated
in the south, southwest, and northeast, typically growing at the lake’s edge. From 1985 to
1989, there was a continuous increase in aquatic vegetation, while the lake area remained
relatively stable. In 1990, the water area started to increase, whereas aquatic vegetation
began to decrease, indicating a decline in the water quality of the lake. The area of water
and aquatic vegetation was relatively stable from 1990 to 2001, steadily decreased from
2002 to 2010, remained stable from 2011 to 2013, and showed a steady increase from 2014 to
2020. The overall water changes in Hulun Lake were predominantly concentrated in the
eastern, northeastern, southern, and southeastern parts of the lake, while other locations
remained relatively stable. The most dramatic changes occurred in the northeast part of the
lake, where the lake area expanded significantly in 1990 and remained stable until 2001.
However, the water surface in the region experienced a dramatic shrinkage in 2005 and
complete drying between 2006 and 2019. Nevertheless, in 2020, water began to reappear
in this area, leading to a significant increase in aquatic vegetation. From 2002 to 2020, the
overall aquatic vegetation in Hulun Lake exhibited slight fluctuations but demonstrated an
overall increasing trend.

3.2.2. Temporal and Spatial Changes of Aquatic Vegetation in Lianhuan Lake

As depicted in Figure 8, aquatic vegetation around the lake is primarily concentrated
in the northern part, with a small amount distributed along the lake boundary. From 1985
to 1989, the water surface of the lake remained relatively stable. It exhibited an increasing
trend in 1990, gradually decreased from 1991 to 1995, and then increased again in 1996. The
area of the water surface initially decreased from 1996 to 2001 and then increased. However,
in 2002, the water surface significantly shrank. Subsequently, from 2003 to 2013, the water
surface increased steadily, followed by a period of decline from 2014 to 2018. Notably,
there was an upward trend from 2017 to 2020. The most significant changes occurred in
the northeastern part of the lake. From 1985 to 1989, the surface area of aquatic vegetation
increased slightly. From 1989 to 1996, it first decreased slightly and then increased. In
1997, the surface area of aquatic vegetation increased significantly. In 1998, there was a
slight increase, but in 1999, the surface area of aquatic vegetation began to decrease sharply.
It maintained a relatively stable state in 2001, steadily increased from 2002 to 2005, and
then gradually decreased from 2006 to 2013. From 2014 to 2020, the water vegetation area
exhibited a pattern of initially increasing and then decreasing. Generally speaking, the
aquatic vegetation area showed a decline from 1985 to 2020. Strengthening the protection
and restoration of aquatic vegetation in lakes is essential.
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3.2.3. Temporal and Spatial Changes of Aquatic Vegetation in Chagan Lake

As shown in Figure 9, aquatic vegetation in Chagan Lake is primarily concentrated in
the northwestern and northeastern regions. The water surface of Chagan Lake increased
significantly from 1985 to 1987 and decreased from 1987 to 1990. The lake surface area
increased from 1988 to 1993, started to decrease from 1994 to 1996, and experienced a sharp
increase in 1997–1998. From 1999 to 2002, the lake area steadily decreased, and from 2003
to 2020, it exhibited little fluctuation, remaining essentially stable. The primary reason for
the change in the overall water surface of Chagan Lake is the transformation occurring
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in the northwest part of the lake, while other areas remain relatively stable. From 1985
to 2020, the aquatic vegetation area of Chagan Lake exhibited significant fluctuations. It
decreased from 1985 to 1987, followed by a notable increase in 1988. The aquatic vegetation
area decreased from 1988 to 1992, increased from 1992 to 1994, and remained stable from
1994 to 1995. There was a significant decrease in the area of aquatic vegetation in 1996.
Subsequently, the area fluctuated greatly from 1996 to 2001 and showed a downward trend
from 2001 to 2008. However, the aquatic vegetation area increased in 2005 and continued
to rise from 2008 to 2020.
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3.2.4. Temporal and Spatial Changes of Aquatic Vegetation in Xiaoxingkai Lake

