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Abstract: The biological conservation measures factor (B) in the Chinese Soil loss Equation (CSLE)
model is one of the main components in evaluating soil erosion, and the accurate calculation of the
B-factor at the regional scale is fundamental in predicting regional soil erosion and dynamic changes.
In this study, we developed an optimal computational procedure for estimating and mapping the
B-factor in the Google Earth Engine (GEE) cloud computing environment using multiple data sources
through data suitability assessment and image fusion. Taking the Yanhe River Basin in the Loess
Plateau of China as an example, we evaluated the availability of daily precipitation data (CHIRPS,
ERA5, and PERSIANN-CDR data) against the data at national meteorological stations. We estimated
the B-factor from Sentinel-2 data and proposed a new method, namely the trend migration method,
to patch the missing values in Sentinel-2 data using three other remote sensing data (MOD09GA,
Landsat 7, and Landsat 8). We then calculated and mapped the B-factor in the Yanhe River Basin
based on rainfall erosivity, vegetation coverage, and land use types. The results show that the ERA5
precipitation dataset outperforms the CHIRPS and PERSIANN-CDR data in estimating rainfall and
rainfall erosivity, and it can be utilized as an alternative data source for meteorological stations
in soil erosion modeling. Compared to the harmonic analysis of time series (HANTS), the trend
migration method proposed in this study is more suitable for patching the missing parts of Sentinel-2
data. The restored high-resolution Sentinel-2 data fit nicely with the 10 m resolution land use data,
enhancing the B-factor calculation accuracy at local and region scales. The B-factor computation
procedure developed in this study is applicable to various river basin and regional scales for soil
erosion monitoring.

Keywords: B-factor; CSLE; Google Earth Engine; soil erosion; data patching

1. Introduction

Soil erosion is one of the most serious environmental issues in many parts of the world;
it not only causes soil degradation but also poses threats to agricultural production and
food security [1–3]. Dynamic monitoring of soil erosion based on remote sensing data and
GIS technology can provide important data support for assessing soil erosion conditions
and developing soil and water conservation measures [4]. So far, the most widely applied
and accepted empirical models are the Universal Soil Loss Equation (USLE) and its revised
version (RUSLE), which are used to predict soil erosion rates at regional and global scales,
including applications in China [5,6]. Based on the USLE, the Chinese Soil Loss Equation
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(CSLE) was developed with the consideration of soil and water conservation measures,
which is simple in structure and has stronger applicability in China [7,8]. The USLE/RUSLE
uses two dimensionless factors (C and P) to represent the effects of vegetation cover
(C-factor) and erosion control management (P-factor) [9–11]. The CSLE model better
describes these anthropogenic components by using three factors (B, E, and T, or BET) to
represent the effects of biological control (B), engineering control (E) and tillage practices
(T) on soil erosion. Among them, the B-factor is the key component representing the effect
of vegetation cover (or land use) and biological conservation measures on soil erosion.

The B-factor refers to the ratio of the amount of soil loss on slopes covered with
vegetation to that on fallow land under the same conditions (including rainfall, soil, slope,
slope length, engineering measures, and tillage measures) [7,12]. The B-factor is influenced
by erosive rainfall during the growing season and the vegetation cover. Seasonal changes
in vegetation, vertical vegetation structure, and land cover all influence the value of the
B-factor to varying degrees, and obtaining the structured and time-series vegetation data is
difficult, making the accurate estimation of the B-factor a challenging task.

Same as the cover and management factor (C) in RUSLE, rainfall erosivity is used as a
weighting factor to subdivide the B-factor into a certain period (normally half-monthly).
Rainfall data are fundamental for B-factor computing, as rainfall significantly affects the
dynamic of the B-factor because rainfall varies in time and space, causing temporal insta-
bility and uneven spatial distribution [13,14]. Rainfall data are obtainable from ground
meteorological observation stations, but the spatial distribution of meteorological stations
is often uneven and sparse in remote areas, resulting in a substantial number of missing
values [15,16]. Grid-based high temporal and spatial resolution large-scale rainfall products
have been developed and employed for soil erosion model computation in recent years.
However, the usefulness of multiple grid rainfall products in soil erosion modeling remains
unknown; consequently, determining the quality and applicability of different rainfall
datasets in soil erosion modeling is crucial.

