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Abstract: Weighted mean temperature (Tm) is an important parameter in the water vapor inversion
of global navigation satellite systems (GNSS). High-precision Tm values can effectively improve
the accuracy of GNSS precipitable water vapor. In this study, a new regional grid Tm empirical
model called the RGTm model over China and the surrounding areas was proposed by combining
ERA5 reanalysis data, radiosonde data, and TanDEM-X 90m products. In the process of model
establishment, we considered the setting of the reference height in the height correction formula and
the bias correction for the Tm lapse rate. Tm values derived from ERA5 and radiosonde data in 2019
were used as references to validate the performance of the RGTm model. At the same time, the GPT3,
GGNTm, and uncorrected seasonal model were used for comparison. Results show that compared
with the other three models, the accuracy of the RGTm model’s Tm was improved by approximately
12.21% (15.32%), 1.17% (3.09%), and 2.31% (5.05%), respectively, when ERA5 (radiosonde) Tm data
were used as references. In addition, the introduction of radiosonde data prevented the accuracy of
the Tm empirical model from being entirely dependent on the accuracy of the reanalysis data.

Keywords: weighted mean temperature; lapse rate; periodic term; ERA5 data; TanDEM-X 90m

1. Introduction

Water vapor is an important component of the Earth’s lower atmosphere. As the
only component in the atmosphere that can undergo phase transitions, the evaporation
and condensation of water vapor have a profound impact on the formation of short-term
weather characteristics and long-term climate change [1,2]. In recent years, the rapid
development of global navigation satellite systems (GNSS) has promoted the development
and application of GNSS meteorology [3–5]. As a representative positioning technology,
GNSS have the advantages of high accuracy, low cost, high temporal resolution, and
all-weather capabilities [5,6]. The use of GNSS to invert atmospheric water vapor is of
great significance for quantitatively describing water vapor changes [7], analyzing climate
causes [8], conducting disaster monitoring [9], and carrying out short-term meteorological
forecasting [10].

Weighted mean temperature (Tm) plays an important role in the water vapor inversion
of GNSS [11,12]. Davis et al. [13] first proposed the concept of Tm when revising the wet
delay calculation formula and provided the formula for integrating Tm by atmospheric
profile. Bevis et al. [11] established a mapping model to convert GNSS zenith wet delay
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(ZWD) into precipitable water vapor (PWV), where the dimensionless factor is expressed
as a function of Tm as the independent variable. Therefore, obtaining high-precision Tm
values is the key to improving the accuracy of GNSS PWV [6,11,14].

At present, the best approach to estimate Tm is to integrate the radiosonde atmosphere
profile at the GNSS station. However, since no radiosonde is launched at the same station, it
becomes impractical to calculate Tm using the radiosonde atmosphere profile. Radiosonde
data provided by the University of Wyoming also show that public radiosonde stations
typically exhibit low spatial resolution, with a temporal resolution generally occurring twice
a day (UTC 0:00 and UTC 12:00). Even if radiosonde data are directly applied to nearby
GNSS stations, it is difficult to match the temporal resolution of GNSS observations. For
example, the sampling interval of GNSS observations at a continuously operating reference
station can be set to 1 Hz. If GNSS stations are equipped with collocated meteorological
sensors, such as temperature sensors, the Bevis model [3] (Tm = 70.2 + 0.72 Ts) can be used
to calculate Tm. However, the relationship between Tm and surface temperature Ts is not
constant, and the model coefficients change with geographic location and time [6,12,15].
In addition, the accuracy of the Bevis model’s Tm relies on the accuracy of the input
meteorological parameters. Using Ts estimates provided by reanalysis data or a surface
temperature model instead of actual measurements will reduce the accuracy of the Tm
calculated by the Bevis model [16,17]. Therefore, it is common to establish a Tm model based
on measured meteorological parameters by modeling the model coefficients. For example,
Lan et al. employed the sliding average method to calculate correlation coefficients and
linear regression coefficients between Tm and Ts at every 2◦ × 2.5◦ grid point using Ts
data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and Tm
data from the Global Geodetic Observing System (GGOS) [18]. Ding used the multilayer
feedforward neural network (FFNN) to express the relationship between the input variables
(temperature, location, and time) and the output Tm [19]. Liu et al. established an empirical
model specific to the Guangxi region by taking the temperature, latitude, and time as the
input variables [20].

