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Abstract: Thinning focused on achieving growth and diameter management objectives has typi-
cally led to stands with reduced climate sensitivity compared to unthinned stands. We integrated
dendrochronological with Airborne Laser Scanner (LiDAR) data and growth models to assess the
long-term impact of thinning intensity on Canary pine (Pinus canariensis) radial growth. In 1988,
18 permanent treatment units were established in 73-year-old Canary pine plantations and three
thinning treatments were applied (C–control-unthinned; 0% basal area removal; MT–moderate thin-
ning: 10% and 15% basal area removal, and HT–heavy thinning: 46% and 45% basal area removal
on the windward and leeward slopes, respectively). Dendrochronological data were measured in
2022 and expressed as basal area increment (BAI). The impact of climate on growth was examined
by fitting linear regression models considering two different Representative Concentration Pathway
(RCP) climate scenarios, RCP 2.6 and RCP 4.5. Finally, LiDAR data were used for standing segmen-
tation to evaluate changes in overall growth under different climatic scenarios. The LiDAR–stand
attributes differed between aspects. The BAI of the most recent 20 years (BAI20) after thinning
was significantly higher for the moderate and heavy treatments on the leeward plots (F = 47.31,
p < 0.001). On the windward plots, BAI decreased after moderate thinning. Considerable thinning
treatments resulted in stronger changes in growth when compared to RCP climatic scenarios. From a
silviculture perspective, the mapping of canopy structure and growth response to thinning under
different climatic scenarios provides managers with opportunities to conduct thinning strategies for
forest adaptation. Combining dendrochronological and LiDAR data at a landscape scale substantially
improves the value of the separate datasets as forecasted growth response maps allow improving
thinning management plans.

Keywords: dendroecology; pine plantations; thinning; drought vulnerability; LiDAR; stand segmentation;
adaptative silviculture

1. Introduction

Forest ecosystems have an irreplaceable value as regards mitigating climate change
because forest growth is a major carbon sink [1]. The recent environmental shift has nudged
numerous forest ecosystems toward the edges of their historical climatic limits, thus in-
creasing the potential for sudden alterations in characteristics and functions due to changes
in disturbance regimes [2]. Given the likelihood of forthcoming climate changes including
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rising temperatures [3], present-day forest management research is significantly focused
on comprehending whether forests will undergo gradual or abrupt shifts in response to
escalating climate pressures [4]. However, the presence of tipping points remains uncertain
for several systems, and if they do exist, it is unclear whether constraining climate warming
to below +2 ◦C would be adequate to avert critical transformations, i.e., sudden switches
from one forest ecosystem state to another [5]. One pivotal inquiry into current forest man-
agement revolves around discovering how these ecosystems will react to climatic-derived
disturbance and precisely quantifying the influential relationships between silvicultural
actions and forest adaptability [6,7].

Thinning regulates the density of trees within a stand, subsequently influencing
natural growth patterns, stand structure, and development [8]. Thinning practices focused
on achieving growth and diameter management objectives have typically demonstrated
reduced climate sensitivity compared to unthinned control stands [9]. By decreasing the
basal area of a forest, thinning can help to reduce tree mortality caused by drought [10]. This
suggests its potential as an adaptive tool in forest management. Over time, thinning has the
potential to shape the structure and functional diversity of forests, offering a sustainable
strategy for climate-adaptive management. Improving both the structural and functional
diversity of forests not only contributes to stabilizing ecosystem processes, adapting them to
disturbances and changing climatic conditions, but also improves the delivery of ecosystem
goods and services [11]. In pine-planted mountain forests, where there are generally high-
density stocks with a limited supply of water, radial growth responses to climate vary
significantly depending on tree density [12–14]. Furthermore, according to one study [15],
in order to predict the response of forest ecosystems to climate change, the modeling of
radial increments serves as a well-established quantitative measure with which to explore
variations in forest adaptation to thinning, thus shedding light on how future climatic
scenarios will impact on tree growth and adaptation to stress [16].

The Canary pine (Pinus canariensis Sweet ex Spreng.) is a conifer species that is endemic
to the western Canary Islands, where it forms pure stands under quite different ecological
conditions with respect to elevation and geographical position [17]. In Tenerife, Canary pine
forests form the alpine timberline, where the climate is characterized by summer drought
and winter coldness including frost days [18]. The availability of water is a crucial limiting
resource in many Canary pine forests, and it has been demonstrated that these forests are
susceptible to the effects of global warming, despite their morphological and physiological
adaptations (e.g., sprouting ability) to tolerate drought and heat stress [19]. High-density
Canary pine forests planted on Tenerife during the 20th century exacerbate the risks of
wildfires, pests, and forest dieback. Forest managers have recently been re-evaluating the
value of these pine plantations, with the goal of adapting the original pine plantations
through the use of silvicultural methods [20,21]. Furthermore, the different environmental
conditions across limited geographic areas within the Canary Islands have been influenced
by trade winds, resulting in a notable contrast between the windward (northern) slopes,
where moisture is primarily received, and the drier leeward (southern) slopes. Existing
studies have addressed thinning effects on Canary pine plantations to assess the effects of
various management approaches on species regeneration [22], microclimate conditions [23],
tree radial growth [24–26], or the naturalizing of pinewoods [20,27].

