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Abstract: The soil freeze/thaw (FT) state has emerged as a critical role in the ecosystem, hydrological,
and biogeochemical processes, but obtaining representative soil FT state datasets with a long time
sequence, fine spatial resolution, and high accuracy remains challenging. Therefore, we propose
a decision-level spatiotemporal data fusion algorithm based on Convolutional Long Short-Term
Memory networks (ConvLSTM) to expand the SMAP-enhanced L3 landscape freeze/thaw product
(SMAP_E_FT) temporally. In the algorithm, the Freeze/Thaw Earth System Data Record product
(ESDR_FT) is sucked in the ConvLSTM and fused with SMAP_E_FT at the decision level. Eight pre-
dictor datasets, i.e., soil temperature, snow depth, soil moisture, precipitation, terrain complexity
index, area of open water data, latitude and longitude, are used to train the ConvLSTM. Direct
validation using six dense observation networks located in the Genhe, Maqu, Naqu, Pali, Saihanba,
and Shandian river shows that the fusion product (ConvLSTM_FT) effectively absorbs the high
accuracy characteristics of ESDR_FT and expands SMAP_E_FT with an overall average improvement
of 2.44% relative to SMAP_E_FT, especially in frozen seasons (averagely improved by 7.03%). The
result from indirect validation based on categorical triple collocation also shows that ConvLSTM_FT
performs stable regardless of land cover types, climate types, and terrain complexity. The findings,
drawn from preliminary analyses on ConvLSTM_FT from 1980 to 2020 over China, suggest that with
global warming, most parts of China suffer from different degrees of shortening of the frozen period.
Moreover, in the Qinghai–Tibet region, the higher the permafrost thermal stability, the faster the
degradation rate.

Keywords: soil freeze/thaw product; temporal expanding; SMAP; long time series; spatiotemporal
fusion; ConvLSTM

1. Introduction

Approximately 57% of the northern hemisphere’s land surface is seasonally frozen
ground, and 25% is permafrost [1–4]. These conditions typically occur in cold regions,
either at high altitudes or high latitudes, where temperatures are low. The soil freeze/thaw
(FT) process, driven by diurnal or seasonal temperature changes, affects the surface of
seasonally frozen ground and the active layer of permafrost. The ice-water phase transitions
during the soil FT processes are accompanied by the absorption or release of massive latent
heat, which not only plays an important role in regulating the surface energy balance but
also directly affects the water cycle and the exchange of carbon between the atmosphere
and the surface [5,6]. Studies indicate that, globally, frozen soils contain approximately
146 to 160 million tons of carbon [7,8]. This amount is nearly double the carbon present
in the atmosphere and constitutes over half of the global soil carbon stock [9]. Recent
decades of rapid global warming have resulted in the degradation of permafrost and a
spatial extension of seasonally frozen ground, accompanied by a large amount of organic
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carbon being broken down by microbes and released into the atmosphere, further climate
warming [10–12]. A large number of studies show that permafrost is degrading and will
deteriorate or even disappear in the future [13–15]. This has a range of human social [16]
and ecological [17,18] impacts. However, the current research on permafrost lacks long-
term and large-scale continuous monitoring data. In addition, as a region with unique
climatic characteristics, ecological environment and geographical location, the response of
permafrost on the Qinghai–Tibet Plateau (QTP) to global warming is not only relevant to
the future of the regional environment and social economy but also the key to understand
the feedback mechanism of the Earth’s system in the context of global climate change.
Therefore, a soil FT state dataset with a long time sequence, fine spatial resolution, and high
accuracy will benefit the research about environmental science, climate change mitigation
strategies, and the global understanding of permafrost’s role in the Earth’s system.

At present, most of the mainstream soil FT products are produced based on passive
microwave remote sensing techniques, which benefit from the sensitivity of microwave
radiation to the ice-water phase transitions. Jin et al. proposed a decision tree algorithm
(DTA) to classify the frozen/thawed soil and produced a soil FT dataset (1978–2009) in
China based on SSM/I microwave observation brightness temperature (Tb) [19]. Later,
they extended it to 2015 based on a dual-index algorithm (DIA) [4,20,21] using daily Tb
from SMMR (1978–1987), SSM/I (1987–2009), and SSMIS (2009–2015) [22]. Zhao et al.
proposed a discriminant function algorithm (DFA) for soil FT monitoring based on AMSR-
E observed Tb (2002 to 2019) [23]. Kim et al. developed and modified a seasonal threshold
algorithm (STA and MSTA) for monitoring soil FT state using a 37 GHz V-polarized
Tb [24]. MSTA is the official algorithm of the ESDR (Earth System Data Record) FT product,
a global soil freeze-thaw product in NASA’s MEaSUREs program [25]. Advances in
L-band (1.4 GHz) sensing prompted Rautiainen et al. to propose a new NPR (Normalized
Polarization Ratio) method using STA for L-band [26], which was further used as a baseline
algorithm for producing SMAP [27] and SMOS [28] soil FT products. However, these soil
FT products cannot meet the requirements of long-time sequence, fine spatial resolution,
and high accuracy required by current research. They are all characterized by coarse
spatial resolution of tens of kilometers. Validation results of these different FT products,
based on either ground measurements [6,29–31] or the categorical triple collocation (CTC)
method [5,32,33], show that the soil FT classification accuracy varies a lot between products.
Specifically, in terms of time series, the classification accuracy during FT transitional seasons
is generally low [19,30]; in terms of spatial distributions, the significant differences between
classification accuracies mainly occur in cold and arid areas, as well as areas with complex
terrains (e.g., the Qinghai–Tibetan Plateau) [34,35]. The enhanced SMAP L3 freeze/thaw
product (SMAP_E_FT) [36] has higher accuracy for the soil freeze/thaw state classification
than previous versions [37] and finer spatial resolution (9 km) than other FT products.
Unfortunately, it has been limited by the short data time series since 2015, restricting its
applications to related studies requiring a long time series, such as spatiotemporal change
analysis of the soil FT phenology [38].

