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Abstract: This study focused on developing a novel semi-empirical model for maize’s light extinction
coefficient (kp) by integrating multiple remotely sensed vegetation features from several different
remote sensing platforms. The proposed kp model’s performance was independently evaluated
using Campbell’s (1986) original and simplified kp approaches. The Limited Irrigation Research
Farm (LIRF) in Greeley, Colorado, and the Irrigation Innovation Consortium (IIC) in Fort Collins,
Colorado, USA, served as experimental sites for developing and evaluating the novel maize kp model.
Data collection involved multiple remote sensing platforms, including Landsat-8, Sentinel-2, Planet
CubeSat, a Multispectral Handheld Radiometer, and an unmanned aerial system (UAS). Ground
measurements of leaf area index (LAI) and fractional vegetation canopy cover (fc) were included. The
study evaluated the novel kp model through a comprehensive analysis using statistical error metrics
and Sobol global sensitivity indices to assess the performance and sensitivity of the models developed
for predicting maize kp. Results indicated that the novel kp model showed strong statistical regression
fitting results with a coefficient of determination or R2 of 0.95. Individual remote sensor analysis
confirmed consistent regression calibration results among Landsat-8, Sentinel-2, Planet CubeSat, the
MSR, and UAS. A comparison with Campbell’s (1986) kp models reveals a 44% improvement in
accuracy. A global sensitivity analysis identified the role of the normalized difference vegetation index
(NDVI) as a critical input variable to predict kp across sensors, emphasizing the model’s robustness
and potential practical environmental applications. Further research should address sensor-specific
variations and expand the kp model’s applicability to a diverse set of environmental and microclimate
conditions.

Keywords: environmental biophysics; remote sensing; spatial modeling; gap fraction; canopy
architecture; vegetation indices

1. Introduction

The vegetation growth and biomass development of forest plants and crops are directly
related to the capacity of plants to intercept, transmit, and absorb solar energy in the
form of incoming photosynthetically active radiation, often known as PAR [1–7]. When
characterizing the canopy architecture arrangement of plants, vegetation indices such as the
leaf area density (LAD), leaf area index (LAI), and fractional vegetation cover (fc) provide
information on the canopy status regarding the assemblage of above-ground plant elements
(leaves, stems, branches, etc.) on a spatio-temporal basis [8]. The LAD index concerns
the one-sided green leaf area per unit of canopy volume [9]. The LAI is often defined as
the total area occupied by plant leaves per unit area of the ground surface, while fc is the
fraction of surface land occupied by plant elements [10]. The LAI is also defined as the
integral of the LAD over canopy height [11].
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Canopy architecture variables directly influence environmental biophysics processes
associated with crop yield, plant transpiration, and carbon retention [12–14]. Understand-
ing canopy architecture has potential benefits for maximally utilizing commercial plants’
or crops’ land area, space, and light energy [15]. Also, the canopy architecture arrangement
has a vital influence on the dynamics regarding the physical processes of water vapor
and carbon exchange within the soil–plant–atmosphere continuum [16–19]. In the field
of environmental biophysics, the LAI and fc are related to each other through the light
attenuation (or “canopy gap fraction”) theory [20,21].

The light attenuation concept relies on the assumption that as PAR light reaches
a vegetation surface, the interactions between the light beam and the number of plant
elements (leaves, stem, branches, etc.) cause light to be transmitted, absorbed, or reflected
by the plant elements [8]. Thus, the PAR flux above the canopy is reduced as the light beam
travels through the canopy towards the ground surface, which constitutes the “canopy
gap fraction” (fPAR) between the source of incoming PAR flux above the canopy (φo)
and the downward short-wave irradiance (light flux) within the canopy (φdown). Several
studies indicate that fPAR can be explained and modeled using a decaying exponential
function based on the Beer–Lambert spectroscopy law for randomly distributed canopy
leaves [22–25], as indicated by Equations (1) and (2):

fPAR = exp
(
−kp × LAI

)
(1)

fPAR = φdown/φo (2)

where φdown and φo are measured in W/m2, LAI units are in m2/m2, fPAR is dimensionless
(0 to 1), and kp is the light extinction coefficient (dimensionless). The fPAR variable indicates
the ratio of the incoming PAR flux that is attenuated within the canopy and that reaches the
ground surface. Thus, fc is often defined as “1 − fPAR”, the fraction of PAR flux absorbed
or intercepted by the plant elements, as indicated in [26].

The kp parameter has its physical meaning associated with the decay rate of the PAR ir-
radiance within the canopy [27] and serves as an input for forest and canopy growth model-
ing [28,29], evapotranspiration estimation using surface energy balance approaches [30–33],
ecosystem flux modeling [34], and spectral pixel decomposition into soil and vegetation
composites [35]. Furthermore, the parameter kp depends on the canopy structure elements,
the position of the sun relative to the ground surface at a given time of the day, and the
multispectral light leaf response [36–39]. Typical values of kp for crops range from 0.30 to
1.50 and are associated with a given canopy species type [40]. For maize [41] (Zea Mays L.),
reported kp values in the literature vary from 0.40 to 0.72 when maize is fully developed at
maximum LAI values [42–44].

Direct measurements of kp are not feasible due to a lack of specific instrumen-
tation to obtain on-site data. Thus, on-site kp values are often retrieved by solving
Equations (1) and (2) for kp with measurements of φo, φdown, and the LAI as inputs [45].
Measurements of fPAR are commonly performed using PAR detectors above the canopy
and at the ground surface level. LAI measurements are commonly performed using de-
structive [46–48] and non-destructive [9,46,49,50] techniques. Even though LAI and fPAR
measurements are widely used in environmental studies, they are often tedious, and the
data collection is labor intensive [51]. When it comes to agricultural fields in particular,
surface heterogeneity conditions (e.g., soil water status, soil texture, soil salinity, soil com-
paction, differences in canopy architecture development, cropland field layout) are often
present, and they require extensive sampling locations (point-based data) to accurately
represent the inherent spatial variability in cropland fields [52,53]. Thus, modeling kp has
been used to obtain estimates of the characteristics of light attenuation in vegetated surfaces
for the past 44 years [27,33,36,45,54–59].

In Japan, ref. [58] developed a kp model for maize and rice using a locally calibrated
linear model that had the LAI as a predictor. Ref. [27] developed a model for kp that
assumes an ellipsoidal inclination angle distribution for plant canopies and uses the leaf
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geometry ratio between horizontal and vertical projections and the solar zenith angle
as predictors. The overall accuracy of [27] kp model, in terms of the root mean square
error (RMSE), was between 0.004 and 0.01 for data obtained in maize, soybeans, and
sunflower canopies in England. Ref. [36] developed semi-empirical models for fPAR using
different vegetation indices and provided linear models that relate kp to an equivalent
light extinction coefficient derived for a given vegetation index using local data from sugar
beet and wheat fields in France and Netherlands. Ref. [55] linearly modeled kp using the
normalized-difference vegetation index (NDVI) as a predictor for watershed plant growth
modeling. Ref. [55] modeled plant growth using the Soil and Water Assessment Tool
(SWAT) and found that kp had a large spatial variability at a regional scale, with kp values
ranging from 0.03 to 2.90 across a wide range of vegetation cover types (e.g., coniferous
trees, broad-leaved forests, shrubs, and others).

Ref. [56] estimated kp for apple orchards in Chile through an exponential model using
fc as a predictor and found that the non-linear kp model improved the estimation of the LAI
by 28% compared to a tabulated or constant value of kp for apple trees. Ref. [59] used the
kp model from [36] to estimate kp for a wide range of urban heterogeneous forest types in
Washington, USA, using light detection and ranging (LIDAR) aerial data and found that the
“canopy gap fraction” approach based on Beer’s law [24], which assumes localized surface
homogeneity, does not accurately represent urban scenarios where tree heterogeneity
is significant. Ref. [45] used machine-learning regression as a random forest algorithm
to predict the LAI and kp for deciduous forests in India using Landsat-8 multispectral
data. They found that the machine-learning algorithm predictions of kp had a normalized
RMSE or NRMSE of 12% and explained 77% of the variability in observed kp. Ref. [57]
investigated the use of a combined “canopy gap fraction” and NDVI to estimate the LAI for
three wheat crop varieties with different leaf angle orientations (e.g., erectophile, planophile,
and middle types). They found that kp and NDVI were inversely and linearly related to
the fitted kp model, explaining 88% to 91% of the variability in observed wheat kp across
the three crop varieties. Ref. [54] estimated fPAR for maize fields in Argentina using seven
crop genotypes and five different kp modeling approaches based on non-linear regression
and Bayesian models. They found that the five kp models developed did not perform well
when estimating fPAR since fPAR values were outside the 0 to 1 range of expected values,
and kp estimation was unrealistic for typical maize values published in the literature.
Ref. [54] indicated that statistical models like Bayesian modeling approaches must be used
cautiously when predicting fPAR and kp.

Even though several studies provide different modeling approaches to kp for specific
vegetation types, significant issues impede the use of these models in cropland fields. First,
most kp published models are purely empirical and have the limitation of being suitable
for conditions that resemble the initial data used to calibrate the model. Second, the spatial
heterogeneity of agricultural fields often presents challenges in accurately determining
canopy structure and kp. The complexity of kp being influenced by different irrigation water
management practices and crop row layouts has been the center of discussion in previous
publications concerning maize, sorghum, soybean, and sunflower canopies [43,60]. A
study [60] indicated that under varying conditions of soil moisture (a surrogate for changing
canopy structure), the kp variable depends on the differences in the spatiotemporal canopy
structure (e.g., the LAI or fc) and might be subject to variability within cropland fields.
Ref. [43] showed a linear decrease in kp as the crop row layout increased.

To our current knowledge, there has never been a study that attempted to develop a
semi-empirical spatial model for maize kp that incorporates multiple canopy architecture
features (e.g., the LAI and fc) and NDVI composites for soil and vegetation using data
from several different multispectral remote sensing platforms. The inherent non-linear
nature of light transmission, absorption, and scattering within a surface requires more
sophisticated approaches to describe the canopy structure in agricultural fields. For row
crops such as maize, partial canopy cover conditions are predominant throughout the
growing season, and partitioning the ground surface between soil and plants is critical to
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enhance environmental physics modeling [61]. Maize is one of the major commodities in
the United States (USA) and around the globe, supporting the food production, energy,
and forage sectors of the local and global economy [62]. With the advent of climate change
through global warming scenarios [63] indicated that a 29% loss in maize yield in the USA
would be related to extreme drought events in the next thirty-five years. Thus, finding
ways to advance spatial modeling of maize environmental properties, such as kp, is critical
to improving cropland management practices focusing on the sustainable use of water and
nutrients, pest infestation detection, and crop yield optimization.

Hence, this study aimed to: (a) develop a novel semi-empirical model for maize
kp estimation using multiple canopy architecture features (i.e., LAI and fc) and NDVI
partitioning into soil and canopy composites derived from multispectral data from several
remote sensing (RS) platforms (e.g., spaceborne, airborne, and proximal); (b) independently
evaluate the performance of the proposed semi-empirical maize kp model, comparing it to
the most used kp approach from [27]; and (c) run a sensitivity analysis to identify the most
critical variables that add uncertainty to the semi-empirical maize kp predictions.