Dendrochronology has commonly been used to precisely determine the impact of
thinning on radial growth [14]. However, dendrochronological data operate on a tree
to plot scale, collecting data over several years by means of a systematic design. These
limitations have led some studies to explore the possibility of integrating tree-ring and
remote-sensing data for stand-level estimation of forest parameters including changes in
growth [28,29]. The use of remotely sensed data from technologies such as Airborne Laser
Scanning (LiDAR) enables the precise estimation of various forest stand parameters such as
changes in tree volume, supporting informed decision making in forest management [30].
The typical steps involved in a LiDAR-based forest inventory include stand delineation and
tree-species stratification. Even though dendrochronological data result in a large temporal
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dataset, their field sampling fraction is significantly smaller when compared to that of
LiDAR and they only provide data on radial growth (e.g., basal area increments, BAI).
Low-density ALS systems (1–5 points m−2) have proven their effectiveness in describing
the three-dimensional structure of aboveground vegetation, offering highly detailed and
precise spatially explicit information on the structure of forest vegetation [31]. However,
characterizing forest stands using ALS technology over larger areas requires careful con-
sideration of various sampling, statistical, and methodological constraints. Approaches
combining dendrochronology and LiDAR data may allow the creation of wall-to-wall
forest management map parameters on stand-to-landscape scales. In some countries,
a proliferation of large-scale LiDAR campaigns focused primarily on creating accurate
digital terrain models have been conducted during recent years and have been used to
predict stand-level attributes [32] and develop spatially explicit mapping of vertical struc-
ture. The use of dendrochronological plots has been suggested to enhance the accuracy
of the LiDAR-based mapping of forest attributes in a spatially explicit and economically
viable manner.

Given the diverse potential applications of dendrochronology and the increasing
availability of LiDAR data, there is a compelling need to explore whether it is possible
to integrate those two types of data to characterize the impacts of thinning intensity and
different climate scenarios on tree growth over large areas. In this study, we integrated
dendrochronological and LiDAR data and used growth models to assess the long-term
impact of thinning intensity on Canary pine radial growth, using previous experimental
stands on Tenerife as a basis [22,24]. This research endeavors to address the following
questions: (i) How do growth patterns, based on BAI data, change according to the wind-
ward and leeward slopes and thinning intensity? (ii) Can BAI models estimate future
growth patterns under different climatic scenarios with diverse warming rates? (iii) To
what extent can a model with which to predict dendrochronological growth be integrated
with LiDAR data in order to predict forest attributes such as changes in volume? Overall,
we aim to develop models capable of mapping tree and stand attributes to inform forest
management strategies. Understanding forest structure at the landscape level is crucial for
the assessment of forest attribute interactions with growth regimes and climate-adapted
forest management. Given the recent and anticipated future rise in the number, extent,
and severity of the impacts of drought in southern Europe [33], identifying areas with
a greater vulnerability to drought is imperative, and mapping high-density areas could
help to identify locations in which thinning should be a priority and implemented at a
landscape level.

2. Materials and Methods
2.1. Study Area

This study was conducted in the Cordillera Dorsal, which is located in the central
region of Tenerife, Canary Islands, Spain (28◦22′54′′N; 16◦26′05′′W). Sampled sites are
situated near the northeastern boundary of the “Corona Forestal” Natural Park (Figure 1,
Table S1, Supplementary Materials). The study area covered 41,467 ha, about 25% of which
corresponds to pine plantations and 30% of the “Corona Forestal” Natural Park. Mean
forest attributes of the dominant vegetation types were derived from the permanent field
plots of the Spanish Fourth NFI remeasured every ten years ([34] Table S1, Supplementary
Materials). High-density P. canariensis plantations were established during the 1940–1960s
for both hydrological and timber production purposes at about 1000–2000 m.a.s.l [20]. The
terrain has slopes with gradients of 33–35◦, primarily facing northwest. The principal
environmental factors to influence the distribution of vegetation across the altitudinal
gradients in Tenerife are elevation and wind exposure [18]. Trade winds occasionally
bring moisture in the form of fog drip, resulting in dense undergrowth within the wet
windward pine forests, while the leeward forests are drier and tend to have sparse shrub
cover. Understory shrubs on the windward site primarily include Morella faya (Aiton)
Wilbur, Erica arborea L., and Adenocarpus viscosus (Willd.) Webb & Berthel, while the leeward
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site features A. viscosus and Chamacytisus proliferus (L.f.) Link (Table S1, Supplementary
Materials). The soils in this area have developed over deep volcanic scoria horizons and
are classified as Entisols, specifically belonging to the Orthens suborder [35]. Soils texture
is approximately 29.0% sand, 29.2% silt, and 41.8% clay.
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Figure 1. (a) Location of the study area on Tenerife Island, Canary Islands, Spain. (b) Location of the
thinning plots on the windward (red) and leeward slopes (green). (c) Climate diagram of the study
area for the period 1901–2006, showing the dry (black area) and wet (grey area) seasons. (d) Trends
for mean annual temperature and precipitation in the study area in the period 1901–2006. Climate
information is based on the CRU TS 3.0 dataset.

The mean annual temperature and precipitation levels are approximately 16.9 ◦C and
1000–1250 mm, respectively. Notably, 70% of this precipitation falls between October and
April, with high year-to-year variability, while there is a prolonged dry summer season
(Figure 1). There was a noticeable upward trend in the mean annual temperature during
the period spanning 1901 to 2006, although annual precipitation has not undergone any
significant changes.