The rapid development of data-driven deep learning techniques provides the pos-
sibility of generating a long-sequence and high-quality soil FT state dataset. With the
help of deep learning models, various key meteorological, hydrological, and ecological
variables can be simulated and predicted without complex physical models. According to
the way the model extraction features, the most commonly used deep learning networks
can be roughly divided into three categories, i.e., spatial-scale models (e.g., Convolutional
Neural Networks (CNNs)) [39], temporal-scale models (e.g., Long Short-Term Memory
networks (LSTM)) [40], and spatiotemporal-scale models (Convolutional Long Short-Term
Memory networks (ConvLSTM)) [41]. CNN excels in estimating soil temperature [42]
and other surface parameters [43–45], while LSTM outperforms traditional models [46–49]
in predicting these parameters over time. ConvLSTM, which captures both spatial and
temporal features, was initially applied to rainfall nowcasting [41], as evidenced by Wu
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et al.’s findings of its higher correlation with the test data and lower error metrics compared
with CNN and LSTM [50].

In this study, we aim to provide a soil FT state dataset with a long time sequence, fine
spatial resolution, and high accuracy for related research such as environmental science,
climate change mitigation strategies, and the global understanding of permafrost’s role in
the Earth’s system. Just extend the time series of the SMAP_E_FT product back to 1980,
leveraging ConvLSTM’s capability to extract both temporal and spatial features based on
the long time sequence of soil temperature estimates from ERA5-land [51]. In addition,
the ESDR_FT product was also sucked in to improve the classification prediction accuracy
according to its comparably high accuracy [32]. Both direct validations based on ground
observations and indirect validations based on the categorical triple collocation (CTC)
method are carried out for the newly generated ConvLSTM_FT product. Further analysis
of the temporal and spatial variation trend of soil FT status in China over the past 41 years
(1980–2020) is also conducted based on the ConvLSTM FT product. In Section 2, the study
area, the target, predictor, and auxiliary datasets for ConvLSTM used in this study are
briefly introduced. Section 3 introduces the ConvLSTM model, its application to produce
the new FT product, and the direct and indirect validation methods. Results, discussions,
and conclusions are provided in Sections 4–6.

2. Materials
2.1. Study Area and In Situ Observations

The work is carried out over China, which contains the third-largest frozen ground
area in the world, with a permafrost area of approximately 22.3% of China’s land extent [52],
mainly in its northwest, north, and the QTP regions, and more than half area of the QTP
experiences seasonal freezing and thawing [53].

In situ soil temperature data from six dense networks located in Genhe
Watershed (Figure 1b) and Saihanba area (Figure 1g) [54], Naqu (Figure 1d) and
Pali (Figure 1f) [55], Maqu (Figure 1c) [56], and Shandian river (SDR) (Figure 1g) [57] are
utilized for direct validation. Some basic information about these in situ networks is given
in Table 1. The daily minimum and maximum 0 cm land surface temperature (T0cm) data
from 824 meteorological stations throughout China (Figure 1a), provided by the China Me-
teorological Administration (CMA, https://data.cma.cn (accessed on 24 November 2022))
from 1980–2020, are used for the indirect validation of ConvLSTM_FT. Note that the soil
temperature was converted to soil FT estimate using 0 ◦C as a threshold [32,58], hereafter
cited as Meteorology_FT.

Table 1. Summary of the basic information of the six networks.

Networks Genhe Maqu Naqu Pali Saihanba SDR

Selected/Total
nodes 18/23 19/26 33/71 13/25 11/29 27/34

Depth 5 cm 5 cm 0–5 cm 5 cm 5 cm 3 cm
Interval 30 min 15 min 30 min 30 min 30 min 10–15 min

Begin coverage April 2018 April 2018 September 2018
End coverage December 2020 December 2019 December 2020

https://data.cma.cn
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six dense in situ observation networks in China, with China’s four major geographical regions [59]. 
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Figure 1. Study area and in situ observations. (a) Spatial distribution of meteorological stations and
six dense in situ observation networks in China, with China’s four major geographical regions [59].
(b–g) The dense in situ soil moisture and soil temperature networks.