For GNSS stations without collocated meteorological sensors or GNSS historical
observation data without meteorological data, the Tm empirical model with only station
location and time as input parameters is another method to obtain Tm. There are two
common ways to establish Tm empirical models. One way is to directly express the model of
Tm. For example, Yao et al. [14,21] used the Fourier series, constructed with annual periodic
terms and linear functions containing annual periodic terms, to describe the periodic and
vertical changes of Tm and also used spherical harmonic functions to fit the parameters of
the Tm model, establishing the GWMT model [14] and GTm-II model [21]. Among them, the
GWMT model is established with radiosonde data, while the GTm-II model is established
with radiosonde data and virtual data calculated by the GPT model [22]. On the basis of
the GTm-II model, Yao et al. further considered the semi-annual and diurnal variations
in Tm and established the GTm-III model using the global geodetic observing system
atmosphere Tm grid data [15]. Li et al. [23] considered the seasonal variability of the Tm
vertical gradient and established the GTm_R model using 6-hourly ERA-Interim pressure
level products. The other way is through empirical meteorological parameter models,
which express meteorological parameters in a model, such as the UNB3m model [24],
GPT2w model [25], GPT3 model [26], and HGPT model [27]. This model type can not only
output Tm, but also many other meteorological parameters. However, due to the lack of
vertical correction of Tm, a systematic bias occurs in the Tm calculated by the GPT2w and
GPT3 models [17,28,29]. In this study, we pay more attention to the method of directly
modeling Tm. The method of establishing the first type of Tm empirical model is capturing
the temporal and vertical variation characteristics of Tm based on reanalysis or radiosonde
data. The vertical variation of Tm can be expressed by the Tm lapse rate, which can be
affected by multiple factors such as the atmospheric pressure, moisture content of the air,
and height [16]. Usually, the linear lapse rate is used for vertical adjustment to improve the
accuracy of the Tm calculation at different heights [29–31]. Afterward, the Fourier series,
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constructed with periodic terms such as annual, semiannual, and diurnal periods, is used
to describe the temporal variation of model coefficients. However, the height of the lowest
level of reanalysis data is not the actual surface elevation, and for surface GNSS stations,
existing empirical models lack discussion on the setting of the height of the reference level
in the linear correction formula. The results of [32] likewise indicate that the root mean
square (RMS) of ERA5 Tm is 1.6 K over China, which will lead to bias in the calculated Tm
lapse rates. Therefore, the construction of Tm empirical models also requires the assistance
of digital elevation model (DEM) products and measured atmospheric profile data.

This study proposed a new regional grid Tm empirical model called the RGTm model
over China and the surrounding areas, covering a range of [70◦E–135◦E, 15◦N–55◦N]. This
model was established based on ERA5 0.5◦ × 0.5◦ reanalysis data. Compared with other Tm
empirical models, the RGTm model introduced TanDEM-X 90m DEM products as heights
of reference levels in the linear correction formula and adopted radiosonde data to correct
ERA5 Tm lapse rates. By inputting parameters such as latitude, longitude, height, and time,
the RGTm model can provide precise estimates of Tm and Tm lapse rates at corresponding
positions. In this study, the performance of the RGTm model was evaluated using ERA5
Tm and radiosonde Tm data.

This paper is structured as follows. Data sources and the methodology for obtaining
Tm and surface height are introduced in Section 2. The establishment and validation of
the proposed regional grid Tm empirical model are described in Sections 3 and 4. The
conclusion is presented in Section 5.

2. Determination of Weighted Mean Temperature and Surface Elevation
2.1. Tm Derived from Radiosonde and Reanalysis Data

Owing to the limitations of many factors such as equipment, cost, and operation, we
cannot accurately obtain meteorological parameters at all the heights in a vertical direction.
Thus, the numerical integration method is usually adopted to calculate Tm with the layered
meteorological data of the atmospheric profile:

Tm =
n

∑
i=1

ei
Ti

∆Hi/
n

∑
i=1

ei

T2
i

∆Hi (1)

where i is the layer of the atmospheric profile, ei is the mean water vapor pressure (hPa),
Ti is the mean temperature (K), and ∆Hi is the thickness. ei can be calculated by [12]
as follows:

e = rh × 6.11 × 10
7.5Tc

Tc+237.3 (2)

where rh is the relative humidity (%), and Tc is the temperature (◦C). When it comes to
Tm values at the pointed station height hp, the elevation of the atmospheric profile level
usually does not match with the station height, so an extrapolation on the relative humidity
and temperature must be performed if hp is lower than the height hl of the lowest level of
the atmospheric profile. The related formulas of interpolating the relative humidity and
temperature are as follows [12]:{

rh(hm) = rhmean,
hm = hp, hp + 50, hp + 100, · · · , hl

(3)

{
Tp = Tl − 6.5·(hp − hl), Γm ≥ 0 or Γm < −10
Tp = Tl + Γm·(hp − hl), other

(4)

where rhmean is the mean relative humidity of the first two atmospheric profile levels, and
Γm is the mean lapse rate of temperature for the first three atmospheric profile levels. If
the pointed station is located between two known atmospheric profile levels, then the
relative humidity and temperature at the height of the station are equivalent to the mean of
the data from the nearest two atmospheric profile levels. Therefore, the layered relative
humidity, temperature, and height data are needed in the process of calculating accurate
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Tm data. The radiosonde and reanalysis data are two important approaches to obtaining
atmospheric profiles. Radiosonde data have the largest time span and the highest accuracy.
Using the sounding balloon at radiosonde stations, the pressure, temperature, relative
humidity, and wind at different heights can be measured accurately to determine the
vertical distribution of meteorological parameters. Reanalysis data can assimilate different
types of meteorological data to accurately describe the climate state. Compared with
radiosonde data, the spatiotemporal resolution of the reanalysis data is higher, but the
accuracy is slightly poorer.