2.2. Experimental Design and Measures

In 1988, 18 permanent treatment units were established in a ~73-year-old pine planta-
tion (1949 and 1953) that is representative of a larger area of over 1500 ha of Canary pine
plantations [22,24] (Table S1, Supplementary Materials). On the windward side (N), two
light thinning treatments were carried out (the removal of doubled trees and moderate
thinning from below 40% of the previous density in 1978, and the removal of 33–40% by
means of light pruning in 1985 [22]. On the leeward side, a light thinning from below took
place in 1979 (a removal of 20–28% and doubled trees) and a second was conducted in 1985
(a removal of between 16 and 20% with a low pruning) [22].

Three blocks composed of three 625 m2 stands were randomly assigned to three
thinning treatments (C–control or unthinned: 0% of basal area removal; MT–moderate
thinning: 10% and 15% of basal area removal, and HT–heavy thinning: 46% and 45% of
basal area removal on the windward and leeward slopes, respectively, [22]). Thinning
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activities were carried out manually, and the trees preferentially selected for thinning were
those that were overtopped, small-sized, or dying looking for the balance of basal area
between the same treatments and orientations [22] (Tables 1 and S2). Significant differences
in tree growth were found between the two locations and treatments at the time of the study.
These differences resulted from the effect of prethinning (1978) and thinning (1988) [24].

2.3. Dendrochronological Data

Plots were remeasured in 2022 (diameter at breast height, 1.3 m above ground level
–dbh-cm, determined using a Haglöf Mantax tree caliper, Långsele, Sweden; total height (H,
m) determined using a Vertex IV hypsometer Haglöf, Sweden; stand density (N, tree ha−1);
and basal area (G, m2 ha−1), all trees with a dbh > 10 cm) (Table 1). On each treatment site,
15 healthy and non-suppressed trees were selected, and two cores per tree were extracted
at breast height (1.3 m), separated by 180◦ on the cross-slope sides of the stem, using a
Pressler increment borer, thus comprising a total of 125 cores.

The cores were air-dried at room temperature and were subsequently glued to wooden
mounts and progressively sanded to improve ring boundary visibility, after which ring
series were visually cross-dated [36]. Tree-ring width was measured to the nearest 0.01 mm
using binocular microscopes and a Lintab-TSAP measuring device (RinnTech, Heidelberg,
Germany). The COFECHA program [37], which calculates moving correlations between
each individual tree-ring series and the mean site series, was used to check dating errors.
Tree-ring width data were transformed into basal area increment (BAI), which better reflects
growth responses to thinning treatments because it is related to sapwood and transpiring
canopy areas.

We then detrended each tree-ring width series by first fitting negative exponential or
spline curves and then obtaining the residuals by dividing the observed values by the fitted
values [36]. This was done to eliminate the influence of tree aging and stem enlargement
and to remove long-term biological trends. The resulting individual series of ring-width
indices were subsequently averaged into site-level chronologies using biweight robust
means. These procedures were conducted using the dplR package [38] in the R statistical
package [39]. Finally, several variables were calculated to characterize the tree-ring series:
first-order autocorrelation of ring-width data (AC), which measures growth persistence
between years t − 1 and t; mean sensitivity (MS) of standard ring-width indices, which
quantifies relative changes in ring-width between consecutive years, and mean correlation
between individual series of ring-width indices (Rbar), which assesses growth synchrony
among coexisting trees [36].

2.4. Climate-Driven Growth Models

The impact of climate on radial growth was examined by carrying out a three-step
analysis. We initially identified the climatic variables that were significantly correlated
with radial growth and subsequently used a Linear Regression Model (MLRM) to correlate
them with climatic variables. During the first two stages, climate data were obtained
from a meteorological station located 20 km north of the study site (Izaña, 16◦30′38′′W,
28◦18′04′′N, 2390 m a.s.l.). The climate variables selected were daily minimal and maximal
temperatures and total daily precipitation. This data made it possible to derive the following
variables: monthly mean temperature (Temp), monthly precipitation (Prec), monthly
potential evapotranspiration (PET) calculated using the Thornthwaite method [40], and
monthly climatic water balance (WB, i.e., Prec–PET; [41]). Potential limitations between
growth and climate were addressed by additionally averaging or summing these variables
into bimonthly and semi-annual categories, spanning from January of the previous year to
December of the current year. Finally, we calculated bootstrapped correlations between the
detrended series of ring-width indices and detrended climatic variables. We considered
the IPSL-CM5 Earth System Model (ESM) and two different Representative Concentration
Pathway (RCP) scenarios (Figure S1, Supplementary Materials), RCP 2.6 and RCP 4.5,
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characterized by 1.5–2.0 ◦C and 2–3 ◦C warming rates, respectively [42]. Correlations
between climate and ring-width data were computed for the period 1988–2100.