2.2. Data
2.2.1. Target Datasets for ConvLSTM

The latest Version 3 Level 3 daily SMAP enhanced L3 landscape freeze/thaw
(SMAP_E_FT) product from l April 2018 to 31 December, 2020 in China is selected as the
training target of ConvLSTM [36]. It has a 6:00 and 18:00 equator overpass time of ascending
and descending nodes (https://nsidc.org/data/spl3ftp_e (accessed on 22 September 2022)),
with an Earth-fixed global 9 km EASE-Grid 2.0 projection. The baseline algorithm of
SMAP_E_FT is normalized polarization ratio (NPR) [27]. An alternative single-channel
V-pol algorithm (SCV) [60] is utilized in lower-latitude areas where the requirements of
NPR are not met.

The latest Version 5 ESDR freeze/thaw (ESDR_FT) product is a part of the NSIDC
DAAC Making Earth System Data Records for Use in Research Environments (MeaSUREs)
data collection (https://nsidc.org/data/nsidc-0477 (accessed on 15 October 2022)), gen-
erated under a baseline algorithm of MSTA [60]. It is with an Earth-fixed global 25 km
EASE-Grid projection and consists of two parts: the SMMR-SSM/I-SSMIS from 1979 to 2021

https://nsidc.org/data/spl3ftp_e
https://nsidc.org/data/nsidc-0477
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and the AMSR-E/AMSR2 record from June 2002 to December 2021. Here, the ESDR_FT
product from 1 April 2018 to 31 December 2020 in China obtained from SSMIS F17 Tb
is utilized. For subsequent processing, ESDR_FT is resampled to 9 km resolution and
reprojected as EASE-Grid 2.0.

2.2.2. Predictor Datasets for ConvLSTM

Here, three key variables affecting soil FT states, i.e., the 0–7 cm soil temperature (ST)
and volumetric soil moisture (SM), as well as the snow depth (SD) from 1980 to 2020 in
China, are selected from ERA5-land and used as predictor datasets for ConvLSTM. ERA5-
land (https://cds.climate.copernicus.eu (accessed on 15 March 2022)) is a reanalysis dataset
providing a consistent view of the evolution of land variables over several decades at a
temporal resolution of one hour and an enhanced spatial resolution of 0.1◦ × 0.1◦. It was
produced by replaying the land component of the ECMWF ERA5 climate reanalysis [61].

The Global Precipitation Measurement (GPM) precipitation product (PRE) from 1980
to 2020 in China is also used as a predictor dataset because precipitation may change the
short-term FT state of the soil. GPM is the successor of the Tropical Rainfall Measuring
Mission (TRMM), providing the next generation of rainfall products at a temporal resolution
of 30 min and spatial resolution of 0.1◦ [62]. Besides its superior temporal and temporal
resolution, the GPM product is proven to be better at rainfall detection over the QTP at
both spatial and three-hour scales and elevation ranges [63,64].

Predictor datasets also include area of open water (AOW), terrain complexity index
(TCI), longitude (LON), and latitude (LAT) in China, which can be directly obtained from
the SMAP_E_FT product. Note that the morning value sequence (at 3:00, 4:00, 5:00) and
afternoon value sequence (at 15:00, 16:00, 17:00) of ST, SM, SD, and PRE are used as
inputs for ConvLSTM to capture the temporal features of morning and afternoon FT state,
respectively. In addition, they are resampled to a spatial resolution of 9 km × 9 km using
the Equal-Area Scalable Earth Grid 2.0 (EASE-Grid 2.0) projection.

2.2.3. Auxiliary Datasets

In order to analyze the classification accuracy of ConvLSTM_FT on different surface
element types in detail, we used China’s land cover type data [65], Köppen climate clas-
sification data [66], and TCI. In addition, the data on permafrost thermal stability on the
QTP [67] is used to analyze FT conditions in permafrost regions over the years.

3. Methods
3.1. Convolutional Long Short-Term Memory Model Based on the Decision Level

This study uses the Convolutional Long Short-Term Memory model (ConvLSTM) to
expand the time series of the SMAP_E_FT product by fusing it with the ESDR_FT product.
The ConvLSTM integrates CNN and LSTM components. Its core function involves using the
output from one layer as the input for the subsequent layer. By incorporating convolution
operations, ConvLSTM can identify relationships within time series and extract spatial
features. Figure 2 shows the architecture of a ConvLSTM and the basic idea about using it
to generate the new ConvLSTM_FT product. The model has two parts: using ConvLSTM
to make classification predictions for ESDR_FT and SMAP_E_FT [41,68] and then fusing
them at the decision level with the related equation shown in Equation (1):

σ̂
(→

z
)

i
=

ezi

∑K
j=1 ezj

(1)

where σ̂ is the so f tmax function, which can map a K-dimensional vector
→
z to another

K-dimensional space, compress the value range for each dimension in the vector
→
z between

0 and 1, and ensure small values will be converted to small probabilities rather than being
abandoned directly.