In this study, the ERA5 0.5◦ × 0.5◦ reanalysis data [33] from 2011 to 2019 over China
and the surrounding areas, covering a range of [70◦E–135◦E, 15◦N–55◦N], were used to
establish and validate the Tm empirical model. ERA5 is the fifth generation of the ECMWF
atmospheric reanalysis [34]. Compared to previous ECMWF ERA-Interim reanalysis, ERA5
has increased the horizontal grid spacing from 79 km to 31 km, the number of model levels
from 60 to 137, and the time resolution from 6 h to 1 h [34,35]. In ERA5 data processing,
we eliminated the pressure layer data with relative humidity less than 0. In addition, the
radiosonde data (UTC 00:00 and 12:00) at 89 stations in China from 2011 to 2019 were
used to calculate references of Tm lapse rate and Tm. To ensure the data quality of the
radiosonde data, simple quality control was adopted; specifically, observation data in
which the pressure difference between any two adjacent layers exceeds 200 hPa were
eliminated. If the position of the radiosonde station changes, only the updated observation
data would be retained. According to statistics, the mean data integrity rate of these
89 radiosonde stations is 96.2%, and the data integrity rate of 84 stations exceeds 80%.
Therefore, the amount of radiosonde data can meet the requirements of quality assessment.
The Section “Data Availability Statement” provides details regarding where the ERA5 and
radiosonde data can be found. Figure 1 illustrates the location distribution of radiosonde
stations in the research area.

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 20 
 

 

where rhmean is the mean relative humidity of the first two atmospheric profile levels, and 
Гm is the mean lapse rate of temperature for the first three atmospheric profile levels. If the 
pointed station is located between two known atmospheric profile levels, then the relative 
humidity and temperature at the height of the station are equivalent to the mean of the 
data from the nearest two atmospheric profile levels. Therefore, the layered relative hu-
midity, temperature, and height data are needed in the process of calculating accurate Tm 
data. The radiosonde and reanalysis data are two important approaches to obtaining at-
mospheric profiles. Radiosonde data have the largest time span and the highest accuracy. 
Using the sounding balloon at radiosonde stations, the pressure, temperature, relative hu-
midity, and wind at different heights can be measured accurately to determine the vertical 
distribution of meteorological parameters. Reanalysis data can assimilate different types 
of meteorological data to accurately describe the climate state. Compared with radiosonde 
data, the spatiotemporal resolution of the reanalysis data is higher, but the accuracy is 
slightly poorer. 

In this study, the ERA5 0.5° × 0.5° reanalysis data [33] from 2011 to 2019 over China 
and the surrounding areas, covering a range of [70°E–135°E, 15°N–55°N], were used to 
establish and validate the Tm empirical model. ERA5 is the fifth generation of the ECMWF 
atmospheric reanalysis [34]. Compared to previous ECMWF ERA-Interim reanalysis, 
ERA5 has increased the horizontal grid spacing from 79 km to 31 km, the number of model 
levels from 60 to 137, and the time resolution from 6 h to 1 h [34,35]. In ERA5 data pro-
cessing, we eliminated the pressure layer data with relative humidity less than 0. In addi-
tion, the radiosonde data (UTC 00:00 and 12:00) at 89 stations in China from 2011 to 2019 
were used to calculate references of Tm lapse rate and Tm. To ensure the data quality of the 
radiosonde data, simple quality control was adopted; specifically, observation data in 
which the pressure difference between any two adjacent layers exceeds 200 hPa were elim-
inated. If the position of the radiosonde station changes, only the updated observation 
data would be retained. According to statistics, the mean data integrity rate of these 89 
radiosonde stations is 96.2%, and the data integrity rate of 84 stations exceeds 80%. There-
fore, the amount of radiosonde data can meet the requirements of quality assessment. The 
Section “Data Availability Statement” provides details regarding where the ERA5 and ra-
diosonde data can be found. Figure 1 illustrates the location distribution of radiosonde 
stations in the research area. 

 
Figure 1. Location distribution of 89 radiosonde stations (red) and 6 representative grid points 
(green). 

2.2. Surface Elevation from TanDEM-X 90m DEM Products 
The TanDEM-X mission produced global DEM products with a 0.4 arcsec (12 m) post-

ing that covers all of Earth’s landmasses [36–39]. The absolute horizontal (90% circular 
error, CE90) and vertical accuracy (90% linear error, LE90) of the TanDEM-X 12m DEM 
products are all below 10 m [37]. The TanDEM-X 90m DEM is a product derived from the 

Figure 1. Location distribution of 89 radiosonde stations (red) and 6 representative grid points (green).

2.2. Surface Elevation from TanDEM-X 90m DEM Products

The TanDEM-X mission produced global DEM products with a 0.4 arcsec (12 m)
posting that covers all of Earth’s landmasses [36–39]. The absolute horizontal (90% circular
error, CE90) and vertical accuracy (90% linear error, LE90) of the TanDEM-X 12m DEM
products are all below 10 m [37]. The TanDEM-X 90m DEM is a product derived from the
TanDEM-X 12m DEM products. Using high-resolution LiDAR DEMs, Hawker et al. [39]
reported a mean absolute error (MAE) of 1.74 m and RMS of 3.10 m of the TanDEM-X
90m product for floodplains. The TanDEM-X 90m product has been used frequently in
geoscience research such as glacier melting, mining-area detecting, and water storage
estimation [40–42]. Given the access limitations of TanDEM-X at 0.4 arcsec, the TanDEM-X
90m DEM products with a pixel spacing of 3 arcsec were used to obtain the surface elevation
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in this study. The downloaded TanDEM-X 90m DEM products included 2309 files, covering
a range of [70◦E–135◦E, 15◦N–55◦N]. According to the product documentation, the height
of TanDEM-X 90m is the ellipsoidal height. Thus, the following equations were used to
convert the ellipsoidal height hE to the geopotential height HG to unify the elevation system
in this study [43,44]

HG =
g(φ)Re(φ)·hE
g0(h + Re(φ))

(5)

g(φ) = 9.80620 × (1 − 2.6442 × 10−3 cos 2φ + 5.8 × 10−6 cos2 2φ) (6)

Re(φ) =
a

1 + f + m − 2 f sin2 φ
(7)

where φ is the latitude, g0 = 9.80665 m s−2, a = 6378.137 km, f = 1/298.257223563, and
m = 0.00344978650684.