2. Materials and Methods
2.1. The Novel Maize Light Extinction Coefficient Model

When rearranging Equation (1), kp might be calculated as indicated by Equation (3) [22]:

kp = −
(

1
LAI

)
× ln(fPAR) (3)

In Equation (3), kp depends on the LAI and fPAR as inputs. While LAI estimates can be
obtained for maize using previously published or locally calibrated models (e.g., [64,65]),
fPAR estimation is often performed by taking kp as one input [36,38]. Thus, Equation (3) is
often used to derive “measured” kp values obtained using the measured (or estimated) LAI
and measured fPAR as inputs. Thus, kp needs to be modeled apart from fPAR. Assuming
that kp could be linearly associated with an equivalent light extinction coefficient (kv) from
vegetation indices [36], the kp modeling is given by Equation (4):

kp = β1 × kv + βo (4)

where kv is dimensionless; the βo and β1 parameters are the fitted intercept and slope of
the linear model for kp. Ref. [36] showed that kp and kv could be scaled by a constant
when deriving semi-empirical calibrated functions for determining the fractional light
transmittance from partitioned vegetation indices into soil and vegetation components.

The kv variable is determined from a non-linear vegetation index decomposition
model based on the modified Beer–Lambert law and indicated by Equation (5) [66–70]:

VI = VIc + (VIsoil − VIc)× exp(−kv × LAI) (5)

where VI refers to a given vegetation index and VIc, and VIsoil are the VI values for bare
soil (fc = 0) and fully vegetated (fc = 1) canopies.

For most environmental applications in the “canopy gap fraction” theory, NDVI has
shown to be a strong predictor (e.g., [68,71]). Thus, this study considered NDVI to calculate
kv as the VI variable in Equation (5). When rearranging Equation (5), kv is calculated as
indicated by Equation (6) [69]:

kv = −
(

1
LAI

)
× ln

(
NDVI − NDVIc

NDVIsoil − NDVIc

)
(6)

where NDVIsoil and NDVIc are the NDVI values for bare soil and fully vegetated conditions,
respectively.

The main issue with Equation (6) is determining NDVIsoil and NDVIc spatial estimates.
Ref. [72] indicated that most of the studies that require NDVIsoil and NDVIc as input data
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use fixed values based on statistical thresholds from histogram analysis (e.g., [36,73–75]).
However, spatial variability in soil and canopy features is often present in cropland fields,
which does not support the assumption of a constant value of NDVIsoil and NDVIc for
most real field conditions. Furthermore, ref. [66] indicate that NDVIsoil is a function of the
shallow soil layer’s soil texture, roughness, and water content conditions. Hence, this study
proposes to determine NDVIsoil and NDVIc indirectly using NDVI data for a given day of
multispectral remote sensing (RS) imagery (space- or air-borne) or proximal (near surface)
discrete data acquisition.

The NDVIsoil and NDVIc are related to fc through a unique semi-empirical and
quadratic function of NDVI, as indicated by Equation (7) [10,68,71]:

fc =

(
NDVI − NDVIsoil
NDVIc − NDVIsoil

)2
(7)

Rearranging Equation (7) provides an expression for NDVI as a function of fc, NDVIsoil,
and NDVIc, as indicated by Equation (8) below:

NDVI =
√

fc × NDVIc +
(

1 −
√

fc

)
× NDVIsoil (8)

In Equation (8), the only unknown variables are NDVIsoil and NDVIc since NDVI and
fc are calculated from the multispectral data of a given remote sensing platform. Thus,
when differentiating Equation (8) concerning fc, the following equation for the NDVIc and
NDVIsoil difference is given as indicated by Equation (9):

NDVIc − NDVIsoil = 2 ×
√

fc ×
d

dfc
(NDVI) (9)

where d
dfc

(NDVI) is the first-order derivative of NDVI with respect to fc. Substituting
Equation (9) into Equation (8) gives the following models for calculating NDVIsoil and
NDVIc, as indicated by Equations (10) and (11), respectively:

NDVIsoil = NDVI − 2 × fc ×
d

dfc
(NDVI) (10)

NDVIc = NDVI + 2 ×
(√

fc − fc

)
× d

dfc
(NDVI) (11)

In Equations (10) and (11), the only unknown variable is d
dfc

(NDVI). Thus, it is
imperative to determine a way to calculate this first-order derivative of NDVI regarding fc.
In this study, we followed a procedure similar to that proposed by [76] to obtain d

dfc
(NDVI)

for each imagery pixel or for point-based proximal RS data from a given RS platform. The
following steps were taken to derive an empirical model for d

dfc
(NDVI):

• Using a multispectral image or point-based data within agricultural fields and for a
given remote sensing platform, the measured fc is divided into fc intervals. Minimum
(NDVImin) and maximum (NDVImax) values of NDVI are recorded for each fc interval,
as well as their respective fc values. Each fc interval provides two pairs of points
(NDVImin, fc,min) and (NDVImax, fc,max).

• Across all measured fc data intervals, the pair of points (NDVImin, fc,min) are linearly
regressed to obtain d

dfc
(NDVImin), which is given as the slope of the linear function

NDVImin = g(fc,min). Similarly, a process is followed to derive d
dfc

(NDVImax) using the
(NDVImax, fc,max) points across the fc data intervals.

• With values of d
dfc

(NDVImin) and d
dfc

(NDVImax) at fc,min and fc,max observed values,
respectively, d

dfc
(NDVI) is linearly interpolated for every pixel or for point-based

multispectral data for the remaining values of fc within the range [fc,min, fc,max].
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Hence, the linear interpolation model for d
dfc

(NDVI) is given by Equation (12) below:

d
dfc

(NDVI) = d
dfc

(NDVImin)

−
(

fc,min−fc
fc,min−fc,max

)
×

[
d

dfc
(NDVImin)− d

dfc
(NDVImax)

] (12)

The summary of the steps of the procedure followed to obtain the novel semi-empirical
approach for maize kp are provided in Figure 1. Essentially, the primary inputs for spatially
predicting kp are the LAI, fc, NDVIsoil, and NDVIc (both NDVI composites as a function
of fc).
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2.2. The General Light Extinction Model

The [27] general light extinction model was initially developed using an ellipsoidal
inclination angle distribution for plant leaves based on the following assumptions: kp
represents the ratio between the projected horizontal shadow cast and the leaf area [77].
The leaf area distribution of most vegetated canopies can have a spherical, cylindrical,
or conical shape [78]. By assuming a spherical leaf area distribution with a vertical and
horizontal axis, ref. [27] derived the general kp model for any vegetated canopy, as shown
in Equation (13) below:

k[C]
p =



√
ξ2+ 1

tan2(90
◦−Ω)

ξ+
sin−1(ϵ2)

ϵ2

, ξ < 1√
ξ2+ 1

tan2(90
◦−Ω)

ξ+0.50×ϵ1×ξ× ln
(

1+ϵ1
1−ϵ1

) , ξ ≥ 1

(13)

where the superscript [C] refers to the kp model presented in [27]; Ω is the solar zenith
angle (radians); ξ is the leaf distribution parameter (i.e., the ratio between the projected
area of a leaf on the horizontal and vertical planes); and ϵ1 and ϵ2 are auxiliary parameters
that are calculated as indicated by Equations (14) and (15), respectively [27,79]:

ϵ1 =

√
1 − ξ2 (14)

ϵ2 =

√
1 − ξ−2 (15)

Ideally, the ξ ratio is calculated using measured horizontal and vertical leaf lengths.
However, such measurements on a spatial basis are impractical. Thus, it is often assumed
that the ξ is nearly constant for homogeneous vegetated surfaces [27]. For maize, it was
assumed that ξ = 1.64 as the mean tabular value from [80].
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Ref. [27] indicated that when ξ = 1 (circular shape), Equation (13) is simplified and
indicated by Equation (17):

k[SC]
p =

1
2 × sin

(
90◦ − Ω

) (16)

where the superscript [SC] refers to the simplified kp model in [27].

2.3. Calculation of Vegetation Indices

The NDVI, LAI from [65], and OSAVI vegetation indices were calculated by
Equations (17)–(19), respectively:

NDVI =
NIR − RED
NIR + RED

(17)

LAI = 0.263 × exp(3.813 × OSAVI) (18)

OSAVI =
NIR − RED

NIR + RED + 0.16
× 1.16 (19)

where NIR and RED are the surface reflectance data in the near infrared and red bandwidths
of the electro-magnetic spectrum of a given RS platform (dimensionless) and OSAVI is the
optimized soil adjusted vegetation index. LAI is measured in m2/m2.

The fc model used in this study is the non-linear approach developed by [31,32], in
which fc is calculated as an exponential function of the LAI adjusted for canopy clumped
conditions (such as maize) where canopy leaves are randomly distributed above the ground
surface. The models associated with predicting fc are presented by Equations (20)–(24) [31,32]:

fc,o = 1 − exp(−0.50 LAI) (20)

LAIL = LAI/fc,o (21)

fs = 1 + fc,o × exp(−0.50 LAIL)− fc,o (22)

CF = − ln
(

fs

0.50 LAI

)
(23)

fc = 1 − exp(−0.50 × CF × LAI) (24)

where fc,o is the initial fc value before adjustments (dimensionless); LAIL is the local LAI
(m2/m2); fs is the soil fractional cover (dimensionless); and CF is the vegetation clumping
factor (dimensionless).

2.4. Research Sites
2.4.1. Limited Irrigation Research Farm (LIRF)

The Limited Irrigation Research Farm (LIRF) is located near Greeley, Colorado, USA, at
40.4463◦N, longitude 104.6371◦W, and 1432 m above sea level (ASL). The LIRF is managed
by the United States Department of Agriculture (USDA)—Agricultural Research Service
(ARS). The LIRF site has a subtropical steppe with a cold semiarid area [81]. Two adjacent
rectangular maize fields (190 m × 110 m) were used for data collection during the months
of July to September in 2018, 2020, and 2022 (Figure 2). The field had irrigation events
scheduled every time the soil water depletion, in the crop root zone, approached the selected
volumetric soil water content for management-allowed depletion (MAD) for maize. This
MAD value was 60% of the total available water (TAW) at the LIRF location.
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Figure 2. The LIRF experiment site in 2017, 2018, 2020, and 2021. The sampling locations provided
concurrent measurements of the LAI, fPAR, and hc. In 2020 (Field 1) and 2021 (Field 2), only one
sampling location at the frequently irrigated field was part of the experiment design. In 2017 and 2018,
each field had its sampling station for maize canopy architecture data. The red areas are vegetation.

Both maize fields at LIRF had subsurface drip irrigation with buried drip laterals
0.23 m deep and emitters spaced every 0.30 m. The maize row orientation was north–south,
with rows 76 cm apart and two consecutive maize plants 17 cm apart. The maize planting
density was 87,500 plants/ha during all years of data collection. In 2017 and 2018, the
maize variety was Dekalb 51–20 in each field. In 2020, NK9227-5222A (Syngenta Inc.,
Basel, Switzerland) was the maize variety, while in 2021, three maize varieties, P9998Q,
and P0157AMXT (Pioneer Hi-Bred International, Inc., Johnston, IA, USA), and CH 194-49
DG (Channel Bio Corporation, Saint Louis, MO, USA), were seeded across each field,
with approximately 83% of each treatment plot covered by the maize variety P0157AMXT
(Figure 3). Regardless of the maize type, all varieties were drought-tolerant.
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Irrigation scheduling was based on the United Nations paper FAO-56 Irrigation and
Drainage: Crop Evapotranspiration [82], which uses a dual crop coefficient and reference
alfalfa evapotranspiration (ETr). The ETr data were calculated as indicated by [83] as well.
The basal maize crop coefficient (Kcb) was determined as a local Kcb following the approach
of [84]. The stress coefficient (ks) for the low-frequency irrigation field was calculated using
the relationship between the total available water (TAW), readily available water (RAW),
and soil water deficit (Dr) from [83].