As an important indicator of surface vegetation conditions and regional ecosystems,
fractional vegetation cover (FVC) is important in estimating the B-factor [17]. Many studies
have been undertaken over the last few decades, monitoring and assessing FVC using remote
sensing satellites and low-altitude unmanned aerial vehicle (UAV) technologies [18,19]. The
majority of remote sensing satellite data are derived from low-resolution satellite sensors such
as MODIS, which are typically used for large-scale vegetation cover estimation and have
poor accuracy. Although low-altitude UAVs have improved data accuracy to some extent,
their coverage is limited and cannot meet the requirements for large-scale vegetation cover
estimation. For B-factor estimation and monitoring, it is often necessary to integrate remote
sensing imaging at various scales to improve the resolution, but it remains a research challenge
due to issues such as data availability, compatibility, registration, calibration, and resolution,
as well as the trade-offs between spatial, spectral, and temporal information.

The Google Earth Engine (GEE) is a big data platform that aggregates nearly 40 years
of huge global remote sensing imagery data, and it has received significant attention
from academics recently [20]. The fundamental advantage of the GEE is its remarkable
computational power, which enables it to process and analyze data without downloading it,
considerably enhancing the efficiency of data processing and analysis. It offers a practical
method for conducting extensive regional research, therefore providing a reliable way for
the dynamic monitoring of regional B-factors [21].

In this study, we chose the Yanhe River Basin as the study area as it represents the
typical vegetation types and landforms of China’s Loess Plateau, one of the most severely
eroded areas in the world. We assessed the availability and suitability of three daily rainfall
datasets in estimating rainfall erosivity in the GEE cloud platform. We estimated the NDVI
and FVC from Sentinel-2 and the missing values were filled using other remote sensing
data. With these high-precision estimation of regional rainfall and vegetation cover, we
proposed and implemented a method for evaluating and mapping the B-factor in the
GEE cloud computing environment, in conjunction with land use types.
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2. The Study Area

The study area is located in the Yanhe River Basin, in the northern part of Shaanxi
Province, with geographical coordinates ranging from 36◦23′ to 37◦17′N and 108◦45′ to
110◦28′E. This basin is a primary tributary of the middle reaches of the Yellow River,
spanning from Huokou Town to Longmen District (Figure 1). The Yanhe River has a
total length of 286.9 km, covering a watershed area of 7687 km2. This basin is within
the continental semi-arid monsoon climate zone and influenced by seasonal monsoons
throughout the year. The annual average temperature is 8.8 ◦C, with an average annual
rainfall of 520 mm, primarily concentrated from June to September, accounting for over 70%
of the total annual amount. The climate and temperature in the basin vary dramatically
from southeast to northwest. The topography is complex, characterized by numerous
gullies and ravines, representing a typical Loess hilly and gully region on the Loess Plateau.
Vegetation distribution in the area exhibits distinct zonality [22]. The vegetation types
change from forested areas to forest–grassland areas and then to typical grassland areas
from the southeast to the northwest.
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Figure 1. Geographical location of the Yanhe River Basin.

3. Materials and Methods
3.1. Data Sources

The rainfall remote sensing datasets (CHIRPS, ERA5, and PERSIANN-CDR), land use
data (WorldCover 10 m, 2020), and surface reflectance remote sensing data (MOD09GA,
Landsat 7, Landsat 8, and Sentinel-2) were sourced from the GEE cloud platform. The
ground station data were obtained from China’s national-level ground meteorological
station basic meteorological element daily value dataset (V3.0). The vector boundary data
for the Yanhe River Basin were acquired from the Earth System Science Data Center of the
Loess Plateau Division (https://www.loess.geodata.cn (accessed on 24 September 2023)).