Since the current release of TanDEM-X DEM products is the non-edited version, each
TanDEM-X DEM product can contain voids or invalid data and areas with missing height
values. For our research area, the vast majority of areas with missing height values were
marine areas. Therefore, we empirically set all missing height values to 0 during data
processing. The geopotential heights calculated by the TanDEM-X 90m DEM products are
shown in Figure 2, and the heights of the lowest layer of ERA5 at UTC 00:00 on 1 January
2019 were compared. From Figure 2, we find that the TanDEM-X 90m DEM products can
effectively express the surface elevation in our research area. For the ERA5 geopotential
height at the lowest layer, its range is generally between 100 and 400 m, which differs
greatly from the actual surface elevation.
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3. Model Establishment of Weighted Mean Temperature
3.1. Height Correction for Tm

The objective of this study was to create a precise Tm empirical model over the research
area based on ERA5 hourly data on pressure levels. Therefore, it is important to study the
vertical and temporal variations of ERA5 Tm data. We first selected six representative grid
points at the high-altitude area [87◦E, 28◦N], the basin area [89◦E, 43◦N], the eastern coast
[121◦E, 31◦N], the western interior [85◦E, 45◦N], the southern rainforest [101◦E, 22◦N], and
the northern snowfield [127◦E, 45◦N] in the research area. Figure 1 shows the location
distribution of these six representative grid points. According to the surface elevation
obtained in Section 2.2, the geopotential heights of these six grid points are 5273.33, 127.99,
9.85, 233.54, 1052.14, and 184.06 m, respectively. Through Equations (1)–(2), we can calculate
the Tm profiles at UTC 00:00 on 1 January 2018. Figure 3 shows the vertical variation of
ERA5 Tm data at these six grid points.
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From Figure 3, we find that within the altitude range of 0–10 km, Tm gradually
decreases with the increase in altitude, approximately showing a linear variation. In
previous studies, the linear regression model was often adopted to describe the relationship
between Tm and altitude in the lower atmosphere [28–30,45]. Therefore, we used the
following formula to describe the variation of Tm in the height range of 0–10 km

Tm = Tms − β·(h − hs), h < 10 km (8)

where Tms is the Tm at the reference level hs (km), β is the Tm lapse rate (K/km), and h is
the height (km). To determine the height of the reference level hs, we estimated the model
coefficients using the least-squares method through ERA5 Tm profiles below 10 km for
the six grid points mentioned above in 2018. At the same time, we calculated ERA5 Tm
at the surface elevation (obtained in Section 2.2) as reference data. Figure 4 shows the
difference of model Tm (hs was set to 0 in Equation (8)) referenced to the ERA5 Tm. In
Figure 4, all the differences are calculated based on the reference data minus the model
data. We also found that the most differences of the six grid points are between −6 and 6 K.
After calculation, the mean bias at the six grid points are 0.85, −1.22, −0.89, −1.59, −0.37,
and 0.06 K, respectively. The RMS values at the six grid points are 1.69, 1.81, 2.97, 2.27, 0.88,
and 1.83 K, respectively. The mean bias and RMS of the four grid points are −0.53 and
1.91 K, respectively. The formulas of the mean bias and RMS are shown as follows:

mean bias =
1
n

n

∑
i=1

(Xorigin − Xi) (9)

RMS =

√
1
n

n

∑
i=1

(Xorigin − Xi)
2 (10)

where n is the number of data points in the time series X, Xorigin is the original value, and
Xi is the i-th value of the fitting model.

According to the statistical results, the mean biases of the linear regression model in
the southern rainforest and northern snowfield are close to 0, while a negative deviation is
found in the high-altitude area and positive deviations in the basin area, eastern coast, and
western interior. The linear regression model shows the best fitting accuracy in the southern
rainforest and the worst fitting accuracy in the eastern coast. Compared to high-altitude
areas, the linear regression model in low-altitude areas has poorer fitting accuracy at the
surface height. When the reference level is simply set to 0, the fitting performance of the
linear model at surface height is poor. Therefore, we used the surface elevation derived
from TanDEM-X 90m DEM products as the reference level hs in our study to avoid the
influence of bias caused by linear interpolation in surface Tm estimates.
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3.2. Time Series Modeling Using the Fourier Series

Ding and Hu detected the periodic signals of the annual and semiannual variations in
the Tm time series at 309 global radiosonde stations [46]. Other studies also show that strong
seasonal variations exist in the time series of the Tm and Tm lapse rate [16,28,47]. Therefore,
we used a Fourier series, with annual, semiannual, and diurnal periods, to model Tm for
all the grids with a spatial resolution of 0.5◦ × 0.5◦ in the research area. Regarding the Tm
lapse rate, considering its weak diurnal variations [47], the Fourier series with annual and
semiannual periods was used to fit the time series of the Tm lapse rate. The seasonal model
was constructed as follows:

Tms = a1 + a2·(yr − 2011) + a3· sin( 2πdoy
365.25 ) + a4· cos( 2πdoy

365.25 ) + a5· sin( 4πdoy
365.25 )

+a6· cos( 4πdoy
365.25 ) + a7· sin( 2πhod

24 ) + a8· cos( 2πhod
24 )

(11)

β = b1 + b2· sin(
2πdoy
365.25

) + b3· cos(
2πdoy
365.25

) + b4· sin(
4πdoy
365.25

) + b5· cos(
4πdoy
365.25

) (12)

where Tms and β are model coefficients in Equation (8), a1 is the annual mean value of Tms,
a2 is the trend coefficient, yr is the year, and (a3, a4, a5, a6, a7, a8) are the model coefficients.
b1 is the annual mean value of β, and (b2, b3, b4, b5) are the model coefficients. doy is day of
year, and hod is hour of day. To estimate the unknown coefficients of the seasonal model,
we calculated ERA5 Tm values at the surface height for all the grid points from 2011 to
2018 and calculated the corresponding Tm lapse rates using the least-squares method based
on ERA5 Tm profiles below 10 km. After that, the threshold check and outlier check were
performed on the time series of Tms and β to ensure the validity of the estimated coefficients.
The details are summarized as follows:

1. Tms values smaller than 210 K and higher than 303 K are removed in the threshold
check, while β values smaller than −10 K/km and higher than 0 K/km are removed.

2. Tms values and β values that differ from their mean value by more than 3 times the
standard deviation are removed.

After implementing the above quality control strategy, the coefficients of the seasonal
model could be estimated using the least-squares method. In Figure 5, we provide an
example at the grid point [115◦E, 35◦N] in which the original values are compared with the
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model values. From the figure, we know that the seasonal model captures the temporal
variation characteristics of the original Tms and β values. However, there are certain
differences between the model values and original values at the peak and trough positions
(corresponding to summer and winter). This is related to the properties of the seasonal
model, as we only described the main changing characteristics of the time series. To
effectively demonstrate the performance of the seasonal model, the time series of the Tms
and β at all the ERA5 grid points in the research area from 2011 to 2018 were fitted using
Equations (11) and (12). Figure 6 shows the RMS of the fitting residuals of the Fourier series
at ERA5 0.5◦ × 0.5◦ grid points.
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Figure 5. Time series of Tms and β from 2011 to 2018 at the grid point [115◦E, 35◦N]. Red points are
fitting values of the Fourier series, while black points are the original values.

Figure 6 shows that the Tms RMS is larger at high latitudes and smaller at low latitudes,
except at the Tibetan Plateau. This may be due to the Tibetan Plateau being higher than
other regions and having a lower temperature. The figure also shows that the β RMS
is higher in the northeast region, smaller in the low-latitude region, and smallest in the
Tibetan Plateau. After calculation, the mean RMS of Tms and β of the seasonal model is
3.36 K and 0.63 K/km, respectively. The accuracy of the fitting results is similar to the
statistical result (mean RMS is 3.32 K) in [28], which shows that the established seasonal
model is effective in this study.
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3.3. Bias Correction for the Tm Lapse Rate

ERA5 reanalysis can be seen as a high-precision simulation of atmospheric conditions
rather than a true reflection. A previous study shows that the ERA5-induced PWV error
is generally less than 1 mm, and the average RMS values of ERA5 pressure, surface air
temperature, and Tm are 0.7 hPa, 1.8 K, and 1.6 K, respectively [32]. Therefore, the Tm lapse
rate calculated using the Fourier series, which is established based on the ERA5 profiles,
will also deviate from the true values. The accuracy analysis should be conducted for the Tm
lapse rate of the above seasonal model to improve the accuracy of the Tm empirical model.
In this study, the calculated Tm lapse rates at 89 stations from 2011 to 2018 were regarded
as references to evaluate the accuracy of the Tm lapse rate of the seasonal model. The
corresponding model β was calculated using inverse distance weighted with the model β
values at the four nearest ERA5 grid points surrounding the radiosonde station. Afterward,
we obtained the bias time series of the Tm lapse rate at 89 radiosonde stations, and all the
biases were calculated based on reference values minus model values. Figure 7 shows
the relationship of the mean bias ∆β with the geopotential height (hs), latitude (lat), and
longitude (lon). In the figure, we find that ∆β shows an upward trend with increasing
height, and its relationship with the latitude is approximate to a second-order polynomial.
As to the longitude, its correlation with ∆β is relatively low. In Figure 7, we also provide the
fitting results of a second-order polynomial. We find that the fitting lines related to height
and latitude perform better than the fitting line related to longitude. After calculation, the
R-squared values between ∆β and the fitting values of altitude, latitude, and longitude
are 0.3729, 0.4639, and 0.2066, respectively. These results indicate that ∆β has a middle
correlation with altitude and latitude and almost no correlation with longitude. Therefore,
we used the second-order polynomial composed of altitude and latitude to fit the mean
bias ∆β or correcting the bias in the seasonal model.