2.4.2. Irrigation Innovation Consortium (IIC)

The IIC site was in Fort Collins, Colorado, USA, at 40.5542◦N latitude, 105.0038◦W
longitude, and 1486 m ASL. The IIC site has a local climate classified as subtropical steppe
and cold semiarid [81]. Data collection happened on a surface-irrigated maize field (furrow)
from July to September in 2020 and 2021 (Figure 4). The maize field has a surface area of
64,750 m2, with an east–west maize row orientation and 76 cm row spacing. The field has a
uniform sandy loam soil texture with VWCFC, VWCPWP, and VWCSAT equal to 0.189, 0.069,
and 0.410 m3/m3, respectively. Several 4 cm-diameter aluminum siphon tubes provided
water from the irrigation ditch to the furrows in the field. The irrigation waterfront moved
from the east (central channel) to the west.
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Figure 4. The IIC experiment site in 2020 and 2021. The sampling locations provided concurrent
measurements of the LAI and hc. The fPAR measurement station is located on the field’s east side.
The green areas are vegetation.

Different maize varieties were planted in 2020 and 2021. The G02K39-3120 (Golden
Harvest, Minnetonka, MN, USA) variety was planted on 13 May 2020 at an 8 seeds/m2

seeding rate. In 2021, the maize varieties NK0243-3120 and NK0314-5122 (Syngenta AG,
Basel, Switzerland) were planted at the same seeding rate as in 2020. The seeding date
was 13 May 2021. All maize varieties in this study were classified as drought tolerant.
The irrigation application efficiency of the surface furrow system was assumed to be 50%
during each year of data collection based on common local practices. The irrigation events
occurred two to three days after water acquisition from the Sand Dike Lateral (Canal)
Company (Fort Collins, CO, USA) and lasted 6 to 12 h.
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2.5. On-Site Data Collection
2.5.1. Multispectral Surface Reflectance Data
Landsat-8 Operational Land Imager Level-2

Landsat-8 is managed by the United States Geological Service (USGS) and the National
Space Agency (NASA) and has an operational land imager (OLI) and a thermal infrared
sensor (TIRS) that provide biweekly multispectral data at 30 m and 100 m spatial resolutions,
respectively. The OLI sensor provides short-wave multispectral data in the visible (red,
green, and blue bands) and invisible light spectrum (for instance, short-wave infrared
(SWIR) or near infrared (NIR)). Since the LIRF and IIC maize fields are located within the
overlap region of Landsat-8 path/row 33/32 and 34/32 scenes, the revisiting time for the
research sites was 8 days. In this study, surface reflectance data acquired with the red
(655 ± 30 nm) and NIR (870 ± 30 nm) Landsat-8 bands, acquired during clear-sky days,
were used to derive the vegetation indices.

The Landsat-8 satellite has a sun-synchronous orbit around Earth (705 km altitude)
and overpasses our research sites at approximately 11:30 am MST local time. The final
radiometric resolution of Landsat-8 imagery is 16 bits. The metadata imagery file provides
linear calibration coefficients to convert a digital number (DN) to surface reflectance and
nadir-looking surface temperature (Ts) for Landsat-8 Level 2 imagery. The Level 2 images
undergo rigorous calibration procedures and do not require further post-processing after
the final surface reflectance and temperature images are appropriately converted from
the original DN values [85]. The conversion from DN to surface reflectance for Landsat-8
Level 2 products is given by Equation (25) below [86]:

SR[L8]
i = 0.0000275 × DNi − 0.20 (25)

where SR[L8]
i is the surface reflectance of a given ith multispectral band in the visible and

invisible light spectrum (dimensionless, from 0 to 1) and DNi is the DN of the respective ith
band (dimensionless). The superscript L8 alludes to the Landsat-8 remote sensing platform.

Sentinel-2 Level 2

Sentinel-2 is a spaceborne RS platform managed by the European Space Agency (ESA).
The Sentinel-2 satellites S2A and S2B provide optical multispectral imagery of Earth’s
landscape every ten days from satellites orbiting around the equator. The revisiting time is
reduced by half when the two sets of satellite data are used for applications. If a given area
of interest is located at middle latitudes, the Sentinel-2 temporal resolution is two to three
days, considering data from S2A and S2B for specific regions that have aerial overlap.

The S2A and S2B satellites also have a sun-synchronous orbit (786 km altitude),
and they take images of Earth near noon (local time) for our research sites. Sentinel-2
images have varying spatial resolutions depending on the optical multispectral bands. This
study used cloud-free images, and only the red (665 ± 31 nm) and NIR (833 ± 106 nm)
Sentinel-2 bands, with an imagery pixel size (spatial resolution) of 10 m, were utilized. The
final radiometric resolution of Sentinel-2 images is 16 bits. The pre-processing stages of
the Sentinel-2 data include atmospheric corrections using a radiative transfer approach
performed by the ESA named Sen2Cor [87,88]. The surface reflectance data were scaled
by a factor of 10,000 as the final output. Thus, the calculation of surface reflectance as a
fraction (0 to 1) for each optical multispectral band is obtained as indicated in Equation (26)
below:

SR[S2]
i = 0.0001 × SR[S2]

i,sc (26)

where SR[S2]
i is the fractional surface reflectance from Sentinel-2 for an ith band (dimension-

less, from 0 to 1) and SR[S2]
i,sc is the scaled surface reflectance data for an ith band provided

by ESA imagery (dimensionless). The [S2] superscript alludes to the Sentinel-2 remote
sensing platform.
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Planet CubeSat

Planet CubeSat is a privately-owned constellation of mini satellites developed and
operated by Planet Labs (Planet Labs, Inc., San Francisco, CA, USA). There are more than
130 CubeSat units surveying Earth’s landscape every day, with 3 m (nominal) spatial reso-
lution imagery products [89]. Similarly to Landsat-8 and Sentinel-2, the final radiometric
resolution of Planet CubeSat is 16-bit. Planet CubeSat satellites are considered low-cost due
to their compact design (0.10 m × 0.10 m × 0.30 m and 4 kg weight). The CubeSat satellites
are sun-synchronous (altitude ranging from 450 km to 580 km) and have an overpass time
varying from 9:30 to 11:30 a.m. local time [89] for our research sites.

The Planet CubeSat imagery data undergoes atmospheric corrections to minimize the
effects of atmospheric gases and aerosols on the quality of the imagery (e.g., light scattering).
To correct CubeSat imagery data for aerosol and gas disturbance of the surface-originated
(reflected) light, the Moderate Resolution Imaging Spectroradiometer (MODIS) water vapor,
ozone, and aerosol quality control products are used to improve the calibration of Planet
CubeSat imagery using the 6SV2.1 radiative transfer model; this is because Planet CubeSat
satellites do not have these products [89]. However, the atmospheric corrections performed
by Planet Labs do not include correction for the effects of stray light, haze, and thin cirrus
clouds. It also assumes that Earth’s landscape is a quasi-Lambertian surface (e.g., where
light is scattered homogeneously in all possible three-dimensional directions) and that all
imagery scenes have the same sea-level altitude [89].

This study used the CubeSat imagery scenes as the Sentinel-2 harmonized surface
reflectance products released by Planet Labs. The harmonization process is based on the
work of [90,91], in which Planet CubeSat imagery data was cross-validated using Sentinel-2
data to minimize signaling differences among different CubeSat satellite units (e.g., Dove-R,
SuperDove, Dove Classic) and to improve surface reflectance data to a standard similar to
Sentinel-2 multispectral data. In this study, only the harmonized red (666 ± 80 nm) and
NIR (867 ± 80 nm) bands from Planet CubeSat were used as input data when imagery was
acquired only during clear-sky days.

The calculation of surface reflectance as a fraction (0 to 1) for each optical Planet
CubeSat multispectral band is performed using Equation (27) below:

SR[CS]
i = 0.0001 × SR[CS]

i,sc (27)

where SR[CS]
i is the fractional surface reflectance from the Planet CubeSat for an ith band

(dimensionless, from 0 to 1) and SR[CS]
i,sc is the scaled surface reflectance data for an ith band

provided (dimensionless). The [CS] superscript alludes to the Planet CubeSat RS platform.

Multispectral Handheld Radiometer

A handheld multispectral radiometer (MSR5, CropScan Inc., Rochester, MN, USA) pro-
vided ground-based surface reflectance measurements. An MSR5 multispectral radiometer
consists of a radiometer unit mounted on a telescopic pole that measures nadir-looking
incoming and outgoing radiation within the visible and invisible light spectrum above
the canopy surface. The MSR5 radiometer has a field-of-view (FOV) of 28◦. The MSR5
data measurements were collected at each sampling location and at each research site with
the MSR5 sensor positioned at 2.2 m AGS. The MSR5 equivalent ground sampling area
(footprint) represented a 1 m-diameter circumference for a 2V:1H (vertical to horizontal
relative ratio) instrument footprint. The MSR5 is a passive sensor that provides “point”
or “discrete” data and has the same band characteristics as Landsat-5 multispectral bands
in the visible and invisible light spectrum for the surface reflectance data only. MSR5
multispectral data were acquired weekly (IIC 2020, LIRF 2020, and 2021) and biweekly
(LIRF 2018 and IIC 2021) from July to September. Four readings were taken with the MSR5
at the row and inter-row (and later averaged) at each sampling location. In this study, only
MSR5 red (560 ± 60 nm) and NIR (830 ± 140 nm) bands were used as input data.
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Unmanned Aerial System

Unmanned aerial systems (UAS) were also used in this study. UAS-based data acqui-
sition missions (flights) were systematically arranged for the two research sites. The flight
plans were developed and executed by the USDA-ARS Water Management and Systems
Research Unit and the Colorado State University (CSU) Drone Center. The USDA-ARS
division managed the acquisition and data processing of UAS imagery for the LIRF site,
while the CSU Drone Center was responsible for the IIC site UAS data collection and
pre-processing. The aerial imagery data were collected using a MicaSense RedEdge-MX
multispectral camera (MicaSense Inc., Seattle, WA, USA). The RedEdge-MX sensor en-
compasses four spectral bands: blue (475 nm, 32 nm bandwidth), green (560 nm, 27 nm
bandwidth), red (668 nm, 14 nm bandwidth), and NIR (842 nm, 57 nm bandwidth). The
UAS red and NIR datasets were used in this study to calculate the spectral vegetation
indices. UAS imagery was post-processed using ArcGIS 10.8 (ESRI, Redlands, CA, USA).