https://cds.climate.copernicus.eu
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In this study, the ConvLSTM is trained using the eight predictor datasets as inputs and
the two target datasets (SMAP_E_FT and ESDR_FT) as outputs. We divided the target data
into three categories, i.e., frozen ground, thawed ground, and missing value. The datasets
span over five years, from 1 April 2015 to 31 December 2020, and are divided into three parts:
training set (1 April 2015 to 31 March 2016 and 1 November 2016 to 31 March 2017), validation
set (1 April 2016 to 31 October 2016 and 1 November 2017 to 31 March 2018), and test set
(1 April 2018 to 31 December 2020). In particular, the training set includes two frozen seasons
(November to March) and one thawed season (April to October). This is because the frozen
season is relatively short compared with the thawed season, and the proportion of frozen
pixels is relatively low compared with the thawed pixels. Therefore, we increased the number
of training samples in the frozen season to achieve better model prediction accuracy. Both
SMAP_E_FT and ESDR_FT are categorized into morning and afternoon products according to
their transit times (6:00 and 18:00 for SMAP_E_FT, 6:20 and 18:33 for ESDR_FT), and training
is carried out for morning and afternoon, respectively. Here, we take the training process
for morning datasets as an example. By assuming that the current soil freeze/thaw state is
affected by relevant properties over a period of time before, time series predictor datasets of
ST, SD, SM, and PRE at 3:00, 4:00, 5:00, and fixed information of TCI, AOW, LAT, and LON,
are input into the ConvLSTM, along with the morning target data. It should be noted that a
long step may lead to data redundancy and increase the calculation cost, while a short step is
unconducive to the extraction of time series features. In this work, the best prediction step for
the time series is three, indicating that three values from the previous three moments are used.
Then, in each hidden layer, we have three ConvLSTM cells that are connected to each other.
Information at 3:00 will flow in turn to 4:00 and 5:00, and finally complete the prediction of
classifying soil FT state at 6:00 with the score for each category. Generally, the final category
that a pixel belongs to is the one with the highest score. However, because ESDR_FT has been
introduced, we need to compare the judgment of ESDR_FT and SMAP_E_FT on the category
of the same pixel at the decision level. If they have the same judgment on a pixel’s category,
then the category can be directly output. Otherwise, we can use Equation (1) to convert the
output scores into probabilities. Finally, the category of a disputed pixel can be determined as
the category with the highest so f tmax score.

3.2. Validation Method
3.2.1. Direct Validation

The classification accuracy of ConvLSTM_FT is directly validated using the ground
‘truth’ obtained from the six dense in situ networks. Three evaluation indicators are used,
including frozen, thawed, and overall classification accuracy, i.e., CAF, CAT , and CAO,
as listed in Equations (2)–(4). Frozen/thawed classification accuracy is the number ratio
of pixels correctly classified as frozen/thawed to the frozen/thawed pixels derived from
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the ground observation. Overall classification accuracy is the number ratio of correctly
classified pixels to all pixels.

CAF =
NF/insitu_F

NF/insitu_F + NT/insitu_F
(2)

CAT =
NT/insitu_T

NT/insitu_T + NF/insitu_T
(3)

CAO =
NF/insitu_F + NT/insitu_T

NF/insitu_F + NT/insitu_T + NT/insitu_F + NF/insitu_T
(4)

where the X in X/insitu_X represents the frozen (F) or thawed (T) state of the product, and
insitu_X represents the frozen (insitu_F) or thawed (insitu_T) state of the ground observation.

Here, the classification accuracy of SMAP_E_FT is also evaluated and compared
with ConvLSTM at each dense in situ network to determine ConvLSTM’s superiority. In
addition, to further demonstrate the performance of ConvLSTM_FT at different seasons,
the classification accuracy of ConvLSTM_FT and SMAP_E_FT is also compared in frozen,
freeze-thaw, and thawed seasons. Note that, by integrated analyses on the actual FT
characteristics of each month in the six dense in situ networks, December and January are
defined as frozen seasons, February, March, April, October, and November as freeze-thaw
transitional seasons, and May to September as thawed seasons.

3.2.2. Indirect Validation

Indirect validation methods can synthesize multiple data sources to realize qualita-
tive and quantitative evaluation of different products. Among them, CTC is a method
proposed by McColl et al. and developed by Scott et al. that can give the classification
accuracies of a specific variable from three different data sources without relying on ground
observations [69,70]. The reliability of the CTC for evaluating soil freeze/thaw datasets
has been demonstrated [32]. In this study, CTC is used to validate the frozen and thawed
classification accuracy of ConvLSTM_FT indirectly.

In CTC, the measurement Xi from the ith product can be expressed as the summary of
the truth T and the error εi, as shown in Equation (5):

Xi = T + εi (5)

CTC requires that the errors between the three products be conditionally independent,
and the variance of each product cannot be 0. In order to measure the classification accuracy
of different products, the balanced accuracy πi of the ith product is defined as Equation (6):

πi =
1
2
(ψi + ηi) (6)

where sensitivity ψi = Pr(Xi = T|T = 1) represents the probability of correct classification
when T = 1, while the specificity ηi = Pr(Xi = T|T = −1) equals the probability of correct
classification when T = −1. If we define T = 1 as frozen soil and T = −1 as thawed
soil, then the sensitivity and specificity, respectively, represent the frozen and thawed
classification accuracy.