∆βc = c1 + c2·hs + c3·lat + c4·hs·lat + c5·h2
s + c6·lat2 (13)

where ∆βc is the correction value of β calculated by the seasonal model, [c1, c2, c3, c4, c5, c6]
are the coefficients of the second-order polynomial, hs refers to the surface height, and lat
refers to the latitude. The least-squares method was used to calculate the coefficients of
Equation (13) based on the mean bias ∆β at 89 radiosonde stations. The correction formula
can be rewritten as follows:

∆βc = −1.6890 − 0.0657hs + 0.0753lat + 0.0005hs·lat + 0.0410h2
s − 0.0009lat2

uncertaintystd = [ 0.2056 0.0867 0.0123 0.0024 0.0085 0.0002 ]
(14)

where the units of ∆βc, hs, lat, and lon are K/km, km, degree, and degree, respectively,
and uncertaintystd is the uncertainty of the coefficients in Equation (13). In this study,
we used the complete Equation (14) to correct the Tm lapse rate. Figure 8 shows the
comparison of the mean bias and RMS of the Tm lapse rate (β) of the seasonal model before
and after correction. For the original Tm lapse rate, the mean bias of these 89 radiosonde
stations ranges from −0.6 K/km to 0.4 K/km, and the RMS of these 89 radiosonde stations
ranges from 0.5 K/km to 1.2 K/km. For the Tm lapse rate after correction, the mean bias
of these 89 radiosonde stations ranges from −0.4 K/km to 0.4 K/km, and the RMS of
these 89 radiosonde stations ranges from 0.4 K/km to 1.1 K/km. After correction, the
mean bias and RMS becomes relatively small. For stations numbered 0–48, the RMS of
the corrected values hardly improved. For stations numbered 49–89, there is an obvious
accuracy improvement after using the correction formula. This finding is consistent with
the variation of the mean bias. Therefore, we can conclude that the correction formula
adopted in this study has a better effect on stations with larger biases, while stations with
smaller biases have almost no improvement. Overall, the accuracy of the model β can be
improved based on considering the relationship of mean bias ∆β with height and latitude.
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According to the above analysis, this study proposed a new empirical model of
atmospheric Tm with a spatial resolution of 0.5◦ × 0.5◦ over China and the surrounding
areas, which consists of the model coefficients of Equations (11) and (12) and bias correction
for the Tm lapse rate at each grid point. The bias correction values were calculated with
latitude and the surface elevation from TanDEM-X 90m DEM products at corresponding
grid points. For convenience, this new model was named the regional grid Tm empirical
model (RGTm model). The process of model establishment of the RGTm model is shown in
Figure 9. Compared to previous empirical models [28,31], this model considers the setting
of the height of the reference level and adopts a bias correction strategy for the Tm lapse
rate. When using the proposed RGTm model, the latitude, longitude, geopotential height,
and time (year, doy, and hod) are first required. Then, the Tm values at these four nearest
grid points at the same height are calculated by Equations (8), (11), (12), and (14) for a given
location. Finally, inverse distance weighting is used to calculate Tm at the given location.
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4. Model Validation

To evaluate the performance of the proposed RGTm model, the surface Tm values
derived from ERA5 reanalysis and radiosonde profiles in 2019 were regarded as references.
At the same time, we selected the GPT3 (1◦ × 1◦) and GGNTm model (1◦ × 1◦) [48] for
comparison. The commonly used GPT3 model (1◦ × 1◦), which is slightly better than the
GPT2w model (1◦ × 1◦), was established on ERA-Interim monthly mean pressure-level
data. The GGNTm model (1◦ × 1◦) was established on ECMWF ERA5 monthly mean
reanalysis data by utilizing the three-order polynomial function to fit the vertical nonlinear
variation of Tm. Website https://amt.copernicus.org/articles/14/2529/2021/ (accessed on
1 February 2024) provides the code for the GGNTm model. With latitude, longitude, time,
and ellipsoidal height, the Tm values of the GPT3 and GGNTm model could be calculated.
An uncorrected seasonal model called the USTm model was established for comparison
as well. This model adopts a modeling strategy similar to the RGTm model, with the
difference being that the reference height hs of Equation (3) in the USTm model is set to
0 m, and the bias correction for the Tm lapse rate is not performed.

4.1. Accuracy Analysis Using ERA5 Tm Data

Based on the surface elevation derived from the TanDEM-X 90m DEM products in
Section 2, we can calculate the surface ERA5 Tm data through Equations (1)–(4). In this
subsection, we used the surface ERA5 Tm data in 2019 as the reference values to evaluate the
performance of the proposed RGTm model. For comparison, we also calculated the surface
ERA5 Tm data of the GPT3, GGNTm, and USTm models at each grid point in 2019. The
latitude, longitude, height, and time were the input values required by the GPT3, GGNTm,
USTm, and RGTm models. Therefore, we can calculate the time series of biases of these
four models based on the model values and reference values. Figure 10 shows Tm mean
bias and RMS of the four models at each grid point, in which all the biases are calculated