As shown in Figure 10, aquatic vegetation in Xiaoxingkai Lake is primarily concen-
trated in the eastern and southeastern parts, with a smaller amount distributed near the
lake boundary. According to the statistical chart depicting the water and aquatic vegetation
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area of Xiaoxingkai Lake from 1985 to 2020, it is evident that the surface of Xiaoxingkai
Lake exhibited an overall growth trend during this period. Specifically, from 1985 to 2002,
the surface experienced slight fluctuations but remained relatively stable. Subsequently,
from 2002 to 2020, the lake surface area showed a steady and gradual increase. In terms
of the aquatic vegetation area, significant fluctuations were observed in Xiaoxingkai Lake
from 1985 to 2020. Initially, there was a decrease in the aquatic vegetation area from 1985
to 1987, followed by a substantial increase from 1988 to 1990. The aquatic vegetation area
experienced a continuous decrease from 1990 to 1992. However, from 1992 to 1997, the area
exhibited a pattern of first increasing, then decreasing, and then increasing again. Finally,
from 1997 to 2020, there was a consistent trend of decreasing aquatic vegetation area.
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4. Discussion
4.1. The Advantages of the Model in Large-Scale Extraction of Aquatic Vegetation

In this study, a MSIC-Otsu and CNN-RF classifier method were developed to accu-
rately extract aquatic vegetation. The maximum water surface boundary of the lake and
the maximum coverage area of aquatic vegetation were determined by the time series
Landsat images on the GEE platform and MSIC-Otsu. The CNN-RF classifier was used to
extract the distribution of aquatic vegetation, water, and other land covers. The successful
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implementation of this study can be mainly attributed to three factors: the availability
of a large number of free Landsat images, the powerful parallel computing capability of
the GEE platform, and the robust MSIC-Otsu and CNN-RF methods. GEE can rapidly
access and process a large volume of Landsat imagery without the need for additional
masking or extensive pre-processing and post-processing steps. In CNN, the classifier
consists of a fully connected layer, and the final decision criterion is based on calculation
accumulation and activation. The advantage of CNN lies in its ability to directly extract
more representative and abstract features from the original data [42–44]. This includes
extracting texture information of different types of land use in remote sensing images,
shape features such as boundary shape, geometric shape, and contour shape, spectral
features encompassing spectral reflectance, spectral intensity, and spectral features, context
features referring to the spatial relationship of surrounding pixels to infer the features of
the target, and multi-scale features obtained through multi-layer convolution and pooling
operations to capture information at different scales in remote sensing images. Li et al.
used the open source dataset DeepSat to build and test the CNN model. The results
proved that the CNN model was effective in land use classification and CNN did have
the learning ability to extract the most critical and effective information from the training
dataset [45]. Ståhl et al. used deep CNN to identify wetland areas in historical maps using
deep convolutional neural networks. The presented deep CNN performs well [46]. As a
more complex and reliable classifier, the RF classifier has been proven to achieve superior
classification performance through strategies such as boosting and bagging [47,48]. Aiming
at the problem of image classification and recognition, Xi proposed a hybrid model based
on CNN, and input the features extracted by CNN into RF for classification. The results
show that the classification accuracy of the hybrid model and the generalization ability is
also improved [49]. Therefore, by leveraging the GEE platform and combining the strengths
of both CNN and RF, we can fully capitalize on their advantages. In addition, MSIC-Otsu
is a fully automatic met hod that can effectively extract the maximum water boundary of
the lake to a certain extent, identify the potential area of aquatic vegetation distribution,
thereby reducing the likelihood of missed measurements. Moreover, in the mapping pro-
cess, there is no need for human intervention, training samples, or auxiliary information.
Practice has proven that this method can efficiently and directly extract aquatic vegetation,
overcoming the limitations of traditional methods such as fuzzy water boundaries, spectral
mixing, and classification accuracy. In addition, during the vegetation extraction process,
NDVI was less affected by turbid water signals, offering certain advantages in extracting
submerged vegetation information. This improvement contributes to the accuracy and
robustness of aquatic vegetation extraction. Therefore, the fusion of CNN and RF can
effectively address the challenge of extracting aquatic vegetation, resulting in more reliable
and accurate classification results.

In order to verify the effectiveness of CNN-RF, we compared it with the results
extracted by Otsu, CNN, and RF. The classification was realized on the GEE platform,
Otsu used an adaptive threshold to extract the results, and the decision tree value of RF
was set to 100. We used PyTorch as a deep learning framework, CNN-RF and CNN had
trained 200 epochs with a learning rate of 0.007, and the optimizer was sgd. The weight
attenuation value was 0.0004, with a total of 1100 training samples and 100 test samples.
The classification accuracy is shown in Table 4.

It is worth mentioning that CNN-RF outperforms other methods in classification
accuracy. The Kappa coefficient of CNN-RF is 0.85, and OA is 0.91, which is higher than
other classification methods. Then, taking Chagan Lake in 2020 as an example, we compare
the enlarged images of the extraction results of different classification methods. As shown
in Figure 11, CNN-RF is good at distinguishing aquatic vegetation/inland vegetation near
water areas, providing clearer land cover boundaries and more concentrated distribution
results. In contrast, RF needs further improvement in accurately separating aquatic vegeta-
tion from inland vegetation. The extraction result of CNN is inferior to that of CNN-RF,
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and the accuracy of OA in extracting water is higher, but there is a lot of misclassification
in the process of extracting aquatic vegetation and inland vegetation.