3.1.1. Rainfall Data

The rainfall datasets used in this study included CHIRPS, ERA5, and PERSIANN-CDR,
all of which are available on the GEE platform. CHIRPS is a global grid rainfall dataset with
a high resolution that combines 0.05◦ resolution satellite imagery with in situ site data to
create a gridded rainfall time series that records daily rainfall data from 1981 to the present.
PERSIANN-CDR is the precipitation estimation from remotely sensed information using

https://www.loess.geodata.cn
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artificial neural networks, which is developed using the PERSIANN algorithm on GridSat-
B1 infrared satellite data, and provides daily rainfall estimates at a spatial resolution of
0.25◦ from 1983 to the near present [23]. The ERA5 data are the fifth generation of climate
reanalysis datasets produced by the European Centre for Medium-Range Weather Forecasts
(ECMWF), and they provide multi-parameter hourly data on the status of the atmosphere,
land surface, and oceans. The data accessibility of the three rainfall datasets listed above
was evaluated using daily values of basic meteorological elements (V3.0) from national
surface weather stations of China.

3.1.2. Land Use Data

The land use data utilized in this study were the ESA WorldCover v100, a product of
the European Space Agency (ESA) based on Sentinel-1 and Sentinel-2 imaging data. This
global land use cover product is part of ESA’s Fifth Earth Observation Envelope Programme
(EOEP-5), with a resolution of 10 m. WorldCover products provide 11 land cover categories,
and the data have been independently validated to obtain an overall accuracy of 75%
worldwide. The land use types in the Yanhe River Basin include forestland, shrubland,
grassland, cultivated land, building land, water body, wetland, and unused land (Figure 2),
and the proportion of each land use type is shown in Table 1.
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Figure 2. Land use types in Yanhe River Basin.

Table 1. The area and proportions of different land use types in Yanhe River Basin.

Land Use Types Area (km2) Proportions

Forestland 1151.02 14.98%
Shrubland 0.0166 0.00%
Grassland 5358.8 69.76%

Cultivated land 528.086 6.87%
Building land 101.481 1.32%
Unused land 535.108 6.97%
Water body 6.9805 0.09%

Wetland 0.0569 0.00%



Remote Sens. 2024, 16, 847 5 of 17

3.1.3. Remote Sensing Data

The surface reflectance remote sensing data products used in this study included
MOD09GA, Landsat 7, Landsat 8, and Sentinel-2 (Table 2). MOD09GA is a surface spectral
reflectance product obtained by the Terra Moderate Resolution Imaging Spectroradiometer
(MODIS), which provides Bands 1–7, including 500 m surface reflectance values and 1 km
observation and geolocation statistics. Landsat 7 ETM+ (the enhanced thematic Mapper)
data consist of eight bands, bands 1–5 and 7 have a spatial resolution of 30 m, band 6 has
a spatial resolution of 60 m, and band 8 has a spatial resolution of 15 m. The Landsat 8
Operational Land Imager (OLI) data product consists of 9 bands with a spatial resolution
of 30 m, including a panchromatic band of 15 m. Sentinel-2 was launched on 7 March 2017
by the European Space Agency and it provides 13 operating bands ranging from visible to
short-wave infrared wavelengths.

Table 2. Summary of the remote sensing products used in this study.

Datasets Name Period (Day) Resolution (m) Period

MODIS MOD09GA 1 500 2000–2023
Landsat 7 LE07/C02/T1_L2 8 30 1999–2023
Landsat 8 LC08/C02/T1_L2 8 30 2013–2023
Sentinel 2 S2_SR HARMONIZED 5 10 2017–2023

3.2. Technological Procedure

The B-factor of the Yan River Basin was calculated in the GEE cloud computing
environment using Python coding. The specific processing steps were as follows:

(1) The applicability of three gridded daily precipitation datasets CHIRPS, ERA5, and
PERSIANN-CDR in the GEE for the Yan River Basin was assessed against the data
from national meteorological stations. The dataset that demonstrated the highest
suitability was chosen to calculate rainfall erosivity and its proportion.

(2) MOD09GA, Sentinel-2, Landsat 8, and Landsat imagery data were obtained and
preprocessed, and the missing areas in the Sentinel-2 data were then identified.

(3) The normalized difference vegetation index (NDVI) was computed separately for
each of these four datasets. The missing NDVI data in Sentinel-2 were patched using
NDVI calculated from MOD09GA, Landsat 8, and Landsat 7.

(4) The patched NDVI data were analyzed using the pixel binary method to determine
the average vegetation coverage (FVC) for 24 half-months over three years.

(5) Based on the average FVC of the 24 half-months, the B-factor was assessed by con-
sidering land use types and the proportion of rainfall erosivity factors during this
period (Figure 3).