According to McColl et al., πi is related to the covariance (Equation (7)) between
different products [69].

Qij = cov
(

Xi, X .
J

)
=
(

1 − b2
)
(2πi − 1)

(
2πj − 1

)
(7)

where b = ψi − ηi is class imbalance. By defining vi =
√

1 − b2(2πi − 1), Equation (7) can
be rewritten as Equation (8):

v =

v1
v2
v3

 =


√

Q12Q13
Q23√

Q12Q23
Q13√

Q23Q13
Q12

 (8)
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A 3-D covariance tensor Tijk(i ̸= j ̸= k) was then introduced by Scott to quantitatively
solve the frozen and thawed classification accuracy of the three products [70]:

Tijk = E
[
(Xi − µi)

(
Xj − µj

)
(Xk − µk)

]
(9)

Tijk = α(b)vivjvk (10)

α(b) = −2b/
√

1 − b2 (11)

b = −α/
√

4 + α2 (12)

where µi is the average of the ith product. Then, by combining Equations (8)–(12), we
can solve the equations and get the sensitivities and specificities of the three products
(Equations (13) and (14)):

ψ =
1
2

(
1 + µ + v

√
1 − b
1 + b

)
(13)

η =
1
2

(
1 − µ + v

√
1 + b
1 − b

)
(14)

Generally, it can be reasonably assumed that the errors of the ground-measured, model-
derived, and remote-sensed FT datasets are conditionally independent. Here, Meteorology_FT
obtained from the soil temperature measurements of CMA’s meteorological stations and
EAR5_FT obtained from the 0–7 cm soil temperature of ERA5-land using a 0 ◦C threshold are
used together with ConvLSTM_FT to construct a triplet and applied to CTC.

4. Results
4.1. The Temporal and Spatial Distribution of CovLSTM_FT

Figure 3 shows the temporal and spatial distribution of CovLSTM_FT over China
throughout a whole year on every first day of each month from April 2018 to March 2019,
along with the corresponding SMAP_E_FT for comparison. The variation of the frozen ground
area shows a good seasonal trend, with the percentage of the frozen ground area decreasing
to a minimum in summer (July, August, and September) and then gradually increasing to a
maximum in winter (January). Moreover, compared with the slightly fragmented distribution
of SMAP_E_FT, ConvLSTM_FT shows reasonably continuous distributions of frozen and
thawed ground, which can be attributed to the introduction of ESDR_FT.
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4.2. Direct Validation

As a temporal expanding product of SMAP_E_FT, the classification accuracy of Con-
vLSTM_FT is very important in terms of consistency with or even superiority to that of
SMAP_E_FT. In Figure 4, comparisons between frozen, thawed, and overall classification
accuracies of ConvLSTM_FT and SMAP_E_FT during the test period, i.e., 1 April 2018
to 31 December 2020, are presented at the in situ networks of Genhe, Maqu, Naqu, Pali,
Saihanba, and SDR. For the morning products, ConvLSTM_FT performed slightly better
than SMAP_E_FT. As shown in Figure 4a, the frozen classification accuracy of ConvL-
STM_FT is better than that of SMAP_E_FT at five dense in situ networks, namely Maqu,
Naqu, Pali, Saihanba, and SDR, with a maximum of 0.9987 at Pali. As shown in Figure 4b,
the thawed classification accuracy of ConvLSTM_FT is better than that of SMAP_E_FT at
three networks, namely Genhe, Saihanba, and SDR, with a maximum of 0.9878 at Saihanba.
As shown in Figure 4c, the overall classification accuracy of ConvLSTM_FT is also better
than that of SMAP_E_FT at three networks, namely Maqu, Saihanba, and SDR, with a
maximum of 0.9045 at SDR. Overall, ConvLSTM_FT outperforms SMAP_E_FT at 5, 3, and
3 out of 6 in situ networks regarding frozen, thawed, and overall classification accuracy.
At other dense in situ networks, the classification accuracy of ConvLSTM_FT is close to
that of SMAP_E_FT. For the afternoon products, it is the same situation. ConvLSTM_FT
outperforms SMAP_E_FT at 4, 3, and 4 out of 6 in situ networks regarding frozen, thawed,
and overall classification accuracy.
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For a more comprehensive comparison of ConvLST_FT with SMAP_E_FT, we take one
step further to figure out their classification performances within different seasons, i.e., the
frozen, thawed, and freeze-thaw transitional seasons. According to the measurements of
the six in situ networks, we divide a year into frozen season (December and January), freeze-
thaw transitional season (February, March, April, October, and November), and thawed
season (May, June, July, August, and September). Because there is very little thawed soil in
a frozen season, comparisons between thawed classification accuracies are not included
in Figure 5a,d. It is the same in Figure 5b,d that the frozen classification accuracies are