2.5. LiDAR Stand Segmentation

Low-density Airborne Laser Scanner (LiDAR) data were provided by GRAFCAN
(https://www.grafcan.es/productos/lidar, accessed on 12 July 2023). The objective of the
GRAFCAN project is to cover the entire Canary Island territory by employing airborne
LiDAR sensors with a density of 1 point m−2 and an elevational accuracy better than
20 cm [43]. In our study area, the ALS flight was performed in 2016 and provided in
2 km × 2 km tiles of raw data points in a LAZ binary file (compressed LAS files), containing
x and y coordinates (EPSG: 25,830 ETRS 1989/UTM Zone 30) and ellipsoidal elevation Z.
In 2014, the Tenerife Forest Service developed ALS-derived models to estimate the main
forest attributes of Pinus canariensis forests (Table S2, Supplementary Materials) based on
ALS metrics and submetrics referenced field plots (Trimble Geo 7X, Westminster, CO, USA,
N = 77). Using this plot set, prediction models of Quadratic Mean Diameter (Dg, cm),
basal area (m2 ha−1), and tree height (H, m) were obtained at a 25 × 25 m grid through
stepwise selection (Table S2, Supplementary Materials). Finally, 50 out of the 99 original
parameters were used as regressors, including the mean, maximum and minimum values,
mode, standard deviation, variance, interquartile distance, coefficients of skewness and
kurtosis, average absolute deviation, and percentiles (Table S3, Supplementary Materials).
The predefined set of ALS metrics was similar to previous models for Mediterranean pine
species [44]. For modeling tree density (tree ha−1), a Weibull density function was used
based on previous experience with Spanish pine species [45]. The models were fitted using
the lme package [46] in R [39]. For complete information about the statistical parameters,
see McGaughey [47]. Model accuracy was assessed through internal validation, including
a Q-value overfitting test, and external validation and cross-validation. The mean absolute
error (MAE) and mean squared error (MSE, %) were calculated for each model (tree density
Weibull’s parameters were a = 29.72, MAE = 9.90%, MSE = 12.31%; b = 4.17, MAE = 21.61%,
MSE = 28.60%) ([43], Table S3, Supplementary Materials).

Using forest attributes as a basis, stand segmentation was implemented using Orpheo
ToolBox software for QGIS 3.28 [48] in the study area, as is commonly done when modeling
forest attributes using ALS data in forest management inventories [49]. The models were
ultimately used to produce predictions for tree density (N, tress ha−1) at stand scale
covering the entire P. canariensis plantations in the study area, which included the current
tree density in a particular stand that could potentially be thinned at a particular time. The
locations of stands were delineated using ArcGisPro 2.0 (https://www.esri.com/en-us/
arcgis/products/arcgis-pro/) from local orthophotographs [43] and these were used to
plan silvicultural interventions.

2.6. Silvicultural Schemes

Using silvicultural plots as a basis, three forest management scenarios were generated
that could be projected into a specific forest management plan. There were stands with
very low (<250 tree ha−1), middle (<500 tree ha−1), and high tree density (>500 tree ha−1).

Changes in overall growth (m3 ha−1 year−1) in the different climatic scenarios (see
Section 2.4) for the 2040- and 2060-year periods were calculated using the predicted growth
for a thinning program on a stand scale. The silvicultural model used in this study was
developed based on a previous study [50].

2.7. Cartography of Silviculture Planning

A current map of stand density was developed for P. canariensis forests on Tenerife
(see Section 2.5). The original raster was reclassified into three different classes on the basis
of tree density per hectare (<250 tree ha−1, <500 tree ha−1, and >500 tree ha−1) using the
SAGA Reclassify Grid Values Module (ver. 2.2.5). The adaptive silviculture map for Canary
pine plantations was estimated by calculating the mean value of tree density and growth

https://www.grafcan.es/productos/lidar
https://www.esri.com/en-us/arcgis/products/arcgis-pro/
https://www.esri.com/en-us/arcgis/products/arcgis-pro/
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for each stand. Each stand was assigned to a density class, and the growth models were
applied in the four different climatic scenarios based on tree density.

2.8. Statistical Analysis

All variables were normalized (i.e., transformed into variables with zero mean and unit
variance) prior to analyses. The effect of thinning was tested by analyzing post-thinning
growth according to the thinning treatment and aspect using a two-way ANOVA model.
The variables employed for the analyses were BAI20, BAIpreTH, BAIpost10, and BAIpostTH.
All statistical analyses were conducted in R version 4.1.1 [39] and models were fitted using
the lmer4 package [51].

3. Results
3.1. Stand-Level Growth Responses

The longest tree-ring series dated back to 1955, with small variations between the dif-
ferent blocks (1955–1961) (Figure 2, Table 2). The quality of standardized BAI chronologies
was better on the windward side (Table 1), with the higher MS (0.34 vs. 0.30) and Rbar
(0.33 vs. 0.29) on the drier leeward side suggesting an increasing importance of climatic
constraints (water availability) for growth (Table 1). Synchronous reductions in growth
were found on all sites before 1978, prior to carrying out the first thinning (Figure 2).
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Figure 2. Mean curves of basal area increment (BAI, cm2 year−1) and cumulative growth–dotted line
(CG, cm year−1)–of Pinus canariensis in windward (N) and leeward (S) stands on Tenerife (Canary
Islands, Spain). C, control; MT, moderate thinning; and HT, heavy thinning. The dashed vertical lines
indicate the dates of the first (1975) and second thinning (1988).

The 20-year BAI (BAI20) did not significantly differ among treatments, but there were
significant differences following thinning (Tables 1 and S2). Short-term variations in the BAI
after thinning followed different patterns of variation for both aspects. On the windward
plots, BAI20 was similar for all treatments (F = 1.35, p = 0.27), maintaining the same trend
10 years after thinning (BAIpost10, F = 0.19, p = 0.83) (Table 1, Figure 2). Conversely, BAI20
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on the drier leeward plots was significantly higher for the moderate and heavy thinning
(F = 12.17, p < 0.001, Table 1). BAIpost10 after thinning in this aspect was also significantly
higher for the moderate and heavy treatments (F = 47.31, p < 0.001). Long-term variations
in post-thinning BAI (BAIpostTH) followed similar patterns to those of BAIpost10 for both
aspects. On the windward plots, BAIpost10 showed higher growth for controlled thinning,
and a decrease after middle thinning (F = 1.17, p = 0.31).