Table 4. Accuracy of different classification methods.

Land Use Accuracy Otsu RF CNN CNN-RF

Aquatic vegetation UA 0.75 0.88 0.89 0.91
PA 0.82 0.89 0.91 0.89

Water
UA 0.91 0.91 0.91 0.91
PA 0.94 0.91 0.91 0.94

Other
UA 0.75 0.86 0.89 0.90
PA 0.62 0.83 0.86 0.90

Kappa 0.68 0.81 0.84 0.85
OA 0.80 0.88 0.90 0.91
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4.2. Uncertainties in Aquatic Vegetation Mapping

In this study, we monitored the areal extents of aquatic vegetation over the past
36 years. However, due to the limited spatial resolution of Landsat series satellite data,
there are challenges in identifying patches less than 30 m. Additionally, Landsat satellites
have a relatively extended revisit period of 16 days, which may not capture short-term
fluctuations in aquatic vegetation, especially during seasons characterized by rapid growth
or decline. Moreover, we cannot guarantee that each pixel contains enough cloud-free
observations to acquire key information about land cover after cloud masking. In situations
where both algae blooms and aquatic vegetation are present in water, especially if the
density of the algae bloom is low and the vegetation signal is weak, the NDVI value may
become negative and omit the vegetation signal during the extraction process, potentially
leading to misidentification with water. For example, from August to September 2017,
there was a weak algal bloom in the middle and lower part of Hulun Lake, and the weak
algal bloom did not produce obvious color change or texture characteristics, but this area
was divided into water areas in this paper. Despite these uncertainties, the extraction of
aquatic vegetation relies on consistent data sources and methods, encompassing long-term
(36 years) multi-temporal information on aquatic vegetation and dynamics in the CARB.
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5. Conclusions

In this study, we proposed a high-precision and robust classification method for
extracting aquatic vegetation The CNN-RF classification method used in this paper has
higher accuracy and can quickly process a large amount of data at one time, achieving
efficient classification and greater robustness compared to CNN and RF alone. The basic
idea involves employing an image composite to construct spatially and spectrally uniform
images. We composed the maximum mNDWI index and extracted the water surface
area using Otsu binary segmentation. Only lakes with an area larger than 20 km2 were
considered in this paper. The mask extracts the maximum NDVI composite image to
identify potential aquatic vegetation areas. The resulting maximum NDVI composite image
is then inputted into the CNN model to extract features. Subsequently, these features
are fed into the RF classifier for accurate classification, enabling the precise mapping of
the spatial and temporal distribution of aquatic vegetation from 1985 to 2020. According
to the accuracy assessment, all the maps in the dataset exhibit high producer and user
accuracy. Water surface and aquatic vegetation areas larger than 20 km2 in the CARB
show an overall decreasing trend from 1985 to 2020, reducing from 3575 km2 and 745 km2

to 3412 km2 and 687 km2, respectively. Among them, the water area of Hulun Lake
exhibits a decreasing trend, while the water areas of Chagan Lake and Xiaoxingkai Lake
are relatively stable. The water area of Lianhuan Lake exhibits an initial decrease and then
increases. In terms of aquatic vegetation, the area in Lianhuan Lake remains relatively
stable. However, in Hulun Lake, the aquatic vegetation area shows an initial increase, then
decreases significantly, and then fluctuates and rises. Chagan Lake’s aquatic vegetation area
fluctuates and then rises slowly, and Xiaoxingkai Lake’s aquatic vegetation area fluctuates
and then continues to decline. The proposed method for aquatic vegetation information
extraction in this paper not only extends the spatial portability of the model but also
provides a powerful method and theoretical support for future extraction and monitoring
of aquatic vegetation. The dataset of aquatic vegetation is invaluable for creating historical
background maps of aquatic vegetation and evaluating the habitats of aquatic organisms,
including their applicability to various species. In this study, an intriguing question
emerges: can we further optimize the RF model to enhance interpretability when extracting
aquatic vegetation from lakes using the CNN-RF approach? Additionally, future work
will involve the development of a Landsat calibration model using high-resolution images.
This calibration model aims to refine Landsat satellite-derived aquatic vegetation images,
enabling a long-term series of fine classifications for various aquatic vegetation groups.
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