Remote Sens. 2024, 16, 950 10 of 20

not considered in a thawed season. Overall, the high correlation coefficients R between
the two products indicate that ConvLSTM_FT maintains the classification accuracy of
SMAP_E_FT, while the positive biases indicate that ConvLSTM_FT has a comparably
higher classification accuracy at frozen, thawed, and freeze-thaw transitional seasons than
SMAP_E_FT. According to the biases of morning and afternoon products in the three
seasons, the superiority of ConvLSTM_FT is most significant in the frozen season, followed
by the thawed and freeze-thaw transitional season. It is worth noting that, in the frozen
season, the bias of 0.0630 in the morning and 0.0783 in the afternoon implies that the
classification accuracy has been increased by about 7.03% relative to SMAP_FT.
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4.3. Indirect Validation

Li et al. state that long-series data can ensure a comparably reliable quantitative result
from CTC [32]. In this work, the indirect validation results derived from CTC based on
41-year ConvLSTM_FT (1980–2020) are presented using a bivariate map in Figure 6 (for
morning products) and Figure 7 (for afternoon products). It is worth noting that, in the
thawed season, most areas in China are discriminated as thawed soil by all three products,
i.e., ConvLSTM_FT, Meteorology_FT, and ERA5_FT, which violates CTC’s prerequisite of a
0-variance. Applying CTC to calculate the classification accuracies of the three FT products
during the thawed season in these areas is impossible. Therefore, in Figures 6 and 7, the
spatial distributions of the bivariate classification accuracy for the three products are only
presented by using all data, data during the frozen season, and data during the freeze-thaw
transitional season.

Generally, for both morning and afternoon products, the ConvLSTM_FT has a higher
frozen (sensitivity) and thawed (specificity) classification accuracy than Meteorology_FT
and ERA5_FT, and overall, the frozen and thawed classification accuracies in the morning
are higher than those in the afternoon. Specifically, in the morning, as shown in Figure 6,
compared with ConvLSTM_FT, Meteorology_FT tends to have a lower frozen classification
accuracy, while ERA5_FT tends to have a lower thawed classification accuracy, which is
especially significant during the frozen and freeze-thaw transitional season. This phe-
nomenon may be related to the fact that ERA5_FT is obtained using the soil temperature at
a certain depth (0–7 cm), and Meteorology_FT is derived using a 0 cm soil temperature.
In the frozen and freeze-thaw transitional seasons, the warming process in the morning



Remote Sens. 2024, 16, 950 11 of 20

(e.g., 6:00) will cause a faster increase in surface soil temperature than at a certain depth.
The frozen soil at the 0 cm surface is more likely to be misclassified as thawed than soils
at a certain depth, decreasing the Meteorology_FT’s frozen classification accuracy and
the ERA5_FT’s thawed classification accuracy. In contrast, in the afternoon, as shown in
Figure 7, compared with ConvLSTM_FT, Meteorology_FT tends to have a lower thawed
classification accuracy, while ERA5_FT tends to have a lower frozen classification accuracy.
Similarly, in the frozen and freeze-thaw transitional seasons, the cooling process in the
afternoon (e.g., 18:00) will cause a faster decrease in surface soil temperature than at a
certain depth. The thawed soil at the 0 cm surface is more likely to be misclassified as
frozen than soils at a certain depth, decreasing the Meteorology_FT’s thawed classification
accuracy and the ERA5_FT’s frozen classification accuracy.
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5. Discussion
5.1. Analysis of ConvLSTM_FT’s Performances Based on CTC-Derived Result