However, BAIpostTH was higher after the heavy thinning treatment in the leeward
aspect, with a sharp decrease in the control plots (F = 32.34, p < 0.001). Treatment and
aspect and treatment were also significant predictors of BAIpost10 and BAIpostTH (Table 2).

3.2. Growth Projections

The climate-driven growth models showed that temperature and precipitation both signifi-
cantly influenced the variation in radial growth (Figure S2, Tables S3 and S4, Supplementary
Materials). In the RCP2.6 scenario, temperature and precipitation were positively related to
tree growth (R2 = 0.24, p < 0.001). In the RCP4.5 scenario, growth was positively correlated
with temperature for the C and MT treatments in the leeward aspect (R2 = 0.48, p < 0.001).

With regard to the windward aspect, the RCP2.6 scenario showed an increasing growth
trend for the C and MT treatments over the projected period (2020–2100) and predicted
a slight decrease in growth for the HT treatment. However, in the leeward aspect, the
decrease in growth inferred by the model was observed for the control treatment. In the
case of the RCP4.5 scenario, models showed a rapid growth decrease for both aspects,
with this being more prominent in the leeward aspect. Heavy thinning slightly increased
growth in the windward aspect but showed negative growth trends; although this was less
accentuated than for the other thinning treatments in the leeward aspect.

3.3. LiDAR Stand Attributes Used to Forecast Growth Trajectories

The tree density at stand scale derived from LiDAR-derived attributes was used to
project growth according to aspects and tree density categories (Table S5, Supplementary
Materials). Tree density, considering thinning treatments, resulted in stronger changes
in growth compared to aspect and climatic scenarios (Figure 3), as already observed
in the growth models (Figure 3). In the windward orientation and the most optimistic
scenario (RCP 2.6), stands with a middle density (N = 250–500 trees ha−1) had a higher
growth reduction (−8.52%), and stands with higher densities (N > 500 trees ha−1) had
the lowest growth reduction (−4.31%) expressed in total volume per ha. Conversely, the
growth response on the leeward plots was inverse: stands with the middle density were
those with the lowest growth reduction (−3.95%), followed by stands with low densities
(N < 250 trees ha−1), and the stands with the highest growth reduction were those with the
highest density (−9.17%). In the warmest climate scenario (RCP 4.5), the growth response
changed. In the windward aspect, the lower density stands were those that had a more
stable growth (−3.92%), with the middle density stands obtaining the highest decreasing
growth values (−17.11%). This effect was much more evident in the leeward stands, with
a sharp drop in the growth (−22.19%) that was higher for the higher-density stands and
lower for the lower-density stands (−9.64%).



Remote Sens. 2024, 16, 850 9 of 19
Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 3. Variation in volume growth in the windward (N) and leeward (S) stands of Pinus canar-
iensis under different climatic scenarios (RCP 2.6 and 4.5 at 2040 and 2060) and tree density. HT: 
low-density stands (N < 250 trees ha−1), MT: middle-density stands (N = 250–500 trees ha−1), CT: 
high-density stands (N > 500 trees ha−1). 

Figure 3. Variation in volume growth in the windward (N) and leeward (S) stands of Pinus canariensis
under different climatic scenarios (RCP 2.6 and 4.5 at 2040 and 2060) and tree density. HT: low-density
stands (N < 250 trees ha−1), MT: middle-density stands (N = 250–500 trees ha−1), CT: high-density
stands (N > 500 trees ha−1).
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Table 1. Dendrochronological statistics of the sampled pine species on Tenerife (Canary Islands, Spain) according to thinning treatments (C, control; MT, moderate
thinning; HT, heavy thinning). Abbreviations: BAI, mean basal area increment; BAI20, mean basal area increment in the last 20 years; BAIpre, mean basal area
increment before thinning; BAIpost10, mean basal area increment 10 years after thinning; BAIpostTH, mean basal area increment at sampling time (22 years after
thinning); AC, first-order autocorrelation coefficient; MS, mean sensitivity; Rbar, mean correlation between trees. Values are means ± SD (in brackets) and
superscripts (a, b, c) indicate pairwise comparisons when these are significantly different (p < 0.05).

Species—Site Treatment Timespan BAI (cm2) BAI20 (cm2) BAIpreTH (cm2) BAIpos10 (cm2) BAIpostTH (cm2) AC1 MS Rbar

P. canariensis—leeward
C 1957–2021 6.94 (0.003) 4.65 (0.003) 7.86 (0.005) a 8.37 (0.003) a 5.97 (0.003) a 0.932 0.295 0.355

MT 1957–2021 6.33 (0.002) 4.97 (0.003) a 6.95 (0.003) 7.42 (0.003) a 5.74 (0.002) a 0.887 0.344 0.286
HT 1956–2021 5.93 (0.002) a 5.59 (0.004) 5.71 (0.004) b 7.13 (0.005) a 6.16 (0.003) a 0.901 0.377 0.331