3.3. Image Processing

MOD09GA, Sentinel-2, Landsat 8, and Landsat 7 data from 2019–2021 were used
to calculate the NDVI in this study. The total number of effective images for the four
products in the Yanhe River Basin was 1096, 749, 133, and 155, respectively, and the missing
data rates were 0%, 5%, 20%, and 27%, with a screening condition of less than 20% cloud
cover (Table 3). Since Sentinel-2 had the highest coverage and resolution in the entire
research region, it was chosen to compute the B-factor in the Yanhe River basin. Due to
the missing data in the 7th and 19th half- months, Sentinel-2 images were patched before
NDVI computing. The NDVI was calculated as follows:

NDVI =
NIR − RED
NIR + RED

(1)

where NIR represents the near-infrared band and RED represents the red band of the
respective remote sensing images.
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Table 3. The missing rate of the four remote sensing datasets in 24 half-months.

Half-Month

MOD09GA Sentinel-2 Landsat 8 Landsat 7

Number of
Available

Images

Missing
Rate

Number of
Available

Images

Missing
Rate

Number of
Available

Images

Missing
Rate

Number of
Available

Images

Missing
Rate

1 45 0% 27 0% 6 10% 6 55%
2 48 0% 35 0% 5 0% 8 6%
3 45 0% 31 0% 5 41% 9 3%
4 40 0% 18 0% 6 0% 3 46%
5 45 0% 21 0% 7 9% 9 6%
6 48 0% 32 0% 8 0% 10 17%
7 45 0% 14 56% 3 1% 2 92%
8 45 0% 33 0% 8 0% 9 11%
9 45 0% 35 0% 8 0% 9 10%

10 48 0% 43 0% 6 0% 8 2%
11 45 0% 34 0% 8 45% 3 40%
12 45 0% 21 0% 2 81% 1 55%
13 45 0% 33 0% 6 16% 9 0%
14 48 0% 30 0% 2 30% 2 91%
15 45 0% 35 0% 5 6% 5 35%
16 48 0% 33 0% 6 0% 1 90%
17 45 0% 38 0% 6 63% 9 2%
18 45 0% 31 0% 6 3% 7 9%
19 45 0% 9 56% 0 100% 2 48%
20 48 0% 35 0% 2 1% 8 25%
21 45 0% 51 0% 7 62% 9 2%
22 45 0% 27 0% 5 1% 9 1%
23 45 0% 45 0% 6 0% 9 8%
24 48 0% 38 0% 10 0% 8 7%

Total 1096 0% 749 5% 133 20% 155 27%
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In terms of spatial distribution and time series, Sentinel-2 data were highly consistent
with MOD09GA, Landsat 8, and Landsat 7 data. Therefore, MOD09GA, Landsat 8, and
Landsat 7 remote sensing images were used to patch the missing data in the Sentinel-2
imagery. Figure 4 demonstrates that the average NDVI variance among the four groups of
images had a highly consistent trend throughout the 24 half-monthly time series. It was
found that the correlation of each two groups of data in the time series was above 0.96.
Furthermore, the NDVI values for the four datasets from 2019 to 2021 were synthesized
by the maximum synthesis method, and the correlation of the four datasets was obtained
by using the Pearsons correlation function. The heatmap of Pearson correlation coefficient
matrix shows that the spatial relationships between Sentinel-2 imagery, Landsat 7, Landsat 8,
and MOD09GA data were fitted, with all correlation coefficients exceeding 0.5 (Figure 5).
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There are several methods available for data patching, which can be broadly cate-
gorized into two types. The first type is spatial interpolation, which is useful for filling
small-scale missing data, but is ineffective for large-scale data gaps. The second type is
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linear/non-linear interpolation in the time series. Linear interpolation methods, such as
the best index slope extraction (BISE) method [19], use a sliding window approach to
identify and replace missing values in a series. However, determining the optimal window
size is challenging, and it has limited applicability in capturing the non-linear patterns of
real-world imagery. Non-linear interpolation methods, such as the Savitzky–Golay (S-G)
filtering method, asymmetric Gaussian (AG) model filtering method [24], and harmonic
analysis of time series (HANTS) method [25], have more complex calculations and often
suffer from overfitting, resulting in data value distortion. Based on these concerns, this
study proposed a trend migration method, a new approach for repairing missing data
based on the rate of change in remote sensing imagery over a time and the surrounding
raster values in the time series of the missing values. The HANTS approach, which is
commonly used for time series analysis, was also utilized for comparative analysis. The
formula of the trend migration is as follows:

2Si = Si−1
Di

Di−1
+ Si+1

Di

Di+1
(2)

where Si−1 is the value of the Sentinel-2 data in the ith half-month, Di represents the
corresponding values of an alternative dataset (i.e., MOD09GA, Landsat 8, or Landsat 7)
that is in high temporal consistency with Sentinel-2 data in the time series for the same
half-month.

The Sentinel-2 images after data patching were used to calculate the NDVI for each
half-month period from 2019 to 2021, resulting in a total of 24 half-months per year. Based
on NDVI data, the pixel-based binary model was applied to compute the vegetation cover,
and the average vegetation cover for the 24 half-month periods over a period of three years
was then derived. The formula for calculating FVC is as follows:

FVC =
NDVI − NDVImin

NDVImax − NDVImin
(3)

where FVC is vegetation coverage (for grassland, shrubland, and forestland). NDVI is
the pixel value of the normalized difference vegetation index; NDVImin and NDVImax are
NDVI values of the pure vegetation cover pixel and the bare soil cover pixel, respectively.

3.4. Calculation of the B-Factor

The B-factor was calculated by combining vegetation cover (FVC) data with the 10 m
resolution land use types and the rainfall erosion factor proportions over one year in 24
half-monthly intervals [26]. Specific formulas were used to calculate the B-factor values
for shrublands, forestland, and grasslands, while the remaining land use classifications
were allocated B-factor values directly based on land use types (Table 4). The annual
average value of the B-factor was estimated based on the sum of soil loss ratio (SLRi) for
each half-month (1–24) in a year and multiplied by the rainfall erosivity ratio of the same
half-month as a weighting factor [27]. The formula is as follows:

B =
24

∑
i=0

SLRi × WRi (4)

where WRi is the ratio of rainfall erosivity in the ith half-month to annual erosivity, with a
value range of 0–1; SLRi is the soil loss ratio of forestland, shrubland, and grassland in the
ith half-month, dimensionless, with a value range of 0–1.

For forestland, the SLRi is calculated as:

SLRi= 0.44468 × e(−3.20096×GD) − 0.04099 × eFVC−FVC×GD+0.025 (5)
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Table 4. The B-factor value based on land use classes.

Land Use (Class I) Land Use (Class II) B-Factor Value Description

Cultivated land

Paddy field 1 Soil and water conservation benefits
reflected by tillage measure factor

Irrigated land 1 Soil and water conservation benefits
reflected by tillage measure factor

Dry land 1 Soil and water conservation benefits
reflected by tillage measure factor

Residential, industrial, and
mining lands

Urban residential lands 0.01 Equivalent to 80% of vegetation cover
Rural residential lands 0.025 Equivalent to 60% of vegetation cover
Independent industrial and
mining lands 1 Equivalent to no vegetation cover

Commercial service and
public lands 0.01 Equivalent to 80% of vegetation cover

Special land use 0.1

Land for transportation 0.01 Equivalent to 80% of vegetation cover

Land for water area and water
conservancy facilities 0 Forced to 0, so that the amount of

erosion is equal to 0

Other land

Saline alkali soil 0 -
Sandy land 0 -
Swamp land 0 -
Bare rock 0 -
Bare soil 1 -
Glaciers and permanent
snow cover 0 -

For shrubland, the SLRi is calculated as:

SLRi =
1

1.17647 + 0.86242 × 1.05905100×FVC (6)

For grassland, the SLRi is calculated as:

SLRi =
1

1.25 + 0.78845 × 1.05968100×FVC (7)

where GD is the understory coverage of the tree forest, with a value range of 0–1, including
the understory coverage of all vegetation (shrubs, herbs, and litter) except for the tree
canopy layer, based on field investigation or expert experience. FVC is vegetation coverage
calculated as in Formula (3).