https://amt.copernicus.org/articles/14/2529/2021/
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based on the surface ERA5 Tm data minus the model Tm data. For clearer expression, we
limited the range used in Figure 10 to enhance the variations.
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From Figure 10, we can find that the GPT3 model results in a smaller absolute mean
bias and RMS when the overall accuracy is considered. However, drastic changes are
obvious in the mean bias and RMS of the GPT3 model in high-altitude areas, such as the
Kunlun Mountains, Himalayas, Qilian Mountains, and Tian Shan Mountains. There are
significant changes in surface elevation in these areas. This phenomenon is consistent with
the lack of elevation correction in the GPT3 model. Compared with the GPT3 model, the
GGNTm, USTm, and RGTm models have a small mean bias and RMS in the research area.
In high-altitude places such as the Tibetan Plateau, the GGNTm, USTm, and RGTm models
have better accuracy than the GPT3 model. There are two reasons for this situation. First,
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the GPT3 model lacks the corresponding parameter of Tm for vertical adjustment. Second,
the spatial resolution of the GPT3 model is lower than that of the GGNTm, USTm, and
RGTm models. The commonality between the GGNTm, USTm, and RGTm models is that
the RMS at low latitudes is smaller, while the RMS at high latitudes is larger. However,
the mean bias and RMS of the GGNTm and RGTm models were improved in the Tibetan
Plateau compared to the USTm model. This is because the GGNTm model utilized the
three-order polynomial function to fit the vertical nonlinear variation. For the RGTm model,
this is mainly determined by the height setting of the reference level in Equation (8).

Figure 11 shows the distribution of the number of ERA5 grid points with respect to
the RMS of these four models. We find that the RMS of the GPT3, GGNTm, USTm, and
RGTm models at most ERA5 grid points are in the ranges of 1.8–6 K, 1.8–5.4 K,1.8–5.4 K,
and 1.2–5.4 K, respectively. In these four models, the RGTm model has the highest accuracy.
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Table 1 lists the accuracy statistics of the Tm from these four models. From the table,
we can know that the mean bias of the RGTm model ranges from −1.61 K to 1.65 K, with a
mean of 0.07 K. The range of RMS of the RGTm model is 1.66–5.56 K, with a mean of 3.38 K.
The mean biases of the GPT3, GGNTm, and USTm models are −0.66, 0.17, and −0.29 K,
respectively. The mean RMS of the GPT3, GGNTm, and USTm models are 3.85, 3.42, and
3.46 K, respectively. Compared with the other three models, the average value of the mean
bias of the RGTm model is closest to 0, and the RMS value is the smallest. The range of the
mean bias and RMS also shows that the accuracy of the RGTm model is more stable than
the other three models in the research area.
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Table 1. Tm mean bias and RMS in 2019 at ERA5 grid points.

Model Bias (K) RMS (K)

Max Min Mean Max Min Mean

GPT3 model 13.11 −21.45 −0.66 21.87 1.66 3.85
GGNTm model 5.31 −1.90 0.17 6.17 1.77 3.42

USTm model 2.50 −2.31 −0.29 5.56 1.68 3.46
RGTm model 1.65 −1.61 0.07 5.56 1.66 3.38

4.2. Accuracy Analysis Using Radiosonde Tm Data

In this subsection, we used the radiosonde Tm data at radiosonde stations in 2019 as
references to evaluate the performance of the proposed RGTm model. Owing to the missing
data at radiosonde station 57,679 in 2019, the number of radiosonde stations used for model
validation was 88. Using the latitude, altitude, and longitude of the radiosonde station,
the Tm time series of the GPT3, GGNTm, USTm, and RGTm models can be calculated for
88 radiosonde stations in 2019. Then, we calculated the time series of biases of these four
models based on the model values and reference values. Figure 12 shows the Tm mean bias
and RMS of the four models in which all the biases were calculated based on the radiosonde
Tm data minus the model Tm data. For clearer expression, we also limited the range used in
Figure 12 to enhance the variations.

From Figure 12, we can find that the GPT3 model mainly shows negative biases in low
latitudes (<24◦) and positive biases in other regions. Compared with the GPT3 model, the
GGNTm, USTm, and RGTm models result in small mean bias and RMS in the research area,
except for five stations in low-latitude areas. In these five stations in low-latitude areas, the
accuracy of the GPT3, GGNTm, and RGTm models are similar, while the accuracy of the
USTm model is the worst. Large negative biases appear in the assessment results of the
GPT3, GGNTm, USTm, and RGTm models at these five stations, which is different from
the results in the ERA5-referenced assessment. We calculated that when the radiosonde
Tm data in 2019 were used as references, the mean bias and RMS of ERA5 Tm data in these
five stations are −4.15 and 5.64 K, respectively. This significant bias resulted in the reduced
accuracy of the GPT3, GGNTm, USTm, and RGTm models. Given the differences in the
reference data, there was a deviation in the results calculated in low-latitude areas between
this section and Section 4.1. In the southeastern part of the research area, the mean bias and
RMS of the RGTm model were improved compared with those of the USTm model. This
outcome indicates that the height setting and bias correction strategy for the Tm lapse rate
are effective.

Figure 13 shows the distribution of the number of radiosonde stations with respect to
the RMS of these four models. From the figure, we can know that the RMS of the GPT3,
USTm, GGNTm, and RGTm models at most ERA5 grid points are in the ranges of 3–5.4 K,
2.4–5.4 K, 2.4–4.2 K, and 2.4–4.2 K, respectively. The station RMS distribution of the RGTm
model is similar to that of the USTm model. However, the number of stations with RMS
less than 3.6 K in the RGTm model is higher than that in the USTm model.