P. canariensis—windward
C 1961–2021 5.54 (0.002) a 4.42 (0.002) a 6.84 (0.005) 4.76 (0.002) b 4.44 (0.001) b 0.906 0.367 0.321

MT 1955–2021 7.48 (0.003) 5.87 (0.003) 8.38 (0.005) a 7.29 (0.004) a 6.56 (0.003) a 0.938 0.266 0.392
HT 1957–2021 8.46 (0.003) b 7.11 (0.004) b 8.40 (0.006) a 11.49 (0.006) c 8.51 (0.004) c 0.884 0.353 0.255

Table 2. Two-way ANOVA plus interaction statistics for basal area increment (BAI) and related variables: BAI20; basal area increment in the last 20 years (cm2 year−1),
BAIpreTH; basal area increment before thinning (cm2 year−1), BAIpost10; basal area increments 10-year after thinning (cm2 year−1), BAIpost; basal area increment at
sampling time (22-year after thinning) (cm2 year−1) and CG; cumulative growth (cm year−1). Significance levels: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001.

BAI BAI20 BAIpreTH BAIPost10 BAIPostTH CG

F p F p F p F p F p F p

Aspect 1.586 0.209 1.311 0.254 6.349 0.012 * 1.731 0.194 2.255 0.135 1.420 0.234
Treatment 0.813 0.463 5.953 0.003 ** 0.826 0.439 23.416 <0.001 *** 17.089 <0.001 *** 0.463 0.630

Exposition x Aspect 11.100 <0.001 *** 8.096 <0.001 *** 7.145 0.001 ** 29.190 <0.001 *** 21.632 <0.001 *** 5.657 0.003 **
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3.4. Cartographying Silvicultural Management Plans

Finally, the growth pattern for each stand was projected based on current tree density
(Figures 4 and 5). An adaptive silviculture map for Canary pine plantations was estimated
by calculating the mean value of tree density and growth for each stand.
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Figure 5. Variation in volume growth in a selected area in the leeward sector of Pinus canariensis
under different climatic scenarios (RCP 2.6 and 4.5 at 2040 and 2060) and tree density (low-density
stands N < 250 trees ha−1, middle-density stands N = 250–500 trees ha−1, and high-density stands
N > 500 trees ha−1).

4. Discussion

Climate-change-induced shifts in tree growth and forest vigor on a global scale are
leading to extensive effects on forest ecosystems worldwide [52]. In southern Europe, the
increase in temperature and changes in precipitation are resulting in the decreased replen-
ishment of soil water, ultimately leading to drier growing conditions. These climate changes
have adverse effects on tree growth, intensifying drought stress in forests and leading to
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dieback and high-mortality episodes [53]. This heightened drought stress additionally
makes forests more susceptible to increasingly frequent and intense wildfires, pests, and
other disturbances [54]. One of the strategies being considered as a means to alleviate water
competition and mitigate drought stress in semi-arid regions is thinning [55]. Our study of
the effect of thinning on the growth patterns of P. canariensis forests provides new insights
into the contrasted effects of thinning in the face of a changing climate. We integrated
dendrochronological with LiDAR data to examine the effect of thinning in two different
climatic scenarios.

4.1. Thinning Intensity and Growth Responses

The range of P. canariensis expanded during the second part of the 20th century
owing to forest plantations and the colonization of other formations such as the fayal-
brezal. However, high-density forests (between 1500 to 800 trees ha−1) were established,
depending on the aspect and soil conditions, leading to the need for urgent thinning
interventions [20,27]. Previous studies on the sampled area revealed that P. canariensis has
immediate growth responses in the first few years after thinning and that this is modulated
by aspect, with the most pronounced effects observed in heavy thinning treatments [24].
Our findings partially align with previous studies, revealing lower tree growth responses
10 years after heavy thinning compared to controls carried out on windward stands, but
that this response changes in the long-term, thus suggesting a higher responsiveness to
the climate in dry leeward slopes [24]. Thinning-induced temperature increases within
stands, resulting from greater exposure to radiation [56]. This counteracts the positive
effect of winter temperatures and accentuates their negative impact during the dry summer,
particularly after heavy thinning on the windward side. This may be linked to reduced fog
entrapment in Canary pine woods after heavy thinning compared to light thinning [23]. On
the windward slopes, the mean annual throughfall can account for up to twice the incident
rainfall [23], increasing the growth dependence of horizontal foggy precipitation.

However, on leeward plots, a higher impact of thinning was observed in the two time
periods (10 and 20 years after thinning) for heavy thinning treatments. Our results suggest
that aspect modulation was influenced by the higher tree density on the leeward slopes and
drier conditions with an increase in the effect of thinning in competition for water. High-
density stands cannot be adequately supported under more limiting climatic conditions,
therefore, increasing the advantages of thinning on leeward slopes. The reduction in tree
density on leeward slopes contributed to increased BAI, possibly owing to the enhanced
drought tolerance of Canary pines on this slope, since they recover from drought-induced
depressions, and a more pronounced climatic control of BAI on the leeward side [24], as
evidenced by the higher common signal and year-to-year growth variability. However, in
the long term, there is a clear effect of density reduction as shown in this work.