4. Results
4.1. Applicability of Different Rainfall Datasets in the Yanhe River Basin

Multiple rainfall indices for the Yanhe River Basin from 1986 to 2015 were generated
using three different daily rainfall datasets in the GEE platform (Table 5). The results
reveal that the multi-year mean erosive rainfall, daily erosive rainfall, and rainfall erosivity
estimated from ERA5 dataset are the closest to those from the meteorological stations. The
average annual erosive rainfall measured by meteorological stations was 283 mm, while the
ERA5, GHIRPS, and PERSIANN-CDR datasets measured 288 mm, 332 mm, and 128 mm,
respectively. The absolute errors between the three datasets and the meteorological stations
were 5.17 mm, 49.24 mm, and −154.82 mm, respectively. The average annual rainfall
erosivity calculated by meteorological station data was 1327 MJ mm hm−2 h−1 yr−1,
whereas the mean annual rainfall erosivity values of the ERA5, GHIRPS, and PERSIANN-
CDR datasets were 1327, 1876, and 502 MJ mm hm−2 h−1 yr−1, respectively. The differences
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between them and meteorological stations were −105.23, 549.1, and −825.18 MJ mm hm−2

h−1 yr−1, respectively.

Table 5. Comparisons of rainfall parameters from the national meteorological stations and the three
daily rainfall datasets.

Rainfall Parameters Meteorological Station ERA5 CHIRPS PERSIANN-CDR

Annual average rainfall (mm) 467 570 481 455
Average annual erosive rainfall (mm) 283 288 332 128

Multi-year average erosive rainfall
days (mm day−1) 22 22 28 20

Multi-year average number of days of
erosive rainfall (day) 12 13 12 6

Multi-year average rainfall erosivity
(MJ·mm hm−2 h−1 yr−1) 1327 1222 1876 502

Figure 6 depicts the fluctuation trend of annual average rainfall erosivity estimated
from four independent rainfall datasets. The annual average rainfall erosivity of all four
datasets peak in 2013, with the ERA5 dataset having the closest peak value and variation
trend to the meteorological station. The WR change trend of the three datasets and the
meteorological station data is substantially the same, as shown in Figure 7. The variation
curves of WR by meteorological station data and the ERA5 dataset create a bimodal
distribution, with WR reaching peaks of 16.2% and 16.0%, respectively, in the 13th and
16th half-months. The WR curves from the CHIRPS and PERSIANN-CDR datasets have
a unipeak distribution and peak at 18.9% and 18.1%, both in the 15th half-months. The
WR trend in the ERA5 dataset is the most similar to meteorological station data.
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4.2. The NDVI Calculated by Patched Sentinel-2 Images

The NDVI of the Yanhe River Basin was calculated for 24 half-months using the raw
Sentinel-2 images, the Sentinel-2 images with 20% filtered cloud cover, the Sentinel-2 images
patched by the HANTS method, and the Sentinel-2 images patched by the trend migration
method (Figure 8). Except for the missing data in the 7th and 19th half-month periods, the
NDVI variation curves generated from the patched images essentially coincide with the
variation curves of the raw images and the images with 20% filtered cloud cover, maximizing
the retention of the original data. The NDVI values calculated from the Sentinel-2 images
patched by the HANTS method and raw images might overfit and distort images, particularly
in the 4th to 8th half-month periods, resulting in errors in time-series-based remote sensing
studies, such as vegetation phenology research. Compared to the HANTS method, the trend
migration method proposed in this study is more consistent with the original data, and more
reliable in patching the missing data in the Sentinel-2 images.
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The trend migration method was employed to patch the missing NDVI data from
Sentinel-2 images in the Yanhe River Basin in the 7th and 19th half-months. Taking the 7th
half-month as an example, when using raw Sentinel-2 images, there were visible cloud cover
and localized anomalies in the NDVI images (Figure 9a). When using the Sentinel-2 images
with 20% filtered cloud cover, the missing rate of NDVI images reached 56% (Figure 9b). By
using the trend migration method, the missing parts were patched by MOD09GA, Landsat 7,
and Landsat 8 images in the 7th half-month, the calculated NDVI image was more coordinated
overall, and the average NDVI values in the Yanhe River Basin changed from 0.22 before
image patching to 0.23 after image patching (Figure 9c,d). Similarly, the average NDVI values
changed from 0.51 to 0.53 in the 19th half-month after image patching (Figure 9e,f).