The IIC UAS multispectral data had a pixel spatial resolution of 0.08 m and underwent
processing using Pix4D v4.5.6 software (Pix4D S.A., Prilly, Switzerland). The imagery
individual frame overlap and sidelap percentages were 80 and 70, respectively. At the LIRF
site, the finalized multispectral outputs attained a pixel spatial resolution of 0.03 m, with
overlap and sidelap percentages of 88 and 70, respectively. The LIRF imagery was processed
using Agisoft Metashape software (Agisoft Metashape Pro version 1.6.4 software, Agisoft
LLC, St. Petersburg, Russia). The UAS-derived surface reflectance data were combined
with nadir-looking Ts data from SI-111 stationary sensors (Apogee Instruments Inc., Logan,
UT, USA) obtained from point-based measurements at each research site, serving as RS
input data for this investigation.

Measured Leaf Area Index (LAI)

Maize LAI measurements were acquired on a weekly basis using the LAI-2200C Plant
Canopy Analyzer (LI-COR Biosciences, Lincoln, NE, USA), a modern and non-destructive
instrument designed for point-based measurements of canopy foliage architecture. The
LAI measurements were obtained at each LIRF and IIC maize field sampling location. Six
readings per station were taken, moving the sensor about 20 cm in a diagonal transect
between the crop rows starting closer to one row and ending closing to the next row; then,
during data post-processing, those six readings were averaged to produce a single LAI
value per station. The LAI-2200 analyzer utilized a unique combination of upward and
downward sensors, with passive and optical parts and five concentric detectors measuring
diffuse light transmittance above and within the canopy at five different zenith angles.

A cubic convolution gap-filling approach was utilized to provide temporal interpo-
lated LAI data for the days without measurements during the period studied, similar
to the interpolation methods implemented by [92,93]. The interpolation method for the
measured LAI was explicitly applied to each data collection time series per measurement
station within the frequently irrigated fields at the LIRF and IIC. Temporal extrapolation
of vegetation indices assumes that for irrigated fields with no lack of nutrients, water
availability, and pristine vegetation, the changes in canopy leaf arrangements are minimal
within shorter periods under similar environmental conditions (e.g., cloudless skies, stable
air temperature and wind speed, etc.).

2.5.2. Measured Fractional Canopy Cover (fc)

At the LIRF and IIC, indirect measurements of fc aimed at assessing the vegetation
conditions were used to determine the observed kp values and evaluate the errors associated
with predicting fc. An LI-190R PAR sensor and LI-191R line quantum LPAR sensor (LI-COR
Biosciences, Lincoln, NE, USA) connected with a CR3000 datalogger (Campbell Scientific
Inc., Logan, UT, USA) measured the above- and below-canopy photosynthetically active
radiation (PAR), respectively. The instruments were placed in the frequently irrigated
fields at the LIRF (Field W in 2020 and Field E in 2021) and IIC (Field F). The PAR data
were recorded at 1 min and averaged every 15 min. The LI-190R sensor was mounted on
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a 4 m-tall vertical post 3.5 m above the ground surface (AGS). The LI-190R and LI-191R
line quantum sensors are widely utilized instruments for precise measurements of green
vegetation cover. The LI-190R is an upward-facing sensor that measures incident PAR
light, while the LI-191R is a sensor designed to measure transmitted PAR light through the
vegetation canopy. Both sensors operate within the 400–700 nm PAR wavelength range.
Indirect “measurements” of fc are obtained through the application of Equation (28) as
follows:

fc = 1 − PARbelow
PARabove

(28)

where PARbelow means the PAR radiation measured at the ground surface level with the LI-
191R line quantum sensor (µmol/s/m2) and PARabove means the PAR radiation measured
above the canopy (µmol/s/m2).

2.6. Statistical Analysis
2.6.1. Error Metrics

The following statistical variables were used to evaluate the performance of the models
in this study: mean bias error (MBE), root mean square error (RMSE), normalized MBE
(NMBE), normalized RMSE (NRMSE), and the coefficient of determination (R2). Equations
(29)–(32) indicate MBE, NMBE, RMSE, and NRMSE, respectively:

MBE =

(
1
n

) n

∑
i=1

(Ei − Oi) (29)

NMBE =

(
MBE

O

)
× 100% (30)

RMSE =

√(
1
n

) n

∑
i=1

(Ei − Oi)
2 (31)

NRMSE =

(
RMSE

O

)
× 100% (32)

where O is the mean of the observed data, n is the sample size, and Ei and Oi are the
estimated and observed values, respectively. NMBE and NRMSE are given in percentages,
while Equations (29) and (31) provide statistical indicators with the same units as the
primary variables.

The R2, in the context of model performance assessment, informs about the degree of
variability in the observed data explained by the modeling approach. Equation (33) gives
the mathematical expression for R2:

R2 =
∑
(
Ei − E

)(
Oi − O

)√[
∑
(
Ei − E

)2
][

∑
(
Oi − O

)2
] (33)

where E is the mean value of the predictions.

2.6.2. Global Sensitivity Analysis

The Sobol global sensitivity (SGS) approach [94,95] is based on quantifying uncertainty
to determine the impact of any given input parameters in a mathematical model over the
entire input parameter space. The SGS technique uses variance-based metrics to assess
the contribution of individual parameters to the total variance in the model prediction
output. By decomposing the total variance in the model output into components attributed
to individual parameters and their combinations, the Sobol indices offer a quantitative
measure of global sensitivity for a given model. These Sobol indices provide insights into
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which parameters are more relevant to model prediction variability. Furthermore, the SGS
approach is advantageous for high-dimensional models (multiple parameters).

The SGS approach calculates the Sobol sensitivity indices using analysis of variance
(ANOVA) decomposition, as indicated by Equations (34) and (35) below:

Di1 ...is =
∫ 1

0
f2
i1 ...is dxi1 . . . dxis (34)

D =
∫ 1

0
f2(x) dx − f2

o = ∑n
s=1 ∑i1<...<is

Di1 ...is (35)

where f(x) is an integrable function of a given model parametrization, with f(x) ∈ R and
x ∈ Rn; xi1 to xis are the predictors of the function f(x); Di1 ...is is the variance associated with
a given model parameter; D is the total variance observed; and fo is a generic initial value
of function f(x).

The Sobol global sensitivity index is calculated as the ratio between the variances, as
indicated by Equation (36):

Si1 ...is =

∫ 1
0 f2

i1 ...is dxi1 . . . dxis

∑n
s=1 ∑i1<...<is Di1 ...is

(36)

where Si1 ...is means the Sobol global sensitivity index for each parameter of a given mathe-
matical model.

In this study, the Global Sensitivity Analysis Toolbox (GSAT) for MATLAB developed
by [96] was used to calculate the Sobol global sensitivity indices for the spatial kp novel
model, as indicated in its complete form by Equation (37), and the NDVIsoil and NDVIc
novel approaches (Equations (10) and (11), respectively).

kp = βo + β1

(
1

LAI

)
× ln

(
NDVI − NDVIc

NDVIsoil − NDVIc

)
(37)

For the SGS analysis, the four input parameters in Equation (37) are LAI, NDVI,
NDVIc, and NDVIsoil since βo and β1 are fixed regression coefficients when statistically
relating kp and kv. Regarding the SGS analysis of NDVIsoil and NDVIc models, there are
three input parameters: NDVI, fc, and d(NDVI)/dfc. The parameters with higher Sobol
global sensitivity indices are the ones that have more influence on model variability and
accuracy [96]. For more details on how to access the GSAT for MATLAB package and
intrinsic information about the SGS approach, refer to [96].

3. Results
3.1. The Error Analysis of fc, LAI, NDVIsoil, and NDVIc

When assessing the performance of fc [31,32] and LAI [65] models in this study, it
is evident that both models provided canopy architecture predictions that were in good
agreement with observed values of their respective variables (Figure 5). For the case of fc,
the error was 0.02 (2%) ± 0.07 (10%), with the fc model explaining 53% of the variability
observed in the indirect measurements of fc using the PAR sensors. Similar performance
was observed from the LAI model, with an error of 0.08 m2/m2 (3%) ± 0.36 m2/m2

(11%). However, the LAI model was able to explain more of the variability in the observed
LAI dataset (R2 of 0.87) compared to the fc model performance. Both fc and LAI models
somewhat overestimated their respective predictions of maize canopy architecture in this
study. However, the overestimation was minor in magnitude (2% for fc and 3% for LAI
predictions). Since LAI is an input in the fc model, it is clear that part of the overestimation
in fc is primarily due to the LAI overestimation.
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When considering the performance of each LAI and fc model per RS sensor, the
NRMSE values for LAI prediction ranged from 9% (UAS) to 13% (Sentinel-2). There was
only an underestimation of the LAI when using the Sentinel-2 multispectral data as an input
(−4%). Clearly, the underestimation of the LAI due to Sentinel-2 was not significant enough
to cause an overall underestimation of the LAI when combining all the RS sensor data in
the analysis (Table 1). The most considerable overestimation of the LAI was obtained from
the MSR multispectral sensor (8%), which could be associated with induced systematic
errors in the data collection process, given the nature of the measurements being manually
performed in the field by different individuals due to field work logistics. The lowest
overestimation of LAI predictions was observed when the UAS data were used as inputs
(1%). Given the fine spatial scale of the UAS multispectral imagery data (<0.10 m), the
assessment of point-based conditions seemed more adequate compared to larger spatial
scale RS sensors in this study. The explained variability in the LAI data ranged from 84%
(Landsat-8) to 93% (MSR).

Table 1. The error analysis of the LAI across each of the RS sensors in the study. LIRF 2018 and 2022
datasets combined.

n MBE (NMBE) RMSE (NRMSE) R2

Landsat-8 16 0.20 (6%) 0.39 (12%) 0.84

Sentinel-2 34 −0.11 (−4%) 0.43 (13%) 0.88

Planet CubeSat 49 0.13 (4%) 0.33 (10%) 0.91

MSR 24 0.22 (8%) 0.33 (12%) 0.93

UAS 13 0.03 (1%) 0.31 (9%) 0.89

The error analysis of fc predictions across each RS sensor indicated that the NRMSE
ranged from 8% (UAS) to 11% (Sentinel-2), which presented the same RS sensors as the
lowest and highest NRMSE compared to the LAI model assessment. Regarding the un-
derestimation or overestimation of fc, underestimation of fc was observed when using
Sentinel-2 and UAS multispectral data as inputs to predict fc (Table 2). The underestimation
of fc from Sentinel-2 data (−6%) can be related to the underestimation of the LAI when
using the same RS sensor data (−4%) since the LAI is an input to estimate fc in this study.
Surprisingly enough, the same pattern is not observed regarding the UAS multispectral
data. For the UAS, there was a slight overestimation of the LAI (1%), while fc predictions
were underestimated (−3%). Given the spatial scale nature of UAS imagery (<0.10 m) and
the fact that the fc models from [31,32] introduce the concept of a vegetation clumping
factor, it is expected that the clumping factor calculations may not completely represent the
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vegetated point-based conditions observed in the UAS data, which could contribute to an
overestimation of fc values.