Similar findings have been reported for trees with different competition intensities or
thinning in Mediterranean climates [14,56,57]. The increased growth rates resulting from
heavy thinning are typically associated with improved tree water status and illumination
within the stand as a result of reduced inter-tree competition [58]. A greater water supply
enables better stomatal conductance and carbon assimilation, promoting tree growth and
extending the growing season [59]. The Canary pine is a light-demanding species, and
shaded environments are, therefore, prone to more severe detrimental effects of drought [60].
Heavy thinning is more favorable in these cases, creating larger canopy gaps and greater
irradiance, thus leading to the release of dominant trees. As shown in Scots pine [61],
thinning can also alter nutrient return via needle litterfall, although this is not necessarily
proportional to its intensity, thus suggesting the existence of thresholds in the ecological
response to thinning from below. Contrary to the windward aspect, the growth increase
after thinning on the leeward side showed responsiveness to temperature. In areas with
very low summer precipitation, growth regulation by water shortage can be controlled more
by high temperatures (elevated evapotranspiration rate) than by rainfall [58].
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4.2. Projecting Tree Growth Based on Climate Scenarios

The growth of P. canariensis in the most optimistic scenario (RCP 2.6) was shown to
be more responsive to temperature than in the most pessimistic scenario (RCP 4.5). This
is in line with the tree ring formation dynamics in pines, where earlywood formation
depends on photosynthates produced the prior year and used during spring as a function
of thermal conditions [62]. Thermal variables related to water balance therefore underscore
the significance of spring and summer weather conditions for P. canariensis, together with
fog precipitation. Differences in water supply may also contribute to the variation in the
models for the two aspects [63], showing the greater vulnerability of the leeward stands,
which makes these forests more vulnerable in the warmest RCP4.5 climate scenario.

Projections for future growth showed that aspect played a crucial role. The suitability
of the windward stands for positive growth was projected in the RCP2.6 scenario and it
was higher in the high-density stands. In contrast, in the leeward scenario, higher growth
was observed in the low-density stands. With regard to the windward stands, their lower
vulnerability to changes in precipitation and an inter-annual variation in climate may
explain the higher growth increases in high-density stands, suggesting that other factors are
contributing to growth, such as fog precipitation and deep soil [64]. The windward stands
may have deeper root systems that explore soil layers extensively to uptake groundwater.
However, the leeward stands have greater growth in low-density stands in the RCP2.6
scenario, showing their higher vulnerability to changes in precipitation and temperature.
These stands probably have shallow and concentrated rooting systems in the upper soil
layers owing to the stony and superficial nature of the soils, which do not permit root
stratification and lead the leeward stands to undergo slower growth.

The models based on the RCP4.5 scenario forecast a substantial loss of growth. Con-
cerning the windward stands, this scenario underwent a minimal increase in low-density
stands, but with a rapid loss of growth for mid- and high-density stands. A comparable
study [65] to model tree growth with climatic variables predicted a future decrease in the
growth of several tree species in Germany until 2100. In the leeward stands, the growth
index was projected to decrease in all stands, and it would appear that these P. canariensis
stands would be unable to buffer the adverse effects of long-term climate changes on
growth. Warmer climates are expected to extend the water stress periods, thus affecting
wood formation and potentially leading to lower radial growth [66] in locations in which
competition dynamics within the stand strongly condition growth levels [15,67]. A previous
study on P. canariensis revealed that when they grow in mixed stands with Fayal (Erica
spp.) species, there are smaller decreases in growth during droughts compared to pure
pine forests [27]; although, these mixed stands are not formed in dry leeward sites [68].

4.3. LiDAR Metrics Used to Describe Thinning Growth Trajectories

Finally, we propose a methodology with which to integrate dendrochronological data
and growth climatic models with LiDAR-derived forest attributes. Enhancing our under-
standing of forest structure patterns holds significant value for various tasks, ranging from
harvest management planning to fire-risk assessments and climate-adapted regeneration.
In recent years, there has been increased emphasis on integrating ALS data into enhanced
forest inventory systems. The LiDAR metrics made it possible to map mean tree density
with high accuracy as a baseline for a thinning-based canopy threshold and enabled the
effect of thinning in volume growth at the stand level to be differentiated. The LiDAR-
derived forest attributes, therefore, indicate the capability to predict growth variables with
reasonable accuracy.

Previous studies have shown that LiDAR metrics provide accurate information about
stand density [69], and the expansive coverage and efficiency of ALS data compensated
for the potential loss in accuracy. Here, the number of trees present in each stand was
used to predict growth patterns on the landscape scale. Stands with different tree densities
and volumes appear to be fragmented within a different stand density matrix. LiDAR
data were then applied for stand segmentation from an adaptative silviculture perspective.
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Expected changes in total volume per ha showed different growth responses. The average
increments in annual volume observed from the LiDAR segmentation ranged between
6.97 m3 ha−1 year−1 (windward) and 5.88 m3 ha−1 year−1 (leeward). These values are lower
than those found by a previous study [22] (7.7 and 6.88 m3 ha−1 year−1 on the windward
and leeward slopes, respectively). In general, P. canariensis growth in diameter may be as
high as up to 2 cm per year, and growth in height up to 1 m per year, although these growth
rates slow down after approximately 25–30 years of age when the species begins to invest the
resources used in growth in the formation of heartwood [60].