Figure 10 displays the results of the NDVI calculated using Sentinel-2 images, MOD09GA
images, Landsat 7 images, and Landsat 8 images. It reveals that the NDVI calculated from the
patched Sentinel-2 data not only exhibited higher data integrity, but also possessed the finest
resolution (10 m) showing more details in vegetation patterns and distribution.
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Figure 9. NDVI generated using (a) the raw Sentinel-2 images in the 7th half-month, (b) the Sentinel-2
images with clouds filtered in the 7th half-month, (c) the missing parts patched by MOD09GA,
Landsat 7, and Landsat 8 images in the 7th half-month, (d) the Sentinel-2 images after patching in the
7th half-month, (e) the raw Sentinel-2 images in the 19th half-month, and (f) the Sentinel-2 images
after patching in the 19th half-month.

4.3. Assessment of Vegetation Cover and Biological Measures’ B-Factor

The patched Sentinel-2 images were used to produce the FVC at a spatial resolution
of 10 m for all 24 half-monthly periods of a year (Figure 11). The average value of FVC
increases first and then declines with time, according to the shifting trend. The average FVC
was less than 0.1 before the 7th half-month (early spring), while it increased dramatically
after the 8th half-month (spring), and peaked at 0.8 in the 16th half-month (early August).
Following that, the mean value of FVC progressively decreased, eventually going below
0.1 at the 24th half-month (December).
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Figure 10. Details of NDVI calculated in the Yanhe River Basin. (a) The selected rectangular region,
(b) the Google map of the selected region, (c) NDVI calculated from Sentinel-2, (d) NDVI calculated
from MOD09GA, (e) NDVI calculated from Landsat 7, and (f) NDVI calculated from MODIS. The
colors in the (c–f) figures represent the size of NDVI value, and the areas with green color have larger
NDVI value.

The SLR was calculated based on FVC, and WR was calculated based on ERA5 data
over a 24 half-monthly period on the GEE platform. We then calculated the B-factor of
the Yanhe River Basin based on Equation (4), combined with land use types. Figure 12
depicts the spatial distribution of the B-factor in the Yanhe River Basin in 2020. Except for
the agricultural land with a value of 1, high-value areas of the B-factor in the basin were
concentrated along the river system due to human activities and the proximity of urban
centers to water bodies, resulting in relatively low vegetation covering. Furthermore, in
addition to places near water bodies, some high-value B-factor areas could be found in
the northwest of the Yanhe River Basin, which was characterized by low-coverage grass-
land with weak development and sparse vegetation coverage, resulting in relatively high
B-factor values. Low-value B-factor habitats, on the other hand, were mostly found in the
forests and grasslands with high vegetation cover.
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5. Discussion
5.1. Applicability of Different Rainfall Datasets in the Yanhe River Basin

When comparing the performance of the three datasets, PERSIANN-CDR exceeded
the other two in average annual rainfall, but fell shorts in terms of the other parameters. The
CHIRPS dataset overestimated values for average annual erosive rainfall, average erosive
rainfall days, and average rainfall erosion force calculation, and had poor consistency
with data from meteorological stations in terms of WR. Although the resolution of the
ERA5 dataset was not the highest, it demonstrated extremely high consistency with the
meteorological station data in terms of average erosive rainfall, average erosive rainfall days,
average erosive rainfall duration, average rainfall erosion force, and WR trends. Therefore,
the ERA5 dataset was chosen and utilized as the alternative to meteorological station data
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to calculate and map the B-factor in the CSLE model. In addition, ERA5 datasets are under
continuous development with improvements in accuracy and spatiotemporal resolutions.

Many applications require rainfall erosivity to be estimated on an event basis or in
near real time, such as post-fire erosion monitoring and sediment delivery at storm events.
Weather radar rainfall data have high spatial (1 km) and temporal (10 min) resolutions with
great potential for these near real time applications [12]. Our further study will explore
the weather radar data and the application in event-based rainfall erosivity and sediment
delivery estimation.

5.2. The NDVI and B-Factor Calculated Using Patched Sentinel-2 Images

Compared with the NDVI derived from MOD09GA images, Landsat 7 images, and
Landsat 8 images, the NDVI derived from Sentinel-2 images not only had the highest spatial
resolution but also the highest consistency. This demonstrates that Sentinel-2 images can
be successfully used to estimate the NDVI and, subsequently, the B-factor for vegetation
monitoring and erosion modeling.