Table 2. The error analysis of fc across the different RS sensors in the study. LIRF 2018 and 2022
datasets combined.

n MBE (NBME) RMSE (NRMSE) R2

Landsat-8 16 0.04 (5%) 0.08 (10%) 0.40

Sentinel-2 34 −0.04 (−6%) 0.08 (11%) 0.64

Planet CubeSat 49 0.03 (4%) 0.07 (9%) 0.49

MSR 24 0.07 (10%) 0.08 (11%) 0.84

UAS 13 −0.03 (−3%) 0.07 (8%) 0.38

Regarding the analysis of NDVIc and NDVIsoil predictions using the novel approaches
derived in this study, there were smaller errors associated with NDVIc compared to
NDVIsoil predictions (Figure 6). The NDVIc estimation had an error of −0.01 (−2%) ± 0.07
(9%). In comparison, the NDVIsoil error was 0.01 (3%) ± 0.02 (17%). The larger NRMSE
associated with NDVIsoil could be due to the fact that the NDVIsoil model uses NDVI as
an input and that the mean value of observed NDVIsoil (0.144) is significantly lower than
the mean observed NDVIc value (0.842). NDVI values change significantly over time since
plants’ seasonal growth is not a linear process. However, given that the dry soil surface
reflectance responses over time do not change significantly, it is evident that the predictions
of NDVsoil differ from the most constant values of NDVI observed for bare soil parts of the
maize fields at the LIRF in 2018 and 2022. Now, given that NDVIc theoretically varies more
as the plants grow and increase their green foliage through time and space, it is expected
that the NDVIc model should agree more with on-site values of NDVI for plants.
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3.2. The Novel kp Model Regression Results

The calibration of the kp model (Equation (37)) using LIRF 2020 and IIC 2020–2021
datasets provided the following calibrated equation (Table 3) for predicting spatial kp
(Equation (38)) for maize, with an R2 of 0.95:

kp = −0.05 + 0.78 ×
(

1
LAI

)
× ln

(
NDVI − NDVIc

NDVIsoil − NDVIc

)
(38)
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Table 3. The summary statistics * of the kp regression model using LIRF 2020 and IIC 2020–2021
datasets combining data from all RS sensors in this study.

Estimate 95% Confidence
Interval

Standard
Error

Test
Statistic p-Value

Intercept (βo) −0.05 [−0.06, −0.03] 0.01 −5.19 5.23 × 10−7

Slope (β1) 0.78 [0.76, 0.81] 0.01 61.988 2.82 × 10−130

* Number of observations: 197; Error degrees of freedom: 195; RMSE: 0.02; F-statistic: 3.84 × 103.

The calibrated kp model accounts for 95% of the variability observed in the kp data,
which is a good indication that the developed model has a strong and positive statistical
linear relationship between kp and kv (Figure 7), as observed in the literature [36]. The
intercept and slope regression coefficients have a 95% confidence interval ranging from
−0.06 to −0.03 and 0.76 to 0.81, respectively. The p-values are statistically significant (<5%),
which indicates that the regressed coefficient estimates are statistically validated for future
model predictions.
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When resorting to the analysis of the individual model regression product per RS
sensor (e.g., spaceborne, proximal, airborne), similar results were obtained as compared to
the fully regressed model combining all RS datasets for the LIRF and IIC 2020 and 2021
data (Figure 8). When comparing the regressed intercept estimation per RS sensor, the
values were within the range of −0.03 to −0.08. Planet CubeSat and the MSR had the same
intercept value (−0.03). Similarly, Landsat-8 and UAS had a model intercept of −0.08. Only
Sentinel-2 had a different intercept value (−0.05) compared to the remaining RS sensor.

All the regressed intercepts were statistically significant (p-value < 0.05), as indicated
in Table 4. Regarding the regressed slopes, the estimated values varied from 0.76 to 0.84.
Landsat-8 had the same slope as the UAS. The remaining remote sensors had slopes ranging
from 0.76 to 0.79. With the exception of Landsat-8, all the regressed slopes were statistically
significant. Regarding the fitted R2, all RS platforms had very strong and positive R2 values
(Table 4), with the lowest being Planet CubeSat (R2 = 0.93) and the highest being the MSR
(R2 = 0.99). Given that the combined calibration of the kp model using data from all the RS
sensors (Equation (37)) presents a more robust statistical analysis since the sample size is
large enough to support the validation of the model (n = 197), we suggest that its regressed
coefficients should be used when predicting kp.
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Table 4. The summary statistics of the kp regression model using LIRF 2020 and IIC 2020–2021
datasets for RS sensors in this study.

n R2 Regressed
Coefficients Estimate 95% Confidence

Interval
Standard

Error
Test

Statistic p-Value

Landsat-8 16 0.95
Intercept (βo) −0.08 [−0.17, 0.01] 0.04 −1.95 8.00 × 10−3

Slope (β1) 0.84 [0.71, 0.95] 0.05 15.38 0.95

Sentinel-2 31 0.98
Intercept (βo) −0.05 [−0.07, −0.02] 0.01 −3.52 1.45 × 10−3

Slope (β1) 0.79 [0.75, 0.83] 0.02 40.89 3.40 × 10−27

Planet CubeSat 90 0.93
Intercept (βo) −0.03 [−0.07, 0.01] 0.02 −2.27 0.03

Slope (β1) 0.76 [0.72, 0.81] 0.02 34.63 4.79 × 10−53

MSR 39 0.99
Intercept (βo) −0.03 [−0.05, −0.02] 0.01 −3.74 6.16 × 10−4

Slope (β1) 0.78 [0.75, 0.81] 0.01 52.66 2.12 × 10−36

UAS 21 0.98
Intercept (βo) −0.08 [−0.12, −0.04] 0.02 −3.96 8.32 × 10−4

Slope (β1) 0.84 [0.78, 0.90] 0.03 30.83 1.09 × 10−17

When calculating the d
dfc

(NDVI) term (Equation (12)) in Equation (37), the linear
regression between the minimum and maximum NDVI and respective measured fc values
(Figure 9 and Table 5) provided the two distinct values of d

dfc
(NDVImin) and d

dfc
(NDVImax)

for the linear interpolation to determine any d
dfc

(NDVI) for any given fc between 0 and 0.85.
The respective calculated values for d

dfc
(NDVImin) and d

dfc
(NDVImax) were 0.25 (fc = 0)

and 0.39 (fc = 0.85). These results are d
dfc

(NDVImin) less than d
dfc

(NDVImax) since the
linear regression slopes for each case scenario (minimum and maximum NDVI groups) are
proportional to the magnitude of NDVI values used for the regression approach.
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Table 5. The data to determine minimum and maximum d(NDVI)/dfc values. Data included all RS
sensors in this study from LIRF 2020, IIC 2020, and 2021 datasets.

Measured fc fc Value Min NDVI fc Value Max NDVI

fc < 0.10 0 0.106 0.10 0.590

0.10 < fc ≤ 0.35 0.14 0.289 0.19 0.788

0.35 < fc ≤ 0.45 0.40 0.277 0.44 0.868

0.45 < fc ≤ 0.55 0.53 0.253 0.54 0.857

0.55 < fc ≤ 0.65 0.61 0.301 0.65 0.907

0.65 < fc ≤ 0.75 0.69 0.399 0.70 0.933

0.75 < fc ≤ 0.85 0.84 0.358 0.85 0.921

3.3. Accuracy Comparison between the Novel kp and [27] Models

When comparing the proposed kp model with the original and simplified [27] kp
approaches, it was evident that the novel kp model (Equation (38)) outperformed the other
two approaches (Figure 10 and Table 6). For the case scenario combining all RS sensor data
into the error analysis, the overall error (MBE ± RMSE) in predicting kp using the novel
approach was −0.01 (−2%) ± 0.05 (10%), a 44% improvement compared to the original and
simplified models, with a kp prediction error of 0.07 (14%) ± 0.09 (18%) for both. There was
a slight underestimation of kp in the novel approach (−2%), which is due to the fact that
the calibrated model (Equation (38)) does not characterize the entire variability in observed
kp values. A considerable overestimation of kp values was part of the [27] models (14%).
Ref. [27] assumes a theoretical foliage shape that is often violated within field conditions.
Also, the inherited assumptions concerning the ratio of horizontal and vertical leaf lengths
add extra uncertainty when predicting kp since it is hard to model, and there is spatial and
local variability from plant to plant within an agricultural field.



Remote Sens. 2024, 16, 1012 20 of 27

Remote Sens. 2024, 16, x FOR PEER REVIEW 19 of 26 
 

 

 

Figure 9. Scatter plots of the calculations regarding d
dfc

(NDVImin) and d
dfc

(NDVImax) values. 

3.3. Accuracy Comparison between the Novel kp and [27] Models 
When comparing the proposed kp model with the original and simplified [27] kp ap-

proaches, it was evident that the novel kp model (Equation (38)) outperformed the other 
two approaches (Figure 10 and Table 6). For the case scenario combining all RS sensor 
data into the error analysis, the overall error (MBE ± RMSE) in predicting kp using the 
novel approach was −0.01 (−2%) ± 0.05 (10%), a 44% improvement compared to the original 
and simplified models, with a kp prediction error of 0.07 (14%) ± 0.09 (18%) for both. There 
was a slight underestimation of kp in the novel approach (−2%), which is due to the fact 
that the calibrated model (Equation (38)) does not characterize the entire variability in 
observed kp values. A considerable overestimation of kp values was part of the [27] models 
(14%). Ref. [27] assumes a theoretical foliage shape that is often violated within field con-
ditions. Also, the inherited assumptions concerning the ratio of horizontal and vertical 
leaf lengths add extra uncertainty when predicting kp since it is hard to model, and there 
is spatial and local variability from plant to plant within an agricultural field. 

 
Figure 10. Scatter plots of observed kp vs. estimated kp regarding the novel kp approach (a), the 
original [27] kp model (b), and the simplified [27] kp model (c). This analysis involved LIRF 2018 and 
2022 datasets. 

Table 6. The error analysis statistics regarding the comparison between observed and estimated kp 
for the novel, original [27], and simplified [27] approaches. LIRF 2018 and 2022 data combined. 

 
Proposed and Novel 

kp Model 
Original [27] kp 

Model 
Simplified [27] kp 

Model 
N 136 136 136 

MBE (-) −0.01 0.07 0.07 
NMBE (%) −2% 14%  14% 

Figure 10. Scatter plots of observed kp vs. estimated kp regarding the novel kp approach (a), the
original [27] kp model (b), and the simplified [27] kp model (c). This analysis involved LIRF 2018 and
2022 datasets.

Table 6. The error analysis statistics regarding the comparison between observed and estimated kp

for the novel, original [27], and simplified [27] approaches. LIRF 2018 and 2022 data combined.