In order to discuss the performances of ConvLSTM_FT from 1980 to 2020 in detail,
its CTC-derived classification accuracies are further discussed and analyzed. The statis-
tical result of ConvLSTM_FT’s frozen and thawed classification accuracies on different
land cover types, Köppen climate types, and terrain complexity are presented in Figure 8,
Figure 9, and Figure 10, respectively. Statistical results on ERA5_FT and Meteorology_FT
are presented side-by-side for convenience of comparisons. Overall, ConvLSTM_FT main-
tains a stable 2nd rank in either frozen or thawed classification accuracy among the three
FT products regardless of land cover types, climate types, and terrain complexity. As
demonstrated and explained in the indirect validation Section 4.3, ERA5_FT performs
worst when classifying thawed soils in the morning and frozen soils in the afternoon, while
Meteorology_FT performs worst when classifying frozen soils in the morning and thawed
soils in the afternoon. In addition, ConvLSTM_FT’s frozen classification accuracy is basi-
cally in line with the first-place product, i.e., ERA5_FT in the morning and Meteorology_FT
in the afternoon, and is much better than its thawed classification accuracy. The reasons are
twofold. One may be the introduction of ESDR_FT, which is better at classifying frozen soils
than thawed soils [32]; the other may be L-band has better similarity between canopy and
soil temperatures in the morning than in the afternoon, which will minimize the influence
from vegetation [71]. In addition, the soil FT transition temperature may be affected by a
variety of factors, but Meteorology_FT here is divided by 0 ◦C as a threshold, which may
cause errors. However, due to the large number of sampling stations and large-scale study,
these errors can be ignored.
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China’s land cover types are mainly divided into cropland, forest, grassland, barren,
and impervious [65], as shown in Figure 8. Regarding frozen classification accuracy, ConvL-
STM_FT performs very well with an average sensitivity ψ, i.e., the frozen classification ac-
curacy, of 0.96 and 0.98 in the morning and afternoon, respectively, as shown in Figure 8a,c,
which indicates that, as a temporal expanding product of SMAP_E_FT, ConvLSTM_FT well
inherits L-band’s sensitivity to transient changes of soil FT state in the frozen season [72].
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Studies have shown that in many land cover types, even in forests, the L-band is highly
likely to be affected by surface temperature reduction to capture more frozen signals in the
early frozen stage [26,73]. However, the performance of ConvLSTM_FT is also affected by
the different penetration abilities of the L-band to different vegetation. It can be observed
clearly from Figure 8b,d that ConvLSTM performs the best in barren areas but the worst
in forests. The same phenomenon also appears in SMAP_E_FT. That is, the classification
accuracy will decrease as the vegetation becomes dense [36].
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According to the Köppen climate classification data [66], there are four different climate
types in China: arid, temperate, continental, and polar. Regarding frozen classification
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accuracy, as shown in Figure 9a,c, ConvLSTM_FT performed very well (both above 0.96 in
the morning and afternoon). However, the performance in polar areas is slightly worse than
that of other regions, which may be due to the fact that when the temperature rises above
zero in early spring, the presence of wet snow on the surface of frozen soil will lead to the
increase of dielectric constant and thus misjudged as thawed state [26,73–75]. Interestingly,
ConvLSTM_FT performs best in polar areas and worst in temperate areas when classifying
thawed soils, as shown in Figure 9b,d. That may be due to the greater uncertainty in the
classification of FT in areas where FT transitions are frequent (e.g., the temperate area),
which echoes the demonstration of Chai et al. that the classification accuracy in an FT
transitional season is lower than in a frozen or thawed season [31].

The terrain complexity is evaluated using TCI. Figure 10 shows the statistical result
of ConvLSTM_FT’s frozen and thawed classification accuracy on different TCI conditions,
divided into less than 50 m, 50 to 150 m, 150 to 250 m, 250 to 350 m, and no less than
350 m. As shown in Figure 10a,c, ConvLSTM_FT performs very well (above 0.9 and 0.97
in the morning and afternoon, respectively). Generally, ConvLSTM_FT’s classification
accuracy has a decreasing trend with an increased TCI, corresponding to an increased
terrain complexity. This may be because more frequent FT processes are more likely to
occur in mountainous regions with higher elevations, making it more challenging to capture
FT signals accurately [5,76]. As a result, with the increase in TCI, the classification accuracy
will decrease [29,74].

5.2. Soil Freeze/Thaw Trend in the ConvLSTM_FT over 1980–2020

Based on ConvLSTM_FT’s 9 km soil FT products in China from 1980 to 2020, frozen
days in those years are counted year by year within China’s four regions: Qinghai–Tibet,
northwest, north, and south. Based on the trend analysis method, Figure 11 presents
the variation of the average number of frozen days in each region from 1980 to 2020,
with the southern region excluded because there are generally only thawed soils all year
around in southern China. The results show that, from 1980 to 2020, the number of
frozen days in the three regions averaged 168 days, with an average decreasing trend of
−0.21 d/a. As expected, the Qinghai–Tibet region owns the longest frozen days, with
a mean value of 239 days, followed by the northwestern and northern regions, with a
mean value of 144 days and 102 days, respectively. Although all three regions have
experienced a decreasing trend in the number of frozen days, they are different from each
other. Specifically, as shown in Figure 11 and Table 2, the decreasing rate is the fastest in
the northwest, while the average frozen days decreased the slowest in Qinghai–Tibet. The
phenomenon may be directly related to the global warming. We know that more areas
in the northern and northwestern regions are seasonally frozen ground (SFG) than the
Qinghai–Tibet region (with more permafrost areas). Studies have shown that the impact
of increasing air temperature on the variations of frozen days will be more direct and
significant in SFG than in permafrost [77]. That is probably because SFG is located at
the top layer of the ground, while the long-term degradation process of permafrost has a
resistant effect to more frequent FT transitions caused by increased temperature [78].

We further analyze and discuss the decreasing rate of frozen days in the past 41 years
(1980–2020) within Qinghai–Tibet under the subcategories of permafrost, which is divided
by Ran et al. based on the thermal stability of permafrost [67]. The thermal stability of the
permafrost is evaluated according to the mean annual ground temperature and ranked
from high to low as very stable, stable, semi-stable, transitional, and unstable. It can be
observed from Figure 12 that, from 1980 to 2020, the variation trends in the average number
of frozen days decreased across all six frozen grounds under different thermal stabilities.
The decreasing rate of frozen days gradually slows down as thermal stability decreases,
with very stable of −0.31 d/a, stable of −0.22 d/a, semi-stable of −0.11 d/a, transitional of
−0.09 d/a, and unstable of −0.05 d/a (Table 2).
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decreases, with very stable of −0.31 d/a, stable of −0.22 d/a, semi-stable of −0.11 d/a, tran-
sitional of −0.09 d/a, and unstable of −0.05 d/a (Table 2). 