Operationally, the use of permanent plots to estimate forest growth allows the gen-
eration of predictive equations for forest management. From an adaptative silviculture
perspective, estimating changes in volume growth under different climatic scenarios allows
thinning plans as a strategy to reduce disturbance impacts (e.g., tree dieback and mortality
due to drought, wildfire, pests, etc.). The mapping of canopy structure and growth response
to thinning under different climatic scenarios provides managers with opportunities to
carry out thinning strategies at a time at which forests are under climatic risk and timber
harvest on public land may be an alternative for forest adaptation [70]. The result of this
study shows that low-density ALS-specific models contribute to the prediction of growth
at stand scale, improving traditional inventories. While our approach shares many aspects
of the methodology used in local forest management inventories, integration of ALS and
dendrochronological data is useful for mapping forest attributes and the improvement
of estimates on various scales. Because of their fine spatial resolution and relatively high
accuracy, ALS maps of forest attributes offer forest managers opportunities for retention
harvest strategies, carbon stock modeling, wildfire, and habitat potential.

Expanding dendrochronological data beyond plot attributes with a landscape scale can
substantially increase the value of these data. Growth can be used as an input for models
that predict the climatic vulnerability of plantations, and these models may then be used
to improve forest attribute maps derived from LiDAR by replacing traditional inventory
layers [71]. Our predicted canopy growth response maps illustrate the opportunities to
improve thinning management plans by efficiently combining tree-ring and LiDAR data.
Limitations of this study include those derivate of tree density ALS models, and application
to different stand densities and configurations, impacting stand-level estimates, particularly
in low-density forests. Ongoing research should explore synergies between growth models
through the fusion of ALS and very-high-spatial-resolution optical imagery.

5. Conclusions

We showed the impact of thinning treatments on growth patterns in Canary pine
plantations integrating dendrochronological data, growth models, and LiDAR data. Heavy
thinning enhances growth rates and modifies growth sensitivity to climates. Growth pre-
dictions for the 2020–2100 period showed different trends for the windward and leeward
stands, with a significant trend towards decreasing growth in the warmest RCP4.5 climate
scenario. Integrating dendrochronological data and growth models at the landscape scale
can be improved by using LiDAR data to characterize forest structure. This procedure
resulted in models with an improved predictive growth response to thinning. We were
also able to create a predictive map across the study site that highlights the effects that
locations and patterns of thinning have on growth across environmental gradients. Man-
agement guidelines could consider those thinning maps to improve growing conditions
and self-maintenance in Canary pine plantations. This is particularly relevant on the dry
leeward sites because harsh climate conditions may overshadow thinning impacts there if
thinning is not intense enough. This information is requested by foresters, ecologists, and
wildfire managers who require stand-level details with a representation of canopy structure
resulting from thinning and based on long-term growth trends.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16050850/s1, Figure S1. Global climate models (CMIP5) projec-
tions derived from model IPSL.CM5-MR across two RCP scenarios (2.6 and 4.5) of Pinus canariensis
stands on Tenerife (Canarian Islands, Spain). Abbreviations: Prcp (precipitation, mm)-descendant
trend, Temp (mean temperature, ◦C)-ascendant trend. Figure S2. Growth index models and fu-
ture projections of standardized master chronologies of Pinus canariensis, climatic growth models
calibrated on the past, used to forecast growth according to climatic scenarios (RCP 2.6 and 4.5)
and IPSL-CM5-MR model within CMIP5 on Tenerife (Canarian Islands, Spain). Asterisks indicate
significant slopes of the regression lines (* p < 0.5, ** p < 0.01, *** p < 0.001). Table S1. Forest at-
tribute of the forest types on Tenerife (Canarian Islands, Spain). Abbreviations: W = above-ground
biomass, H = average height, N = tree density, G = basal area, dbh = diameter at breast height, and
Fcc = tree cover. Values are means ± standard error (in brackets). Source: Spanish National Forest
Inventory [34]. Table S2. Selected LiDAR metrics parameters to run statistical analyses [46]. Table S3.
LiDAR models to estimate Basal area (G, m2 ha−1), Quadratic mean diameter (Dg, cm), and Weibull’s
diameter distribution used for forest attribute inventory [43]. See Table S2 for LiDAR metrics. Table S4.
General characteristics of the Pinus canariensis stands on Tenerife (Canarian Islands, Spain) after
thinning interventions. H = average height, N = tree density, G = basal area, dbh = diameter at breast
height, and Fcc = tree cover. Values are means ± standard error (in brackets). Table S5. Multiple
Linear Regression Model (MLRM) outputs of Pinus canariensis throughout the thinning treatments
(CN, control, north side; MTN, moderate thinning, north side; HTN, heavy thinning, north side,
CS, control, south side; MTS, moderate thinning, south side; HTS, heavy thinning, south side) on
Tenerife (Canarian Islands, Spain). As fixed effects, we included the estimated variables, time (year),
precipitation (prcp), and mean temperature (temp), and standardized BAIs (Growth index) was fitted
as the response variable projections derived from model IPSL.CM5A-MR across two RCP scenarios
(2.6 and 4.5). Table S6. Multiple Linear Regression Model (MLRM) outputs. Asterisks indicate
significant slopes of the regression lines (* p < 0.5, ** p < 0.01, *** p < 0.001). Table S7. Forest attributes
of the Pinus canariensis stands on Tenerife (Canarian Islands, Spain) and growth (m3 ha−1 year−1)
under climatic scenarios (IPSL-CM5 Earth System Model-ESM, RCP 2.6 and 4.5, [42]). Abbreviations:
H = average height, N = tree density, G = basal area, dbh = diameter at breast height. Values are
means ± SD (in brackets).
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