Proposed and Novel
kp Model

Original [27] kp
Model

Simplified [27] kp
Model

N 136 136 136

MBE (-) −0.01 0.07 0.07

NMBE (%) −2% 14% 14%

RMSE (-) 0.05 0.09 0.09

NRMSE (%) 10% 18% 18%

R2 0.56 0.27 0.22

The novel kp approach (Equation (38)) seemed to better represent the temporal variabil-
ity in kp values compared to the [27] approaches (Figure 10). The pair of points (observed
kp, estimated kp) from the novel approach was scattered around the 1:1 line (Figure 10a).
The same pattern was not observed for the [27] kp model (Figure 10b,c) cases. Since the
original and simplified kp models do not account for local field conditions in their approach,
the temporal variability due to changes in the actual canopy architecture is not entirely
addressed by the models. The assumption of the leaf distribution parameter being a con-
stant value does not allow for the incorporation of the actual field conditions regarding the
canopy foliage arrangement over time. Thus, the [27] approaches had a small R2 (<0.30),
while the novel kp approach was able to explain more of the variability observed in kp (R2

of 0.56) during the independent data validation phase (LIRF 2018 and 2022 datasets).
When analyzing the performance of each kp approach in this study per RS sensor,

it was evident that consistent results were observed regarding the better performance of
the novel kp model compared to the [27] approaches (Figure 11). The NRMSE values
for the novel kp approach (Equation (38)) ranged from 8% (Sentinel-2) to 12% (Planet
CubeSat), with an evident underestimation of kp estimated values when using Landsat-8
(−3%), Planet CubeSat (−6%), and MSR (−1%) multispectral data as inputs to predict kp.
Regardless of the [27] approach, there was a high overestimation of estimated kp values,
with NMBE ranging from 8% to 19%.
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3.4. The Global Sensitivity Analysis of the kp, NDVIsoil, and NDVIc Model Variables

The SGS analysis of the kp model indicated that NDVI is the primary variable that
accounts for most of the variability in the predictions of kp since it had the highest Sobol
index compared to the other variables in the model across the RS sensors (Figure 12). The
Sobol index for NDVI varied from 0.54 (Sentinel-2) to 0.67 (Landsat-8). The other inputs
(the LAI, NDVIc, and NDVIsoil) have lower Sobol indices (<0.30), which indicates that
those input variables have less accountability for the accuracy of kp predictions. When
evaluating the NDVIc and NDVIsoil models, the NDVI input variable was also more
relevant in explaining the variability observed in partitioning NDVI values in canopy and
soil composites (Table 7). The Sobol index for the NDVI variable ranged from 0.88 to 0.94
regarding the NDVIc model and from 0.55 to 0.64 regarding the NDVIsoil approach.

Table 7. The Sobol global sensitivity indices for the novel NDVIc and NDVIsoil models.

Sobol Global Sensitivity Index

Model Remote Sensor NDVI fc
d

dfc
(NDVI)

NDVIc

Landsat-8 0.88 0.12 0

Sentinel-2 0.93 0.06 0.01

Planet CubeSat 0.90 0.09 0.01

MSR 0.91 0.09 0

UAS 0.94 0.06 0

NDVIsoil

Landsat-8 0.55 0.40 0.04

Sentinel-2 0.64 0.33 0.03

Planet CubeSat 0.58 0.38 0.04

MSR 0.58 0.38 0.04

UAS 0.60 0.36 0.04
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Regardless of the NDVI composite model for canopy and bare soil, the d
dfc

(NDVI)
input variable had a negligible contribution to explaining the variance in kp predictions
(Sobol indices near zero). Since the total sum of all the Sobol indices for a given model
is equal to one, it is evident that there were differences in how relevant fc is for either
NDVIc or NDVIsoil. When looking at the Sobol indices for fc only, the NDVIc model had
lower Sobol index values for fc compared to the NDVIsoil Sobol index values for the same
input (Table 7). That is, the fc input variable is more important to explain the variability in
NDVIsoil prediction than to NDVIc.

One reason to justify this research finding is the apparent connection between NDVI
and NDVIc. For nearly fully grown vegetated surfaces, NDVI and NDVIc values are
alike since there is little bare soil exposure due to leaves covering most of the ground
surface. Thus, most of the variability in NDVIc can be explained by NDVI values under
those conditions, which leads to a small contribution to the NDVIc variance from fc in
the proposed novel NDVIc model. For the NDVIsoil model, the predictions are associated
with NDVI values during the same crop growing season, which means that the estimation
of NDVIsoil is for conditions that are also associated with plants entering the complete
canopy growth stages. In that case, NDVI values are at their maximum while the NDVIsoil
must remain nearly constant within root zone wetting periods (e.g., irrigation or rainfall
events). Thus, the fc input variable tends to be more important for explaining the variance
in NDVIsoil estimation than for NDVIc model predictions. Nonetheless, it is essential to
emphasize that NDVIsoil and NDVIc prediction variances are mainly dependent on NDVI,
given that that was the input variable with the highest Sobol index in both NDVI composite
models (Table 7).

4. Conclusions

In this study, the calibration of the kp model resulted in the development of a robust
predictive model for an RS-based spatial kp characterization. The kp model, determined
with a regression coefficient of determination R2 value of 0.95, demonstrated a strong
statistical linear relationship between kp and kv. The regression coefficients, including the
intercept and slope, exhibited 95% confidence intervals and p-values that seem to validate
the kp model’s reliability for future predictions. The kp model performance analysis
considered maize surface multispectral data from several RS sensors, revealing consistent
statistical results across the various sensors investigated. Although slight variations existed
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in intercept and slope values, for the kp model, among the RS sensors, all platforms
exhibited strong R2 values, which emphasizes the novel kp model’s consistent performance.

A model performance comparison with the kp models by [27] highlighted the advan-
tages of using the proposed kp model to considerably improve the spatial kp estimation
accuracy. An overall 44% improvement in accuracy was observed when using the novel
kp model compared to the [27] models. The novel kp approach not only outperformed the
classic kp models but also captured temporal variability more effectively, which highlights
its applicability in dynamic environmental conditions. A global sensitivity analysis showed
the significance of NDVI in predicting kp across the different remote sensors investigated,
with fc playing a more crucial role in NDVIsoil predictions than in NDVIc.

While the study provides insights into model performance, future research direc-
tions should focus on addressing observed underestimations and variations in specific
sensors due to their spectral and spatial differences. Since the importance of sensor-specific
characteristics is critical to address the quality of data inputs for modeling environmental
variables, the use and application of the calibrated and novel kp model must be interpreted
with care, given the nature of the calibration process and data collection used in this re-
search. For a more robust validation, more research must be performed regarding other
valuable row crops under different climate zones to evaluate any potential differences in
the calibration coefficients. Also, incorporating more RS sensors at a much larger spatial
scale might provide the conditions to use the novel kp model for large-scale modeling (e.g.,
watershed). Therefore, the continuous refinement and validation of the kp model using
diverse datasets and additional sensors will further enhance its applicability to different
local field conditions and provide the means to expand the use of this novel kp model for a
wide range of environmental applications.

Author Contributions: E.C.-F. processed the data, conducted the statistical analysis, and wrote the
bulk of the manuscript; J.L.C. obtained financial and logistic support and guided the research efforts,
was involved in the article editing; and H.Z. was involved in fieldwork planning, unmanned aerial
system management, manuscript formatting, and writing adjustments. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Irrigation Innovation Consortium (IIC), Northern Colorado
Water Conservancy District (Northern Water), and the Colorado Agricultural Experiment Station
(CAES)—USDA NIFA project grant number COL00796.

Data Availability Statement: The data that supported the findings of this study are available from
the corresponding author upon reasonable request.

Acknowledgments: We would like to thank Cole Lucero, Rustin Jensen, Mia Morones, Kelsey Walker,
Jon Altenhofen, Katie Ascough, Brianna Trotter, Alex Olsen, Kevin Yemoto, Ross Steward, Garrett
Banks, and Luke Stark for the field efforts to collect data, install instrumentation, and manage farm
management activities—special thanks to Ansley Brown and Allan Andales for helping with the
research logistics at the IIC site.

Conflicts of Interest: The authors declare that they do not have any conflict of interest, as well as
no competing financial interests or personal relationships that could have appeared to influence the
contents of this study.

References
1. Arthur, J.M. Some effects of radiant energy on plants. JOSA 1929, 18, 253–263. [CrossRef]
2. Chavez, J.C.; Ganjegunte, G.K.; Jeong, J.; Rajan, N.; Zapata, S.D.; Ruiz-Alvarez, O.; Enciso, J. Radiation Use Efficiency and

Agronomic Performance of Biomass Sorghum under Different Sowing Dates. Agronomy 2022, 12, 1252. [CrossRef]
3. Gallo, K.P.; Daughtry, C.S.T. Techniques for measuring intercepted and absorbed Photosynthetically Active Radiation in Corn

Canopies 1. Agron. J. 1986, 78, 752–756. [CrossRef]
4. Gitelson, A.A.; Peng, Y.; Arkebauer, T.J.; Suyker, A.E. Productivity, absorbed photosynthetically active radiation, and light use

efficiency in crops: Implications for remote sensing of crop primary production. J. Plant Physiol. 2015, 177, 100–109. [CrossRef]
[PubMed]

5. Kudrjavceva, A.A. Reflection, absorption and penetration of solar radiation in relation to the stand of agricultural plants. Dokl.
Vsesoyuznoi Akad. Sel’sko-Khozyaistvennykh Nauk Im VI Lenina 1940, 2, 11–15.

https://doi.org/10.1364/JOSA.18.000253
https://doi.org/10.3390/agronomy12061252
https://doi.org/10.2134/agronj1986.00021962007800040039x
https://doi.org/10.1016/j.jplph.2014.12.015
https://www.ncbi.nlm.nih.gov/pubmed/25723474


Remote Sens. 2024, 16, 1012 24 of 27

6. Raschke, K. Heat transfer between the plant and the environment. Annu. Rev. Plant Physiol. 1960, 11, 111–126. [CrossRef]
7. Thimann, K.V. Biological Utilization of Solar Energy; American Academy of Arts & Sciences: Cambridge, MA, USA, 1951; Volume 79,

pp. 323–326.
8. Ross, J. The Radiation Regime and Architecture of Plant Stands; (No. 3); Springer Science & Business Media: Berlin/Heidelberg,

Germany, 1981.
9. Weiss, M.; Baret, F.; Smith, G.J.; Jonckheere, I.; Coppin, P. Review of methods for in situ leaf area index (LAI) determination: Part

II. Estimation of LAI, errors and sampling. Agric. For. Meteorol. 2004, 121, 37–53. [CrossRef]
10. Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ.

1997, 62, 241–252. [CrossRef]
11. Lalic, B.; Mihailovic, D.T. An empirical relation describing leaf-area density inside the forest for environmental modeling. J. Appl.

Meteorol. 2004, 43, 641–645. [CrossRef]
12. Murchie, E.H.; Burgess, A.J. Casting light on the architecture of crop yield. Crop Environ. 2022, 1, 74–85. [CrossRef]
13. Reta-Sánchez, D.G.; Fowler, J.L. Canopy light environment and yield of narrow-row cotton as affected by canopy architecture.

Agron. J. 2002, 94, 1317–1323. [CrossRef]
14. Walcroft, A.S.; Brown, K.J.; Schuster, W.S.; Tissue, D.T.; Turnbull, M.H.; Griffin, K.L.; Whitehead, D. Radiative transfer and carbon

assimilation in relation to canopy architecture, foliage area distribution and clumping in a mature temperate rainforest canopy in
New Zealand. Agric. For. Meteorol. 2005, 135, 326–339. [CrossRef]

15. Tang, L.; Yin, D.; Chen, C.; Yu, D.; Han, W. Optimal design of plant canopy based on light interception: A case study with loquat.
Front. Plant Sci. 2019, 10, 364. [CrossRef] [PubMed]

16. Banerjee, T.; Linn, R. Effect of vertical canopy architecture on transpiration, thermoregulation, and carbon assimilation. Forests
2018, 9, 198. [CrossRef]

17. Buler, Z.; Mika, A. The influence of canopy architecture on light interception and distribution in ‘Sampion’apple trees. J. Fruit
Ornaments Plant Res. 2009, 17, 45–52.