In the context of global warming, permafrost degradation will generally go through 
five processes: starting stage, temperature rising stage, zero gradient stage, talic layers 
stage, and disappearing stage [79]. In a temperature rising stage, ground temperature in-
creases rapidly, permafrost degrades violently [80], and thawed interlayers appear in the 
permafrost with the rapid temperature rise. In addition, because there is a perennially 
high temperate zone near the upper limit of permafrost, thawing will be accelerated under 
the effect of “anti-seasonal compensation” [79]. In zero gradient, disjointed, and disap-
pearing stages, the increasing rate of ground temperature gradually slows down, induc-
ing the permafrost degradation rate to slow down, with the permafrost thawing from the 
top and disappearing eventually. According to space-time substitution, the rise of perma-
frost’s thermal stability may be reasonably linked to permafrost degradation. Studies have 
shown that under the current warming conditions, the degradation of very stable or stable 
permafrost in the Qinghai–Tibet region may be in the starting and temperature rising 
stages [81]. This also explains the gradual inclination in the decreasing rate of frozen days 
as the thermal stability increases. 
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In the context of global warming, permafrost degradation will generally go through
five processes: starting stage, temperature rising stage, zero gradient stage, talic layers
stage, and disappearing stage [79]. In a temperature rising stage, ground temperature
increases rapidly, permafrost degrades violently [80], and thawed interlayers appear in
the permafrost with the rapid temperature rise. In addition, because there is a perennially
high temperate zone near the upper limit of permafrost, thawing will be accelerated
under the effect of “anti-seasonal compensation” [79]. In zero gradient, disjointed, and
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disappearing stages, the increasing rate of ground temperature gradually slows down,
inducing the permafrost degradation rate to slow down, with the permafrost thawing from
the top and disappearing eventually. According to space-time substitution, the rise of
permafrost’s thermal stability may be reasonably linked to permafrost degradation. Studies
have shown that under the current warming conditions, the degradation of very stable or
stable permafrost in the Qinghai–Tibet region may be in the starting and temperature rising
stages [81]. This also explains the gradual inclination in the decreasing rate of frozen days
as the thermal stability increases.

Table 2. Regional statistics on decreasing rate of frozen days [67,82].

Region
SFG Permafrost

Slope (d/a)
Area Percent Thermal Stability Area Percent

Northwest 43.04% / 56.96% −0.32

North 97.00% / 2.00% −0.29

Qinghai–Tibet 41.60% / 47.92% −0.06

Within Qinghai–Tibet /

Very stable 0.36% −0.31
Stable 4.01% −0.22

Semi-stable 16.02% −0.11
Transitional 17.62% −0.09

Unstable 9.92% −0.05
41.60% / / −0.02

6. Conclusions

In this work, a 41-year ConvLSTM_FT product (1980–2020) was generated by expand-
ing the time series of SMAP_FT products based on the Convolutional Long Short-Term
Memory model. The classification accuracies of ConvLSTM for frozen and thawed soils
are directly validated based on six dense in situ networks and indirectly validated using
CTC by constructing a triplet together with ERA5_FT and Meteorology_FT. Moreover,
the variation trends in soil frozen days during the past 41 years over three major geo-
graphical regions within China and different thermal stabilities of frozen ground within
Qinghai–Tibet are analyzed based on ConvLSTM_FT. Three key conclusions are obtained.

(1) The ConvLSTM model can capture spatiotemporal information effectively, and the
introduction of decision-level fusion can further improve the prediction accuracy of
ConvLSTM. Therefore, the decision-level spatiotemporal fusion architecture based
on the ConvLSTM model is an effective method worth trying in the research of data
fusion, time series extension, and classification accuracy improvement.

(2) As a temporal expanding product of SMAP_E_FT, ConvLSTM_FT overall outperforms
SMAP_E_FT. Direct verification results show that the overall classification accuracy
of ConvLSTM_FT has an improvement of 2.44% relative to SMAP_E_FT, especially in
frozen seasons (improved by an average of 7.03%). Indirect verification results show
that ConvLSTM_FT is more stable than ERA5_FT and Meterology_FT, ranking second
in the accuracy of FT soil identification regardless of land cover types, climate types,
and terrain complexity.

(3) The analysis result of the classification accuracy of ConvLSTM_FT from 1980 to 2020
shows that the annual frozen days and their changes are reasonable in the northwest,
north, and Qinghai–Tibet regions of China. Especially in the Qinghai–Tibet region,
with the decrease in permafrost thermal stability, the rate of frozen soil degradation
slows down. These results are reasonable and can effectively reflect the impact of
climate change on frozen soils in the past 41 years.

In future research, we aim to address the limitations identified in this study. Because
of the limitation of ground observation technology, it is still currently difficult to accurately
determine the specific temperature of FT transition on a large scale. We will create a more
reliable ground truth dataset from measured data for validation purposes.
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