Table 2 provides the accuracy statistics of the Tm from four models at 88 radiosonde
stations. We find that the range of the mean bias of the RGTm model is −4.20K to 3.25 K,
with a mean of 0.06 K. The range of RMS of the RGTm model is 2.42K to 6.73 K, with a mean
of 3.76 K. The mean biases of the GPT3, GGNTm, and USTm models are 1.76, 0.62, and
−0.50 K, respectively. The mean RMS of the GPT3, GGNTm, and USTm models are 4.44,
3.88, and 3.96 K, respectively. In these four models, the GPT3 model has the highest absolute
value of mean bias and the highest mean RMS because of its lack of vertical correction
and low accuracy in high-altitude areas. The RGTm model achieved similar results with
the GGNTm and USTm models in bias and RMS statistics and performed better than the
GPT3 model. However, the bias of the five radiosonde stations analyzed above made it
difficult to significantly improve the accuracy of the USTm model at these five stations.
The modeling strategy of the RGTm model improves this drawback. Compared with the
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GPT3, GGNTm, and USTm models, the mean RMS of the RGTm model was improved by
approximately 15.32%, 3.09%, and 5.05%, respectively. Overall, the RGTm model exhibited
the best performance among these four models.
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Table 2. Tm mean bias and RMS in 2019 at 88 radiosonde stations.

Model Bias (K) RMS (K)

Max Min Mean Max Min Mean

GPT3 model 7.41 −3.27 1.76 8.15 2.43 4.44
GGNTm model 3.08 −3.81 0.62 6.68 2.54 3.88

USTm model 2.99 −6.32 −0.50 7.62 2.48 3.96
RGTm model 3.25 −4.20 0.06 6.73 2.42 3.76

To reflect the accuracy distribution characteristics of the Tm empirical model in the
time domain, we calculated the mean biases and RMSs of the GPT3, GGNTm, USTm, and
RGTm models at UTC 0:00 and 12:00 in 2019. Figure 14 shows the time series of mean bias
and RMS of these four models. From the figure, we can find that the GPT3 model shows
obvious positive bias, and its RMS ranges from 2 K to 9 K, which is the largest among the
four models. The changes of the mean bias of the GGNTm, USTm, and RGTm models are
relatively consistent, but the absolute mean bias of the RGTm model is relatively smaller.
The mean bias of the RGTm model ranges from −4 K to 4 K in most epochs, and its RMS
ranges from 2 K to 7 K. Compared with the other three models, the mean RMS of the RGTm
model is the smallest, which is also consistent with the above analysis.
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4.3. Impact of Tm Estimations on the GNSS PWV Derivation

In GNSS meteorology, the role of Tm is to convert GNSS ZWD into PWV. Therefore,
the impact of the accuracy of the Tm model on GNSS-derived PWV should be discussed.
Under the condition of ignoring ZWD error, the relationship between the RMS of the Tm
model and the computed PWV can be expressed as follows [43]:

σ =
∆PWV
PWV

=
RMSΠ

Π
=

k3

(k3/Tm + k′2)Tm
·RMSTm

Tm
(15)

where σ is the relative error of PWV, Π is the dimensionless conversion factor for converting
ZWD to PWV, and k′2, k3 are atmospheric refractivity constants [11]. The values of RMSTm

are obtained from Section 4.2 and the Tm in Equation (15) is set to the mean value of
radiosonde Tm data in 2019. After calculation, the mean relative errors of the GPT3,
GGNTm, USTm, and RGTm models are 1.60%, 1.40%, 1.42%, and 1.35%, respectively. The
performance of the RGTm model is superior to those of the other three models.

5. Conclusions

Tm is an important parameter to calculate PWV in the water vapor inversion of
GNSS. In situations where it is difficult to obtain the atmospheric profile above the GNSS
station, Tm is usually calculated by regression relationships with other meteorological
parameters or by empirical models. Compared to the Tm model based on measured
meteorological parameters, the empirical model without meteorological parameters can
better serve GNSS stations lacking collocated meteorological sensors or historical GNSS
observations lacking matching meteorological parameters. This study combines ERA5
reanalysis data, radiosonde data, and TanDEM-X 90m products to propose the RGTm
model of Tm without meteorological parameters in China and the surrounding areas. The
RGTm model considers the setting of the reference height in the height variation formula
and the bias correction for the Tm lapse rate. By simply inputting longitude, latitude, height,
and time information, the corresponding Tm and Tm lapse rate can be calculated.

To validate the performance of the RGTm model, Tm values derived from ERA5
reanalysis data at all grid points and radiosonde data from 88 stations in 2019 were used as
references. At the same time, the GPT3, GGNTm, and uncorrected seasonal model (USTm
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model) were used for comparison. Compared to the GPT3, GGNTm, and USTm models,
the accuracy of the Tm of the RGTm model is improved by approximately 12.21%, 1.17%,
and 2.31%, respectively, when ERA5 Tm data are used as references. If radiosonde Tm
data are used as references, the accuracy of Tm values calculated by the RGTm model is
improved by approximately 15.32%, 3.09%, and 5.05%, respectively. Results show that
using the surface elevation as the reference height and performing bias correction for the
Tm lapse rate can effectively improve the accuracy of the Tm empirical model.

This article proposes a new regional grid Tm empirical model based on the temporal
and vertical variations of Tm. During the research process, we also found that the accuracy
of the constructed empirical model largely depends on the accuracy of Tm values calculated
from the reanalysis data, which are influenced by the accuracy of reanalysis meteorological
parameters. Therefore, the subsequent research plan is to calibrate the meteorological
parameters of the reanalysis data to construct a more stable and accurate Tm model.
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