18. Gao, Y.; Gao, S.; Jia, L.; Dai, T.; Wei, X.; Duan, J.; Liu, S.; Weng, X. Canopy characteristics and light distribution in Sapindus
mukorossi Gaertn. are influenced by crown architecture manipulation in the hilly terrain of Southeast China. Sci. Hortic. 2018, 240,
11–22. [CrossRef]

19. Ratikanta, M.; Gonzalez, R.H.; NS, K.T.; KalamosIsland, L. Variability in leaf canopy architecture may be related to photosynthetic
efficiency and carbon fixation. Int. J. Bio-Resour. Stress Manag. 2014, 5, i–ii.

20. Campbell, G.S.; Norman, J.M. The light environment of plant canopies. In An Introduction to Environmental Biophysics; Springer:
New York, NY, USA, 1998; pp. 247–278.

21. Monteith, J.L. Light interception and radiative exchange in crop stands. Physiol. Asp. Crop Yield 1969, 89–111. [CrossRef]
22. Anderson, M.C. Stand structure and light penetration. II. A theoretical analysis. J. Appl. Ecol. 1966, 3, 41–54. [CrossRef]
23. Marshall, J.D.; Waring, R.H. Comparison of methods of estimating leaf-area index in old-growth Douglas-fir. Ecology 1986, 67,

975–979. [CrossRef]
24. Monsi, M.; Saeki, T. The light factor in plant communities and its significance for dry matter production. Jpn. J. Bot. 1953, 14,

22–52.
25. Nilson, T. A theoretical analysis of the frequency of gaps in plant stands. Agric. Meteorol. 1971, 8, 25–38. [CrossRef]
26. Gao, L.; Wang, X.; Johnson, B.A.; Tian, Q.; Wang, Y.; Verrelst, J.; Mu, X.; Gu, X. Remote sensing algorithms for estimation of

fractional vegetation cover using pure vegetation index values: A review. ISPRS J. Photogramm. Remote Sens. 2020, 159, 364–377.
[CrossRef] [PubMed]

27. Campbell, G.S. Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution.
Agric. For. Meteorol. 1986, 36, 317–321. [CrossRef]

28. Ruimy, A.; Kergoat, L.; Bondeau, A.; The Participants of the Potsdam NPP Model Intercomparison. Comparing global models of
terrestrial net primary productivity (NPP): Analysis of differences in light absorption and light-use efficiency. Glob. Chang. Biol.
1999, 5, 56–64. [CrossRef]

29. Waring, R.H.; Coops, N.C.; Mathys, A.; Hilker, T.; Latta, G. Process-based modeling to assess the effects of recent climatic variation
on site productivity and forest function across western North America. Forests 2014, 5, 518–534. [CrossRef]

30. Colaizzi, P.D.; Kustas, W.P.; Anderson, M.C.; Agam, N.; Tolk, J.A.; Evett, S.R.; Howell, T.A.; Gowda, P.H.; O’shaughnessy, S.A.
Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures. Adv.
Water Resour. 2012, 50, 134–151. [CrossRef]

31. Kustas, W.P.; Norman, J.M. A Two-Source Energy Balance Approach Using Directional Radiometric Temperature Observations
for Sparse Canopy Covered Surfaces. Agron. J. 2000, 92, 847–854. [CrossRef]

32. Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy fluxes in observations of
directional radiometric surface temperature. Agric. For. Meteorol. 1995, 77, 263–293. [CrossRef]

33. Tahiri, A.Z.; Anyoji, H.; Yasuda, H. Fixed and variable light extinction coefficients for estimating plant transpiration and soil
evaporation under irrigated maize. Agric. Water Manag. 2006, 84, 186–192. [CrossRef]

34. Zhang, L.; Hu, Z.; Fan, J.; Zhou, D.; Tang, F. A meta-analysis of the canopy light extinction coefficient in terrestrial ecosystems.
Front. Earth Sci. 2014, 8, 599–609. [CrossRef]

https://doi.org/10.1146/annurev.pp.11.060160.000551
https://doi.org/10.1016/j.agrformet.2003.08.001
https://doi.org/10.1016/S0034-4257(97)00104-1
https://doi.org/10.1175/1520-0450(2004)043%3C0641:AERDLD%3E2.0.CO;2
https://doi.org/10.1016/j.crope.2022.03.009
https://doi.org/10.2134/agronj2002.1317
https://doi.org/10.1016/j.agrformet.2005.12.010
https://doi.org/10.3389/fpls.2019.00364
https://www.ncbi.nlm.nih.gov/pubmed/30972094
https://doi.org/10.3390/f9040198
https://doi.org/10.1016/j.scienta.2018.05.034
https://doi.org/10.2135/1969.physiologicalaspects.c9
https://doi.org/10.2307/2401665
https://doi.org/10.2307/1939820
https://doi.org/10.1016/0002-1571(71)90092-6
https://doi.org/10.1016/j.isprsjprs.2019.11.018
https://www.ncbi.nlm.nih.gov/pubmed/36082112
https://doi.org/10.1016/0168-1923(86)90010-9
https://doi.org/10.1046/j.1365-2486.1999.00007.x
https://doi.org/10.3390/f5030518
https://doi.org/10.1016/j.advwatres.2012.06.004
https://doi.org/10.2134/agronj2000.925847x
https://doi.org/10.1016/0168-1923(95)02265-Y
https://doi.org/10.1016/j.agwat.2006.02.002
https://doi.org/10.1007/s11707-014-0446-7


Remote Sens. 2024, 16, 1012 25 of 27

35. Goudriaan, J.; Van Laar, H.H. Modelling Potential Crop Growth Processes. Current Issues in Production Ecology; Kluwer Academic
Publishers: Norwell, MA, USA, 1994; Volume 10, pp. 978–994.

36. Baret, F.; Clevers, J.G.P.W.; Steven, M.D. The robustness of canopy gap fraction estimates from red and near-infrared reflectances:
A comparison of approaches. Remote Sens. Environ. 1995, 54, 141–151. [CrossRef]

37. Choudhury, B.J.; Ahmed, N.U.; Idso, S.B.; Reginato, R.J.; Daughtry, C.S. Relations between evaporation coefficients and vegetation
indices studied by model simulations. Remote Sens. Environ. 1994, 50, 1–17. [CrossRef]

38. Price, J.C. Estimating vegetation amount from visible and near infrared reflectances. Remote Sens. Environ. 1992, 41, 29–34.
[CrossRef]

39. Price, J.C.; Bausch, W.C. Leaf area index estimation from visible and near-infrared reflectance data. Remote Sens. Environ. 1995, 52,
55–65. [CrossRef]

40. Jones, H.G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology; Cambridge University Press:
Cambridge, UK, 2013.

41. Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci.
2014, 1312, 105–112. [CrossRef]

42. Allen, L.H.; Yocum, C.S.; Lemon, E.R. Photosynthesis Under Field Conditions. VII. Radiant Energy Exchanges Within a Corn
Crop Canopy and Implications in Water Use Efficiency 1. Agron. J. 1964, 56, 253–259. [CrossRef]

43. Flénet, F.; Kiniry, J.R.; Board, J.E.; Westgate, M.E.; Reicosky, D.C. Row spacing effects on light extinction coefficients of corn,
sorghum, soybean, and sunflower. Agron. J. 1996, 88, 185–190. [CrossRef]

44. Pepper, G.E.; Pearce, R.B.; Mock, J.J. Leaf orientation and yield of maize 1. Crop Sci. 1977, 17, 883–886. [CrossRef]
45. Srinet, R.; Nandy, S.; Patel, N.R. Estimating leaf area index and light extinction coefficient using Random Forest regression

algorithm in a tropical moist deciduous forest, India. Ecol. Inform. 2019, 52, 94–102. [CrossRef]
46. Baret, F.; de Solan, B.; Lopez-Lozano, R.; Ma, K.; Weiss, M. GAI estimates of row crops from downward looking digital photos

taken perpendicular to rows at 57.5 zenith angle: Theoretical considerations based on 3D architecture models and application to
wheat crops. Agric. For. Meteorol. 2010, 150, 1393–1401. [CrossRef]

47. Bréda, N.J. Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. J. Exp.
Bot. 2003, 54, 2403–2417. [CrossRef]

48. Fang, H.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An overview of global leaf area index (LAI): Methods, products, validation,
and applications. Rev. Geophys. 2019, 57, 739–799. [CrossRef]

49. Fournier, R.A.; Hall, R.J. (Eds.) Hemispherical Photography in Forest Science: Theory, Methods, Applications; Springer: Dordrecht, The
Netherlands, 2017.

50. Welles, J.M.; Norman, J.M. Instrument for indirect measurement of canopy architecture. Agron. J. 1991, 83, 818–825. [CrossRef]
51. Lang, A.R.G.; Yueqin, X.; Norman, J.M. Crop structure and the penetration of direct sunlight. Agric. For. Meteorol. 1985, 35, 83–101.

[CrossRef]
52. Alignier, A.; Solé-Senan, X.O.; Robleño, I.; Baraibar, B.; Fahrig, L.; Giralt, D.; Gross, N.; Martin, J.; Recasens, J.; Sirami, C.; et al.

Configurational crop heterogeneity increases within-field plant diversity. J. Appl. Ecol. 2020, 57, 654–663. [CrossRef]
53. Moore, I.D.; Norton, T.W.; Williams, J.E. Modelling environmental heterogeneity in forested landscapes. J. Hydrol. 1993, 150,

717–747. [CrossRef]
54. Lacasa, J.; Hefley, T.J.; Otegui, M.E.; Ciampitti, I.A. A practical guide to estimating the light extinction coefficient with non-linear

models—A case study on maize. Plant Methods 2021, 17, 60. [CrossRef]
55. Lai, G.; Zhang, L.; Liu, Y.; Yi, F.; Zeng, X.; Pan, R. Retrieving leaf area index and extinction coefficient of dominant vegetation

canopy in Meijiang Watershed of China using ETM+ data. In Proceedings of the 2012 2nd International Conference on Remote
Sensing, Environment and Transportation Engineering, Nanjing, China, 1–3 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–5.

56. Poblete-Echeverría, C.; Fuentes, S.; Ortega-Farias, S.; Gonzalez-Talice, J.; Yuri, J.A. Digital cover photography for estimating leaf
area index (LAI) in apple trees using a variable light extinction coefficient. Sensors 2015, 15, 2860–2872. [CrossRef] [PubMed]

57. Tan, C.-W.; Zhang, P.-P.; Zhou, X.-X.; Wang, Z.-X.; Xu, Z.-Q.; Mao, W.; Li, W.-X.; Huo, Z.-Y.; Guo, W.-S.; Yun, F. Quantitative
monitoring of leaf area index in wheat of different plant types by integrating NDVI and Beer-Lambert law. Sci. Rep. 2020, 10, 522.
[CrossRef]

58. Uchijima, Z. Maize and Rice, Chapter 2. In Vegetation and the Atmosphere; Monteith, J.L., Ed.; Academic Press: London, UK, 1976;
Volume 2, pp. 33–64. 439p.