The trend migration method was employed to patch the missing NDVI data from
Sentinel-2 images in the Yanhe River Basin in the 7th and 19th half-months. The results
imply that the method proposed in this study for patching Sentinel-2 images was simple,
reliable, and highly useful. The patched Sentinel-2 images were compatible with the 10 m
resolution land use data, which improved the accuracy of B-factor calculations from the
regional to the spot level.

Though the satellite-derived NDVI is commonly used to estimate FVC and the cover
and management factor (B-factor in CSLE or C-factor in RUSLE), it has several limita-
tions. First, the NDVI is a green vegetation (or PV) index, it does not reflect non-green
vegetation (or NPV); however, total vegetation cover (PV and NPV) is required in erosion
modeling. Second, remotely sensed vegetation cover is canopy cover, not the surface
cover or understory cover as required in erosion modeling. Though remote sensing has
been successfully applied to derive overstory FVC [28], it remains a research challenge
to extract understory FVC due to the complex environment within the forest ecosystem.
Further studies on FVC and the B-factor may consider the applications of light detection
and ranging (LiDAR) and unmanned aerial vehicles (UAVs) to quantify both overstory and
understory vegetation cover.

5.3. Assessment of Vegetation Cover and Biological Measures’ B-Factor

The average B-factor value in the entire Yanhe River Basin in 2020 was 0.19, which was
slightly lower than the 0.22 average in the Loess hilly–gully region in 2017 and 0.38 in 2010,
calculated by Huang [29]. The Yanhe River Basin had relatively high overall vegetation
coverage, with increasing trends in woods and grasslands and a continuous decrease in the
cultivated land area, which had decreased by about 25% between 2010 and 2020 [30]. The
improvement of vegetation structure and changes in land use types have both contributed
to the overall declining trend of the B-factor. Compared to previous studies, our projected
average B-factor value in this study appears more consistent and appropriate.

The CSLE B-factor is compatible to the RUSLE C-factor, as both are defined and
calculated in essentially the same way. It is possible that the RUSLE C-factor could be
replaced by the CSLE B-factor or vice versa with some simple adjustments. With such
compatibility, the CSLE is potentially applicable worldwide, along with the widely used
USLE or RUSLE model.

6. Conclusions

The applicability of ERA5, CHIRPS, and PERSIANN-CDR daily rainfall data in the
Yanhe River Basin was evaluated using the precipitation data from national meteorological
stations for the period 1985 to 2015 in the GEE. The missing NDVI data in Sentinel-2
images were patched by incorporating MOD09GA, Landsat 7, and Landsat 8 images. An
automated process was developed using Python codes for rainfall data assessment, image
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patching and processing, as well as FVC, WR, and SLR calculation, thereby enabling the
assessment and mapping of the B-factor in the GEE cloud computing environment. We can
draw the following conclusions from this study:

(1) The ERA5 precipitation dataset exhibited strong agreement with meteorological sta-
tion data across various metrics including average erosive rainfall, average erosive
rainfall intensity, average rainfall erosivity, and WR over multiple years. It demon-
strated better suitability for the Yanhe River Basin compared to the CHIRPS and
PERSIANN-CDR datasets, making it a viable alternative for calculating rainfall ero-
sivity in the absence of meteorological station data.

(2) This study proposed a new and simple method, the trend migration method, for
patching missing Sentinel-2 data based on the rate of change of the image in time.
Sentinel-2 modified by the trend migration approach outperformed the HANTS
method in terms of data authenticity. The restored high-resolution Sentinel-2 data
fit nicely with the 10 m resolution land use data, enhancing the B-factor calculation
accuracy from the regional to the spot level.

(3) In the GEE environment, we developed a fully automated B-factor calculation proce-
dure, and the B-factor was assessed and mapped efficiently based on rainfall erosivity,
soil loss rate, vegetation covering, and land use types in the Yanhe River Basin. The
computation procedure is broadly applicable and can be extended to various river
basins as well as wider regional scales, which provides data and technical support for
regional soil erosion monitoring.
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