59. Zheng, G.; Ma, L.; Eitel, J.U.; He, W.; Magney, T.S.; Moskal, L.M.; Li, M. Retrieving directional gap fraction, extinction coefficient,
and effective leaf area index by incorporating scan angle information from discrete aerial lidar data. IEEE Trans. Geosci. Remote
Sens. 2016, 55, 577–590. [CrossRef]

60. De Costa, W.A.J.M.; Dennett, M.D. Is canopy light extinction coefficient a species-specific constant? Trop. Agric. Res. 1992, 4,
123–137.

61. Costa-Filho, E.; Chávez, J.L.; Zhang, H.; Andales, A.A. An optimized surface aerodynamic temperature approach to estimate
maize sensible heat flux and evapotranspiration. Agric. For. Meteorol. 2021, 311, 108683. [CrossRef]

62. Klopfenstein, T.J.; Erickson, G.E.; Berger, L.L. Maize is a critically important source of food, feed, energy and forage in the USA.
Field Crops Res. 2013, 153, 5–11. [CrossRef]

https://doi.org/10.1016/0034-4257(95)00136-O
https://doi.org/10.1016/0034-4257(94)90090-6
https://doi.org/10.1016/0034-4257(92)90058-R
https://doi.org/10.1016/0034-4257(94)00111-Y
https://doi.org/10.1111/nyas.12396
https://doi.org/10.2134/agronj1964.00021962005600030002x
https://doi.org/10.2134/agronj1996.00021962008800020011x
https://doi.org/10.2135/cropsci1977.0011183X001700060017x
https://doi.org/10.1016/j.ecoinf.2019.05.008
https://doi.org/10.1016/j.agrformet.2010.04.011
https://doi.org/10.1093/jxb/erg263
https://doi.org/10.1029/2018RG000608
https://doi.org/10.2134/agronj1991.00021962008300050009x
https://doi.org/10.1016/0168-1923(85)90076-0
https://doi.org/10.1111/1365-2664.13585
https://doi.org/10.1016/0022-1694(93)90133-T
https://doi.org/10.1186/s13007-021-00753-2
https://doi.org/10.3390/s150202860
https://www.ncbi.nlm.nih.gov/pubmed/25635411
https://doi.org/10.1038/s41598-020-57750-z
https://doi.org/10.1109/TGRS.2016.2611651
https://doi.org/10.1016/j.agrformet.2021.108683
https://doi.org/10.1016/j.fcr.2012.11.006


Remote Sens. 2024, 16, 1012 26 of 27

63. Chung, U.; Gbegbelegbe, S.; Shiferaw, B.; Robertson, R.; Yun, J.I.; Tesfaye, K.; Hoogenboom, G.; Sonder, K. Modeling the effect of
a heat wave on maize production in the USA and its implications on food security in the developing world. Weather Clim. Extrem.
2014, 5, 67–77. [CrossRef]

64. Anderson, M.C.; Neale, C.M.U.; Li, F.; Norman, J.M.; Kustas, W.P.; Jayanthi, H.; Chavez, J.O.S.E. Upscaling ground observations
of vegetation water content, canopy height, and leaf area index during SMEX02 using aircraft and Landsat imagery. Remote Sens.
Environ. 2004, 92, 447–464. [CrossRef]

65. Chávez, J.L.; Gowda, P.H.; Howell, T.A.; Neale, C.M.U.; Copeland, K.S. Estimating hourly crop ET using a two-source energy
balance model and multispectral airborne imagery. Irrig. Sci. 2009, 28, 79–91. [CrossRef]

66. Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35,
161–173. [CrossRef]

67. Clevers, J.G.P.W. Application of a weighted infrared-red vegetation index for estimating leaf area index by correcting for soil
moisture. Remote Sens. Environ. 1989, 29, 25–37. [CrossRef]

68. Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather
prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [CrossRef]

69. Hatfield, J.L.; Kanemasu, E.T.; Asrar, G.; Jackson, R.D.; Pinter, P.J., Jr.; Reginato, R.J.; Idso, S.B. Leaf-area estimates from spectral
measurements over various planting dates of wheat. Int. J. Remote Sens. 1985, 6, 167–175. [CrossRef]

70. Richardson, A.J.; Wiegand, C.L.; Wanjura, D.F.; Dusek, D.; Steiner, J.L. Multisite analyses of spectral-biophysical data for sorghum.
Remote Sens. Environ. 1992, 41, 71–82. [CrossRef]

71. Gillies, R.R.; Carlson, T.N. Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation
into climate models. J. Appl. Meteorol. Climatol. 1995, 34, 745–756. [CrossRef]

72. Montandon, L.M.; Small, E.E. The impact of soil reflectance on the quantification of the green vegetation fraction from NDVI.
Remote Sens. Environ. 2008, 112, 1835–1845. [CrossRef]

73. Gan, T.Y.; Burges, S.J. Assessment of soil-based and calibrated parameters of the Sacramento model and parameter transferability.
J. Hydrol. 2006, 320, 117–131. [CrossRef]

74. Oleson, K.W.; Emery, W.J.; Maslanik, J.A. Evaluating land surface parameters in the Biosphere-Atmosphere Transfer Scheme
using remotely sensed data sets. J. Geophys. Res. Atmos. 2000, 105, 7275–7293. [CrossRef]

75. Zeng, X.; Dickinson, R.E.; Walker, A.; Shaikh, M.; DeFries, R.S.; Qi, J. Derivation and evaluation of global 1-km fractional
vegetation cover data for land modeling. J. Appl. Meteorol. 2000, 39, 826–839. [CrossRef]

76. Long, D.; Singh, V.P. A two-source trapezoid model for evapotranspiration (TTME) from satellite imagery. Remote Sens. Environ.
2012, 121, 370–388. [CrossRef]

77. Monteith, J.L. Principles of Environmental Physics; Edward Arnold: London, UK, 1975.
78. Campbell, G.S. Plants and Their Environment. In An Introduction to Environmental Biophysics; Springer: New York, NY, USA, 1977;

pp. 115–126.
79. Campbell, G.S. Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions. Agric. For. Meteorol.

1990, 49, 173–176. [CrossRef]
80. Campbell, G.S.; Van Evert, F.K. Light interception by plant canopies: Efficiency and architecture. Resour. Capture Crops 1994,

52, 35.
81. Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst.

Sci. 2007, 11, 1633–1644. [CrossRef]
82. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO

Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109.
83. ASCE-EWRI. The ASCE Standardized Reference Evapotranspiration Equation; Report 0-7844-0805-X, ASCE Task Committee on

Standardization of Reference Evapotranspiration; The American Society of Civil Engineers: Reston, VA, USA, 2005.
84. Garcia, L.A.; Elhaddad, A.; Altenhofen, J.; Hattendorf, M. Developing corn regional crop coefficients using a satellite-based energy

balance model (ReSET-Raster) in the South Platte River Basin of Colorado. J. Irrig. Drain. Eng. 2013, 139, 821–832. [CrossRef]
85. Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.;

Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145,
154–172. [CrossRef]

86. Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface
reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [CrossRef]

87. Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for sentinel-2. In Proceedings of the
Image and Signal Processing for Remote Sensing XXIII, Warsaw, Poland, 11–14 September 2017; SPIE: Bellingham, WA, USA,
2017; Volume 10427, pp. 37–48.

88. Su, W.; Zhang, M.; Jiang, K.; Zhu, D.; Huang, J.; Wang, P. Atmospheric correction method for Sentinel-2 satellite imagery. Acta
Opt. Sin. 2018, 38, 0128001. [CrossRef]

89. Planet Team. Planet Application Program Interface: In Space for Life on Earth; Planet Team: San Francisco, CA, USA, 2017; Available
online: https://api.planet.com (accessed on 15 December 2023).

90. Csillik, O.; Belgiu, M.; Asner, G.P.; Kelly, M. Object-Based Time-Constrained Dynamic Time Warping Classification of Crops
Using Sentinel-2. Remote Sens. 2019, 11, 1257. [CrossRef]

https://doi.org/10.1016/j.wace.2014.07.002
https://doi.org/10.1016/j.rse.2004.03.019
https://doi.org/10.1007/s00271-009-0177-9
https://doi.org/10.1016/0034-4257(91)90009-U
https://doi.org/10.1016/0034-4257(89)90076-X
https://doi.org/10.1080/014311698215333
https://doi.org/10.1080/01431168508948432
https://doi.org/10.1016/0034-4257(92)90062-O
https://doi.org/10.1175/1520-0450(1995)034%3C0745:TRSOSS%3E2.0.CO;2
https://doi.org/10.1016/j.rse.2007.09.007
https://doi.org/10.1016/j.jhydrol.2005.07.008
https://doi.org/10.1029/1999JD901041
https://doi.org/10.1175/1520-0450(2000)039%3C0826:DAEOGK%3E2.0.CO;2
https://doi.org/10.1016/j.rse.2012.02.015
https://doi.org/10.1016/0168-1923(90)90030-A
https://doi.org/10.5194/hess-11-1633-2007
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000616
https://doi.org/10.1016/j.rse.2014.02.001
https://doi.org/10.1016/j.rse.2016.04.008
https://doi.org/10.3788/AOS201838.0128001
https://api.planet.com
https://doi.org/10.3390/rs11101257


Remote Sens. 2024, 16, 1012 27 of 27

91. Kington, J.D., IV; Jordahl, K.A.; Kanwar, A.N.; Kapadia, A.; Schönert, M.; Wurster, K. Spatially and Temporally Consistent
Smallsat-Derived Basemaps for Analytic Applications. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA,
USA, 16 December 2019; Volume 2019, p. IN13B-0716.

92. Li, X.; Zhu, W.; Xie, Z.; Zhan, P.; Huang, X.; Sun, L.; Duan, Z. Assessing the Effects of Time Interpolation of NDVI Composites on
Phenology Trend Estimation. Remote Sens. 2021, 13, 5018. [CrossRef]

93. Vorobiova, N.; Chernov, A. Curve fitting of MODIS NDVI time series in the task of early crops identification by satellite images.
Procedia Eng. 2017, 201, 184–195. [CrossRef]

94. Sobol, I.M. Global sensitivity indices for non-linear mathematical models and their Monte Carlo estimates. Math. Comput. Simul.
2001, 55, 271–280. [CrossRef]

95. Sobol’, I.Y.M. On sensitivity estimation for non-linear mathematical models. Mat. Model. 1990, 2, 112–118.
96. Cannavó, F. Sensitivity analysis for volcanic source modeling quality assessment and model selection. Comput. Geosci. 2012, 44,

52–59. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs13245018
https://doi.org/10.1016/j.proeng.2017.09.596
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1016/j.cageo.2012.03.008

	Introduction 
	Materials and Methods 
	The Novel Maize Light Extinction Coefficient Model 
	The General Light Extinction Model 
	Calculation of Vegetation Indices 
	Research Sites 
	Limited Irrigation Research Farm (LIRF) 
	Irrigation Innovation Consortium (IIC) 

	On-Site Data Collection 
	Multispectral Surface Reflectance Data 
	Measured Fractional Canopy Cover (fc) 

	Statistical Analysis 
	Error Metrics 
	Global Sensitivity Analysis 


	Results 
	The Error Analysis of fc, LAI, NDVIsoil, and NDVIc 
	The Novel kp Model Regression Results 
	Accuracy Comparison between the Novel kp and B27-remotesensing-2868665 Models 
	The Global Sensitivity Analysis of the kp, NDVIsoil, and NDVIc Model Variables 

	Conclusions 
	References

